PCCP

# Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/pccp

| 1  | Determination of protein binding affinities within hydrogel-based molecularly        |
|----|--------------------------------------------------------------------------------------|
| 2  | imprinted polymers (HydroMIPs)                                                       |
| 3  |                                                                                      |
| 4  | Hazim F. EL-Sharif, Daniel M. Hawkins, Derek Stevenson, Subrayal M. Reddy $^*$       |
| 5  |                                                                                      |
| 6  | Department of Chemistry, Faculty of Engineering and Physical Sciences, University of |
| 7  | Surrey, Guildford, Surrey, GU2 7XH, UK                                               |
| 8  |                                                                                      |
| 9  | *Corresponding Author                                                                |
| 10 | Tel : +44 (0) 1483686396, s.reddy@surrey.ac.uk                                       |
|    |                                                                                      |

#### 12 Abstract

13 Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several 14 proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based 15 monomers. Protein affinity towards the HydroMIPs was investigated under equilibrium 16 conditions and over a range of concentrations using specific binding with Hill slope 17 saturation profiles. We report HydroMIP binding affinities, in terms of equilibrium 18 dissociation constants (K<sub>d</sub>) within the micro-molar range ( $25\pm4 \mu$ M,  $44\pm3 \mu$ M,  $17\pm2 \mu$ M for 19 haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The 20 extent of non-specific binding or cross-selectivity for non-target proteins has also been 21 assessed. It is concluded that both selectivity and affinity for both cognate and non-cognate 22 proteins towards the MIPs were dependent on the concentration and the complementarity of 23 their structures and size. This is tentatively attributed to the formation of protein complexes 24 during both the polymerisation and rebinding stages at high protein concentrations. We have 25 used atomic force spectroscopy to characterize molecular interactions in the MIP cavities 26 using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the 27 MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). 28 Our force data suggest that we have produced selective cavities for the template protein in the 29 MIPs and we have been able to quantify the extent of non-specific protein binding on, for 30 example, a non-imprinted polymer (NIP) control surface. 31

32 Keywords: Hydrogels; Molecular imprinting; Protein affinity; Dissociation constants (K<sub>d</sub>);
 33 AFM; Force spectroscopy

# 34 **1. Introduction**

| 35 | As "smart" material polymer hydrogels have been the focus of considerable interest from                   |
|----|-----------------------------------------------------------------------------------------------------------|
| 36 | both fundamental and applied perspectives, knowledge of their properties is of paramount                  |
| 37 | importance for the research and development of new applications <sup>1-3</sup> . Hydrogels are insoluble, |
| 38 | cross-linked polymer network structures that are composed of hydrophilic homo- or hetero-                 |
| 39 | co-polymers and have the ability to absorb water <sup>4, 5</sup> . The molecular imprinting community     |
| 40 | have exclusively researched the use of hydrogels (HydroMIPs) in the past decade, and many                 |
| 41 | different monomers are currently being used for different functional purposes <sup>6,7</sup> . These      |
| 42 | monomers are generally chosen on their ability to form weak hydrogen bonds between the                    |
| 43 | monomer and the template and are ideal for non-covalent molecular imprinted hydrogels <sup>5, 6</sup> .   |
| 44 | Hydrogels based on functional acrylamide monomers are known to be very inert, offer                       |
| 45 | hydrogen bonding capabilities, and are biocompatible. For these reasons, functional                       |
| 46 | acrylamides have been commonly used for molecular imprinting <sup>5, 6, 8</sup> .                         |
| 47 | Molecular imprinting has been hard to adapt to aqueous conditions due to the specific polar               |
| 48 | interactions between good imprinted sites and the analyte which become weakened, and to                   |
| 49 | the non-specific (hydrophobic) interactions between other small molecules and the gel which               |
| 50 | become strengthened <sup>5</sup> . As such, common imprints have usually been low molecular weight        |
| 51 | non-biological molecules, such as drugs and pesticides <sup>3, 9-11</sup> . However, popularity for       |
| 52 | imprinting large bio-macromolecule templates such as nucleic acids, viruses and proteins has              |
| 53 | increased in the past decade, with a view to developing integrated molecular imprinted                    |
| 54 | polymer (MIP) sensors for disease markers. Furthermore, MIP selectivity is believed to                    |
| 55 | depend on the orientation of the functional groups inside the cavities and the shape of the               |
| 56 | cavities. If there are two binding sites per template, several single-point bindings can occur            |
| 57 | but only one two-point binding. It is the two-point binding sites that provide high selectivity           |
| 58 | <sup>12</sup> . The fundamental interactions between the polymer network and the imprinted template       |

59 binding sites are the same attractive and repulsive interactions within the protein itself. These 60 are van der Waals, hydrophobic, electrostatic, and hydrogen bonding. Specific external 61 modifications that change the overall interaction balance in the complex are the reason these systems are suitable for a great deal of applications <sup>12</sup>. However, the challenge associated 62 63 with binding in imprinted polymers is the selective template re-uptake in the cavity. 64 One of the principal goals of molecular imprinting is to achieve MIP binding affinities 65 comparable to the high selectivity offered by proteins for their ligands <sup>13</sup>. 66 Recently, there have been reports of MIPs showing dissociation constants ( $K_d$ ) of a similar magnitude to antibodies when binding proteins such as mellitin<sup>14, 15</sup> and trypsin<sup>16</sup>. Table 1 67 68 illustrates common classes of receptor-ligand interactions compared to those of previous 69 biological MIP receptor-ligand dissociation constants. One of the most renowned interactions for having a high binding constant of  $10^{-15}$  M is the biotin-avidin complex<sup>13, 17</sup>. The vitamin 70 71 biotin and the egg-white protein avidin or streptavidin complex provides one of the largest 72 measured association constants for a non-covalent interaction between a protein and small molecule <sup>18</sup>. The strength of interaction comes from 15 amino acid residues on streptavidin. 73 74 The specific positioning of the ligand in the active site allows for the formation of eight 75 hydrogen bonds and eight sites of van der Waals interactions. The high specificity is 76 compounded by four of these amino acids being part of a flexible loop that locks into place 77 upon biotin binding, an "induced fit" that provides additional favourable interactions between protein and ligand <sup>13, 18</sup>. Despite the complex series of events, the process appears to come 78 79 easy to such natural systems. The 15 amino acids are not all contiguous in the primary 80 structure of streptavidin, and they are held in place by the overall fold of the protein. This is a 81 common feature in essentially all protein-ligand interactions. The affinity of avidin for a 82 number of biotin analogues has been determined, and small changes in structure have led to 100-fold decreases in binding affinity <sup>13, 18</sup>. 83

Physical Chemistry Chemical Physics Accepted Manuscript

#### **Physical Chemistry Chemical Physics**

| 84 | Compared to protein-ligand complexes, protein-hydrogel complexes are not so well-studied                           |
|----|--------------------------------------------------------------------------------------------------------------------|
| 85 | and do not yet have the same specificities and affinities. Although protein-hydrogel                               |
| 86 | complexes are believed to share the same types of interactions, the overall structural complex                     |
| 87 | is the opposite to that of protein-ligand complexes, in that the receptor pocket or cavity is                      |
| 88 | located within the polymer matrix and not the protein.                                                             |
| 89 | MIPs are typically highly cross-linked systems and by virtue of their rigid structure are                          |
| 90 | therefore unable to offer many degrees of freedom to allow similar capture and locking to                          |
| 91 | take place. However, HydroMIPs are able to swell and contract depending on solvent <sup>19</sup> , ionic           |
| 92 | strength <sup>4</sup> , buffer composition and pH <sup>6</sup> , and the presence of other dissolved components in |
| 93 | solution. If these parameters can be optimised to improve selective binding, compared to non-                      |
| 94 | imprinted polymer controls, it could drastically improve the binding properties of such                            |
| 95 | HydroMIPs.                                                                                                         |
| 96 | This paper aims to investigate the rebinding affinity, selectivity and cross-selectivity of                        |
| 97 | template protein molecules into hydrogel-based molecularly imprinted polymers using                                |
| 98 | functional acrylamides of varying hydrophobicity.                                                                  |

99

#### 100 **2. Experimental**

## 101 **2.1. Reagents and materials**

- 102 Acrylamide (AA), N-hydroxymethylacrylamide (NHMA), N-iso-propylacrylamide (NiPAm),
- 103 N,N-methylenebisacrylamide (bis-AA), ammonium persulphate (APS), N,N,N,N-
- 104 tetramethylethyldiamine (TEMED), sodium dodecyl-sulphate (SDS), glacial acetic acid
- 105 (AcOH), bovine haemoglobin (BHb), bovine serum albumin (BSA), bovine liver catalase
- 106 (BCat), and equine heart myoglobin (EMb) were all purchased from Sigma-Aldrich, Poole,
- 107 Dorset, UK. Sieves (75 µm) were purchased from Inoxia Ltd., UK.

#### 109 **2.2. Hydrogel productions**

| 110 | Hydrogel MIPs were synthesised by separately dissolving AA (54mg), NHMA (77 mg),                 |
|-----|--------------------------------------------------------------------------------------------------|
| 111 | NiPAm (85.6 mg) and bis-AA as cross-linker (6 mg), (8.5 mg) and (9.5 mg) respectively            |
| 112 | along with template protein (12 mg) in 1ml of MilliQ water. The solutions were purged with       |
| 113 | nitrogen for 5 minutes, then 20 $\mu L$ of a 10% (w/v) APS solution and 20 $\mu L$ of a 5% (v/v) |
| 114 | TEMED solution were added. Polymerisation occurred at room temperature giving final              |
| 115 | crosslinking densities of 10%. For every HydroMIP created a non-imprinted 'HydroNIP'             |
| 116 | control was prepared in an identical manner but in the absence of protein. After                 |
| 117 | polymerization, the gels were granulated separately using a 75µm sieve. Of the resulting         |
| 118 | gels, 500 mg were conditioned by washing with five 1 mL volumes of MilliQ water followed         |
| 119 | by five 1 mL volumes of a 10% (w/v):10% (v/v) SDS:AcOH eluent (pH 2.8). A Further five           |
| 120 | 1 mL volume washes of MilliQ water followed to remove any residual SDS:AcOH eluant and           |
| 121 | equilibrated the gels. Each wash step was followed by a centrifugation, whereby the gels         |
| 122 | were centrifuged using an eppendorf mini-spin plus centrifuge for 3 minutes at 6000 rpm          |
| 123 | (RCF: 2419 x g). All supernatants were collected for analysis by spectrophotometry.              |
| 124 |                                                                                                  |

#### 125 **2.3. MIP binding affinity studies**

Once the gels were equilibrated, 1mL volumes of reload protein (BHb, EMb and BCat)
solutions of known concentrations (0.1 mg/mL – 5 mg/mL) prepared in MilliQ water were
allowed to associate at room temperature with the respective imprinted gels for 20 minutes.
Cross-selectivity studies were also conducted to assess the binding affinity of the original
template protein. This was achieved by loading BSA and EMb on a BHb imprinted gel. Gels
were then washed with four 1ml volumes of MilliQ water solution. Each reload and wash

|   | _                         |
|---|---------------------------|
|   |                           |
|   |                           |
|   | U                         |
|   |                           |
|   | U)                        |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   | <b>()</b>                 |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   | <b>(</b> )                |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   | <b>d</b>                  |
|   |                           |
|   | $\mathbf{C}$              |
|   |                           |
|   | C                         |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   | 0                         |
|   |                           |
|   | C                         |
|   |                           |
|   |                           |
|   | <b>()</b>                 |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   |                           |
|   | σ                         |
|   | ()<br>()                  |
|   | Ca                        |
|   | Ca                        |
|   |                           |
|   | nica                      |
|   | mica                      |
|   | emica                     |
|   | <b>Iemica</b>             |
|   | hemica                    |
|   | hemica                    |
|   | Jhemica                   |
|   | Chemica                   |
|   | Chemica                   |
|   | <b>V</b> Chemica          |
|   | <b>Y Chemica</b>          |
|   | iry Chemica               |
| - | try Chemica               |
|   | stry Chemica              |
|   | stry Chemica              |
|   | <b>Istry Chemica</b>      |
|   | nistry Chemica            |
|   | <b>mistry Chemica</b>     |
|   | mistry Chemica            |
|   | emistry Chemica           |
|   | emistry Chemica           |
|   | nemistry Chemica          |
|   | nemistry Chemica          |
|   | <b>Unemistry Chemica</b>  |
|   | Chemistry Chemica         |
|   | Chemistry Chemica         |
|   | I Chemistry Chemica       |
|   | al Chemistry Chemica      |
|   | al Chemistry Chemica      |
|   | cal Chemistry Chemica     |
|   | ical Chemistry Chemica    |
|   | ical Chemistry Chemica    |
|   | sical Chemistry Chemica   |
|   | sical Chemistry Chemica   |
|   | ysical Chemistry Chemica  |
|   | nysical Chemistry Chemica |
|   | nysical Chemistry Chemica |
|   | hysical Chemistry Chemica |

| 132 | step for all MIPs and NIP controls was followed by centrifugation at 6000 rpm (RCF: 2419 x    |
|-----|-----------------------------------------------------------------------------------------------|
| 133 | g) for 3 minutes. All supernatants were collected for analysis by spectrophotometry.          |
| 134 |                                                                                               |
| 135 | 2.4. Spectrophotometric analysis                                                              |
| 136 | All supernatant fractions were analysed at specific peak wavelengths using a UV mini-1240     |
| 137 | CE spectrophotometer (Shimadzu Europa, Milton Keynes, UK) to determine the protein            |
| 138 | concentrations. This was done in the appropriate wash/elution solution. Calibration curves in |
| 139 | 10% AcOH:SDS and MilliQ water were prepared for BSA, BHb, BCat and EMb. Peak                  |
| 140 | wavelengths for BHb in MilliQ water and 10% AcOH:SDS were found to be 406 nm and 395          |
| 141 | nm respectively. Peak wavelengths for BCat in MilliQ water and 10% AcOH:SDS were              |
| 142 | found to be 404 nm and 392 nm respectively. Peak wavelengths for EMb in MilliQ water and      |
| 143 | 10% AcOH:SDS were found to be 408 nm and 396 nm respectively. Peak wavelengths for            |
| 144 | BSA in MilliQ water and 10% AcOH:SDS were found to be 288 nm and 290 nm                       |
| 145 | respectively.                                                                                 |
| 146 |                                                                                               |

### 147 **2.5. Curve fitting**

148 Curve fitting was carried out by non-linear least squares regression using saturation binding -

149 one site specific binding with Hill Slope equation in GraphPad Prism 6.

150

### 151 **2.6. Atomic force spectroscopy analysis**

152 AA MIP gels were fabricated as described in section 2.2. Following the sieving, the MIP gels

153 were washed with five 2-mL volumes of RO water followed by five 2-mL volumes of 10%

- 154 SDS/acetic acid eluent. Each wash/elution step was performed by centrifugation. All gels
- 155 were diluted 1:1 with RO water. Fifty microliters of each gel sample was pipetted into an

| 156 | Eppendorf tube to which 50 $\mu L$ of a 5% (v/v) acrolein solution was added, and the samples             |
|-----|-----------------------------------------------------------------------------------------------------------|
| 157 | were placed in a Pelco Biowave microwave (Ted Pella Inc.) and treated under vacuum at 20                  |
| 158 | $^{\circ}C$ (plate temperature) and 250 Watts for 2 min (on), 2 min (off), and 2 min (on). A 100- $\mu L$ |
| 159 | volume of RO water was added to the samples, vortex mixed, and microcentrifuged for 5 min                 |
| 160 | before being treated under vacuum at 20 °C and 250 Watts for 1 min in the microwave. The                  |
| 161 | supernatant was discarded. The RO water treatments were repeated in triplicate. The samples               |
| 162 | were then dehydrated using a series of $100-\mu L$ methanol washes that increased in                      |
| 163 | concentration sequentially from 5% (v/v) through to 95% (v/v) (at 5% increments) in an                    |
| 164 | identical manner as the RO washes. Three 100- $\mu$ L volumes of 100% methanol were finally               |
| 165 | employed in an identical manner to the previous dehydration stages, which were followed by                |
| 166 | the addition of three drops of propylene oxide. The samples were treated with three 100- $\mu$ L          |
| 167 | volumes of hexamethyldisilazane (HMDS), (mixed, centrifuged for 5 min, and supernatant                    |
| 168 | removed after each HMDS addition) with the final treatment leaving a small dry sample at                  |
| 169 | the base of the Eppendorf tube. Thermanox coverslips were dipped in 0.1% polylysine and                   |
| 170 | allowed to air dry. A spatula was used to apply a small measure (ca. 0.1 g) of each HydroMIP              |
| 171 | and HydroNIP sample to a polylysine-coated Thermanox® coverslip, with the hydrogel                        |
| 172 | spread homogenously across the surface of the coverslip. Each sample was then                             |
| 173 | cryogenically treated as follows and stored in a dry chamber prior to analysis. A 1- $\mu$ L aliquot      |
| 174 | of each gel suspension was pipetted onto 400 mesh, carbon stabilized, Formvar coated glow                 |
| 175 | discharged copper grids. The grids were plunged into liquid nitrogen. Following the constant              |
| 176 | agitation of the sample in the liquid nitrogen for approximately 30 s, the grids were                     |
| 177 | transferred to 100% methanol and agitated for approximately 20 s. The grids were then                     |
| 178 | transferred to HMDS and again agitated for approximately 20 s.                                            |
| 179 | An AFM Bioscope System (Nanoscope 3A, Digital Instruments) AFM mounted on an                              |
| 180 | Axiovert 100 TV inverted microscope (Zeiss) was used in contact mode operation. The                       |

| 181 | Axiovert light microscope was used to focus upon a sample region that was homogenous in                  |
|-----|----------------------------------------------------------------------------------------------------------|
| 182 | appearance and devoid of any topographic features of extreme height that would impede the                |
| 183 | free movement of the cantilever across the sample surface. The probe was advanced toward                 |
| 184 | the sample surface using the automated approach function. The tip was allowed to repeatedly              |
| 185 | touch and retract from the sample surface for 3 min, resulting in approximately 90 force                 |
| 186 | curves. The process was repeated on the same sample in three different sample areas. For                 |
| 187 | each experiment, 30 force curves were randomly selected (10 from each repeat). The binding               |
| 188 | events were quantified using a proprietary software package (NforceR) to determine the                   |
| 189 | adhesion force between AFM probe and hydrogel sample and analyzed using Matlab                           |
| 190 | software (Math Works). Each of the HydroMIP and HydroNIP samples, plus a polylysine-                     |
| 191 | coated control coverslip, were interrogated in an identical fashion using protein (BHb)                  |
| 192 | modified probes operating in the force measurement mode. From the raw values generated, a                |
| 193 | force (F) was calculated using the following formula (Eq. 1):                                            |
| 194 | $\mathbf{F} = \mathbf{R} \mathbf{x} \mathbf{Z} \mathbf{x} \mathbf{S} \mathbf{x} \mathbf{C} \tag{1}$      |
| 195 | Where R is the Raw value, Z is the Z hard scale, S the probe sensitivity and C the probe                 |
| 196 | spring constant. In each case, the Z hard scale was an instrument constant ( $0.38147 \times 10^{-4}$ ), |
|     |                                                                                                          |

197 the probe sensitivity was 182.8 nm/V and the probe spring constant was 0.03 nN/nm. The

198 resulting force was therefore given in nN.

199

#### 200 3. Results and discussion

### 201 **3.1. MIP binding affinity**

- 202 Experimentally derived receptor-ligand binding plots of bound versus free protein
- 203 concentration are not expected to yield a typical saturation profile due to linearly increasing
- 204 non-specific binding<sup>9</sup>. However, the obtained batch binding isotherms (Fig. 1) exhibited

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

 $\frac{B}{F} = \frac{B_{max} - B}{K_d}$ 

progressive saturation at higher protein concentrations for MIP. This suggests that at higher protein concentrations polymer binding occurs via a mixture of specific binding at imprinted sites and nonspecific adsorption in to the polymer matrix due to a limited number of binding sites. More strikingly with the NIP, the isotherm demonstrated a step change from near zero binding (at low protein concentration) to saturation at a higher critical protein concentration. This supports our understanding that the NIP control has no discernible features for selective protein binding. At lower protein concentrations, the non-specifically bound protein is a surface effect. However, at the higher critical protein loading, some of the surface bound protein is able to break-through the NIP surface. The immediate saturation in the isotherm suggests that the NIP is predominately impermeable to protein. In order to determine affinity constants and binding site concentrations it is often necessary to re-plot the isotherm data in the form of a Scatchard plot using the following formula (Eq. 2)<sup>9</sup>. (2)This is a linearized form of the Langmuir equation, of which the transformation has shown to distort experimental error, and only assumes single affinity constant binding site populations.

221 B max is the apparent maximum number of binding sites,  $K_d$  the equilibrium dissociation

222 constant, F the concentration of free protein, and B the concentration of bound protein.

223 Moreover, due to the heterogeneous distribution of binding sites in MIP matrices, MIP-ligand 224 binding studies for simple organic molecules, such as pesticides, herbicides and drugs, have generally reported non-linear concave curves <sup>9</sup>. The imprinting of bio-macromolecules, such 225 226 as proteins, presents a variety of challenges, i.e. proteins are relatively labile, and have 227 changeable conformations which are sensitive to various factors, e.g. solvent environments, pH and temperature  $^{6}$ . Therefore, alternative approaches such as the Hill equation (Eq. 3), 228

229 which is indicative of binding site cooperativity have been used for MIP-ligand binding

# **Physical Chemistry Chemical Physics**

| 230 | analysis <sup>9</sup> . In this case Y is the binding site occupancy, and $n_h$ is the Hill coefficient relates to |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------|--|--|
| 231 | a linear Scatchard plot when $n_h$ is equal to 1.0, and is indicative of ligand binding with no                    |  |  |
| 232 | cooperativity to one site.                                                                                         |  |  |
| 233 | $\log \frac{Y}{1-Y} = n_h \times \log[F] - n_h \times \log K_d \tag{3}$                                            |  |  |
| 234 | Variations in $n_{\rm h}$ , i.e. if greater than 1.0, present a sigmoidal graph indicating receptor/ligand         |  |  |
| 235 | having multiple binding sites with positive cooperativity. Such would be expected of MIP-                          |  |  |
| 236 | ligand binding due to the heterogeneous distribution of binding sites. However, if $n_h$ is less                   |  |  |
| 237 | than 1.0 it can also be indicative of multiple binding sites, nonetheless with different affinities                |  |  |
| 238 | for template or negative cooperativity <sup>9</sup> .                                                              |  |  |
| 239 | Using the latter approach, specific binding saturation profiles were plotted (Fig. 2a), and                        |  |  |
| 240 | apparent $K_d(uM)$ and Bmax (umol/g of polymer) values were determined. Proteins imprinted                         |  |  |
| 241 | within polyacrylamide (polyAA), poly N-hydroxymethylacrylamide (polyNHMA) and poly                                 |  |  |
| 242 | N-iso-propylacrylamide (polyNiPAm) MIP gels were revealed to exhibit micro-selective                               |  |  |
| 243 | affinities towards their cognate proteins (Table 2). The % of theoretical total binding sites,                     |  |  |
| 244 | which is a useful indication of imprinting/binding efficiency, was also determined. This was                       |  |  |
| 245 | derived from the amount of the template protein used for the polymerization. Hill coefficients                     |  |  |
| 246 | $(n_h)$ for all MIPs demonstrated positive cooperativity $(n_h>1)$ , implying heterogeneous binding                |  |  |
| 247 | characteristics. Positive cooperativity also implies that the first protein molecules bound to                     |  |  |
| 248 | the MIP polymer with a lower affinity than did subsequent protein molecules. Our postulation                       |  |  |
| 249 | is that in MIP formation the template molecules are also capable of heterogeneous                                  |  |  |
| 250 | populations, i.e. free and clustered proteins, when templates are imprinted at high                                |  |  |
| 251 | concentrations, in this case 12 mg/ml. The resultant population of imprinted sites would                           |  |  |
| 252 | therefore contain some cavities that comprise of protein clusters. This hypothesis is                              |  |  |
| 253 | supported by our force spectroscopy analysis of MIPs in Section 3.2.                                               |  |  |
|     |                                                                                                                    |  |  |

| 254 | Interestingly, the binding affinity is highest for BHb-MIP $_{polyAA}$ while both EMb and BCat       |
|-----|------------------------------------------------------------------------------------------------------|
| 255 | exhibit the lowest affinity for a $MIP_{polyAA}$ . It has previously been observed that with smaller |
| 256 | size proteins a higher crosslinking density is necessary; the opposite is also true for larger       |
| 257 | proteins <sup>6, 13</sup> . Improved polyAA MIP affinities for EMb and BCat using optimised cross-   |
| 258 | linked densities of 15% and 5% respectively are also illustrated in Table 2. These MIPs              |
| 259 | revealed higher affinity constants for their native proteins. Therefore previous low affinities      |
| 260 | exhibited by MIPs <sub>polyAA</sub> towards BCat and EMb can be attributed to the fact that fewer    |
| 261 | cavities were imprinted due too high and too low of a crosslinking density respectively.             |
| 262 | Furthermore, HydroMIPs based on polyAA show the most promising binding affinities                    |
| 263 | closely followed by polyNHMA, then polyNiPAm which is coherent with previously                       |
| 264 | reported MIP selectivity trends <sup>6</sup> . This has been attributed to the hydrophobicity of the |
| 265 | polymers, in which the neutral polyAA is providing ideal imprinting cavities unlike the              |
| 266 | hydrophilic polyNHMA and hydrophobic polyNiPAm.                                                      |
| 267 | Cross-selectivity studies of the polyAA hydrogel-based MIPs were also conducted (Table 2).           |
| 268 | BSA and EMb were chosen for their similarity to BHb protein, BSA being of similar size               |
| 269 | BHb (66.5 and 64.5 kDa, respectively) and EMb (17.5kDa) representing a single BHb sub-               |
| 270 | unit. Calculated dissociation constants for the cross-selected proteins Mb and BSA were              |
| 271 | 11.69 uM and 32.77 uM respectively. The MIPs high affinity for non-BHb target could also             |
| 272 | be justified by the previous hypothesis that protein complex formation can occur in                  |
| 273 | imprinting. It is therefore possible that complementary complex formations due to the high           |
| 274 | similarities between BSA, EMb and BHb structures that further protein clustering was                 |
| 275 | occurring, i.e. it would take four EMb molecules for example to aggregate or cluster to fill a       |
| 276 | single BHb recognition site or cavity. To further illustrate this theory, the equilibrium binding    |
| 277 | isotherm for cross-selective BSA and EMb binding on a BHb- $MIP_{polyAA}$ (Fig. 2b) reveals that     |
| 278 | EMb increases linearly and clearly does not reach saturation at the same rate as BHb. BSA on         |

#### **Physical Chemistry Chemical Physics**

| 279 | the other hand demonstrates a curvi-linear relationship and quickly reaches saturation. It has                      |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 280 | previsouly been postulated that when rebinding BSA to a BHb MIP the BSA due to shape                                |
| 281 | and size does not bind specifically, but rather displaces the non-specific recognition sites of                     |
| 282 | cavities and the nonspecific binding of BHb to BHb-MIP <sup>20</sup> . Therefore, these results suggest             |
| 283 | that there is some degree of nonspecific cross-selectivity exhibited by the MIPs, as a                              |
| 284 | saturation profile would be expected for the template BHb but not the non-cognate proteins.                         |
| 285 |                                                                                                                     |
| 286 | Although this is a useful indication of imprinting/binding efficiency, and with the structures                      |
| 287 | and populations in MIPs remaining currently unknown, it would be important to provide                               |
| 288 | multipoint interacting binding sites of high selectivity in resulting MIP matrices. This would                      |
| 289 | be beneficial to certain biochemical high-performance liquid chromatography (HPLC) assay                            |
| 290 | screenings that use several whole blood and serum protein markers, such as liver function                           |
| 291 | tests <sup>21, 22</sup> . Previous work <sup>6</sup> shows that the application of MIPs in biocompatibility studies |
| 292 | using human plasma and serum samples via optimised buffer conditioning strategies has                               |
| 293 | major implications in improving the selectivity of MIPs in terms of rebinding efficiency.                           |
| 294 | Furthermore, the micro-molar detection ranges we report are relevant with the $(0.3 - 350)$                         |
| 295 | $\mu$ g/ml) range currently used in such screenings <sup>21, 22</sup> .                                             |
|     |                                                                                                                     |

296

#### **3.2.** Force Spectroscopy measurements

One way in which a MIP effect can be defined is in relation to a NIP prepared in an identical manner to that of the MIP, in the absence of the template molecule. Figure 3 displays the trends observed following the retraction force interrogation of NIP, freshly prepared BHb-MIP with protein still in cavities (MIP1), BHb-MIP with empty cavities (MIP2) and MIP2 reloaded with protein (referred to as MIP3), all interrogated with a BHb-modified AFM

- 303 probe. The BHb-modified AFM tip was used to interrogate the presence of BHb-specific

304 cavities within the MIP2 HydroMIP sample. An average force size of 23 nN was exhibited 305 by the MIP2 sample. This force was significantly greater than the average force observed for 306 the NIP control sample, which was 19 nN. This was an expected result, as the MIP2 sample 307 possessed unoccupied BHb specific sites that were capable of accepting the immobilised 308 template upon the AFM tip. Binding between these sites and the BHb molecule occurred, 309 which in turn resulted in a greater force being required to withdraw the tip from the sample. 310 The Gaussian distributions detail the number of adhesion events that occurred, in relation to 311 the forces required to withdraw the AFM probe from the hydrogel surfaces. A distinctive 312 trend is observed. The NIP control exhibited the smallest force, with a (mean) value of 313 18.90nN required to withdraw the probe from the NIP surface. Similar force measurements 314 were observed for MIP1 and MIP3. Most significantly though, a force of 23 nN was required 315 to withdraw the template-modified AFM tip from the MIP2 sample. This occurred due to the 316 presence of unoccupied template-specific imprinted cavities within the polymer, which 317 accepted the template-coated probe as a result of the shape, size and charge orientation of the 318 cavity. Typically, single antibody-antigen type molecular interactions result in force 319 measurements ranging 100-300 pN depending on the number of intermolecular interactions 320 (e.g. hydrogen bonds) per binding pair  $^{23}$ . 321 The fact that the force values were in the nN range suggests that these larger values could be 322 an artefact of the cryogenic preparation of the MIPs or that there are multiple protein 323 interactions occurring between the bio-modified AFM tip and the surface. Notwithstanding 324 this, there is a clear distinction in the force values for MIP with cavities exposed and MIP 325 (with cavities occupied) or NIP. At best the protein-modified AFM tip would comprise of 326 multiple protein molecules tethered to it, creating a bristle effect. Additionally, therefore, it is 327 likely that we are seeing multi-protein interactions between AFM tip and the MIP surface. An 328 approximate 5 nN increase in attractive force between NIP (or even protein-loaded forms of

Physical Chemistry Chemical Physics Accepted Manuscrip

#### **Physical Chemistry Chemical Physics**

MIP) compared with MIP2 suggests that the exposed cavities in MIP2 can potentially
accommodate more than one protein molecule. It is therefore plausible that during the
imprinting process, cavities comprising an agglomeration of protein molecules were also
being formed, rather than the generally accepted single protein cavities.

#### **333 4. Conclusions**

334 It is evident from the equilibrium binding data and supporting force spectroscopy data, that 335 MIP cavities accommodated an agglomeration of template protein molecules rather than just 336 a single molecule. Binding data also demonstrates micro-molar MIP affinities, and therefore 337 the beginning of similar natural receptor systems  $K_d$  values can be reported for synthetic 338 receptor-based smart material synthesis. This is an exciting and new achievement in the 339 growing area of hydrogel imprinting. Further investigating the development of such highly 340 selective synthetic antibody systems could provide an inexpensive, fast, sensitive and 341 efficient diagnostic method within medical, environmental and food diagnostics in the future. 342

#### 343 Acknowledgements

344 The authors would like to thank the UK Engineering and Physical Sciences Research Council

345 (EPSRC) Grants (EP/G014299/1) and NERC/ACTF (RSC) for supporting this project.

346

#### 347 **References**

- 348 1 A. Poma, A. P. F. Turner and S. A. Piletsky, *Trends Biotechnol.*, 2010, 28, 629-637
- 349 (DOI:10.1016/j.tibtech.2010.08.006).
- 350 2 K. Mosbach, Anal. Chim. Acta, 2001, 435, 3-8 (DOI:10.1016/S0003-2670(01)00800-5).

- 351 3 C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J.
- 352 O'Mahony and M. J. Whitcombe, Journal of Molecular Recognition, 2006, 19, 106-180
- 353 (DOI:10.1002/jmr.760).
- 4 M. E. Byrne, K. Park and N. A. Peppas, Adv. Drug Deliv. Rev., 2002, 54, 149-161
- 355 (DOI:10.1016/S0169-409X(01)00246-0).
- 356 5 M. E. Byrne and V. Salian, Int. J. Pharm., 2008, 364, 188-212
- 357 (DOI:10.1016/j.ijpharm.2008.09.002).
- 358 6 H. F. El-Sharif, Q. T. Phan and S. M. Reddy, Anal. Chim. Acta, 2014, 809, 155-161.
- 359 7 D. M. Hawkins, D. Stevenson and S. M. Reddy, Anal. Chim. Acta, 2005, 542, 61-65
- 360 (DOI:10.1016/j.aca.2005.01.052).
- 361 8 S. M. Reddy, Q. T. Phan, H. El-Sharif, L. Govada, D. Stevenson and N. E. Chayen,
- 362 *Biomacromolecules*, 2012, **13**, 3959-3965 (DOI:10.1021/bm301189f).
- 363 9 N. Lavignac, K. R. Brain and C. J. Allender, Biosensors and Bioelectronics, 2006, 22, 138-
- 364 144 (DOI:10.1016/j.bios.2006.03.017).
- 365 10 D. R. Kryscio and N. A. Peppas, Acta Biomaterialia, 2012, 8, 461-473
- 366 (DOI:10.1016/j.actbio.2011.11.005).
- 367 11 D. Stevenson, TrAC Trends in Analytical Chemistry, 1999, 18, 154-158
- 368 (DOI:10.1016/S0165-9936(98)00094-6).
- 369 12 A. Fernández-Barbero, I. J. Suárez, B. Sierra-Martín, A. Fernández-Nieves, F. J. de las
- 370 Nieves, M. Marquez, J. Rubio-Retama and E. López-Cabarcos, Adv. Colloid Interface Sci.,
- 371 2009, **147–148**, 88-108 (DOI:10.1016/j.cis.2008.12.004).
- 372 13 D. E. Hansen, *Biomaterials*, 2007, 28, 4178-4191
- 373 (DOI:10.1016/j.biomaterials.2007.06.017).

- 374 14 Y. Hoshino, T. Kodama, Y. Okahata and K. J. Shea, J. Am. Chem. Soc., 2008, 130, 15242-
- 375 + (DOI:10.1021/ja8062875).
- 15 Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku and K. J. Shea, J.
- 377 Am. Chem. Soc., 2010, 132, 6644-+ (DOI:10.1021/ja102148f).
- 16 A. A. Vaidya, B. S. Lele, M. G. Kulkarni and R. A. Mashelkar, J Appl Polym Sci, 2001,
- 379 **81**, 1075-1083 (DOI:10.1002/app.1529).
- 380 17 J. Z. Hilt and M. E. Byrne, Adv. Drug Deliv. Rev., 2004, 56, 1599-1620
- 381 (DOI:10.1016/j.addr.2004.04.002).
- 382 18 S. Freitag, I. Le Trong, A. Chilkoti, L. A. Klumb, P. S. Stayton and R. E. Stenkamp, J.
- 383 Mol. Biol., 1998, **279**, 211-221 (DOI:10.1006/jmbi.1998.1735).
- 384 19 S. M. Reddy, D. M. Hawkins, Q. T. Phan, D. Stevenson and K. Warriner, Sensors
- 385 Actuators B: Chem., 2013, **176**, 190-197 (DOI:10.1016/j.snb.2012.10.007).
- 386 20 Q. Gai, F. Qu, T. Zhang and Y. Zhang, Journal of Chromatography A, 2011, 1218, 3489-
- 387 3495 (DOI:10.1016/j.chroma.2011.03.069).
- 388 21 P. A. Lieberzeit, R. Samardzic, K. Kotova and M. Hussain, Procedia Engineering, 2012,
- 389 **47**, 534-537 (DOI:10.1016/j.proeng.2012.09.202).
- 390 22 S. A. Piletsky, N. W. Turner and P. Laitenberger, Med. Eng. Phys., 2006, 28, 971-977
- 391 (DOI:10.1016/j.medengphy.2006.05.004).
- 392 23 F. Kienberger, G. Kada, H. Mueller and P. Hinterdorfer, J. Mol. Biol., 2005, 347, 597-606
- 393 (DOI:<u>http://dx.doi.org/10.1016/j.jmb.2005.01.042</u>).

| Ligand                        | Receptor                                   | K <sub>d</sub> (mol/L)       |
|-------------------------------|--------------------------------------------|------------------------------|
| Classes                       |                                            |                              |
| Ligands                       | Macromolecules                             | $10^{-3}$ to $10^{-15}$      |
| Substrate                     | Enzyme                                     | $10^{-3}$ to $10^{-6}$       |
| Carbohydrate                  | Protein                                    | $10^{-3}$ to $10^{-6}$       |
| Steroid Hormones              | Receptors at Target Tissue                 | $10^{-7}$ to $10^{-9}$       |
| Antigen                       | IgG Antibodies                             | $10^{-8}$ to $10^{-10}$      |
| Specific examples             |                                            |                              |
| Glucose                       | Human Red Cell Glucose Transporter, Glut I | $1.5 \times 10^{-2}$         |
| Fc Portion of a Mammalian IgG | Protein G                                  | $5.2 \times 10^{-7}$         |
| Tri-peptide Inhibitor         | Carboxypeptidase A                         | $10^{-14}$                   |
| Pancreatic Inhibitor          | Trypsin                                    | $6 \times 10^{-14}$          |
| Biotin                        | Streptavidin                               | 10 <sup>-15</sup>            |
| MIP examples                  |                                            |                              |
| Cholesterol (steroid)         | β-cyclodextrin, TDI                        | $5.9 \pm 1.2 \times 10^{-4}$ |
| Leu-enkephalin (neuropeptide) | MAA, EGDMA                                 | $1.0\pm0.6\times10^{-7}$     |
| Trypsin (enzyme)              | Ac.PABA, AAm, bis-AAm                      | $3.75 \times 10^{-8}$        |
| Melittin (apitoxin)           | TBAAm, AAm, 3APM, AA                       | $25 \times 10^{-12}$         |

Table 1 - Typical biomolecule and MIP receptor-ligand dissociation constants (K<sub>d</sub>); TDI,

toluene 2,4-diisocyanate; MAA, methacrylic acid; EGDMA, ethylene glycol dimethacrylate;

398 Ac.PABA, N-acryloyl para-aminobenzamidine; AAm, acrylamide; bis-AAm, N,N'-

399 methylene bisacrylamide; TBAAm, N-tert-butylacrlamide; 3APM, N-(2-aminopropyl)-

400 methacrylamide; AA, acrylic acid. Reproduced from <sup>17</sup> with permission from Elsevier.

| Protein | $\mathbf{K}_{\mathbf{d}}(\boldsymbol{u}\mathbf{M})$ | Bmax (umol/g<br>polymer) | Hill<br>Coefficient<br>(n <sub>h</sub> ) | % of Theoretical<br>Binding Sites | MIP         |
|---------|-----------------------------------------------------|--------------------------|------------------------------------------|-----------------------------------|-------------|
| BHb     | 24.7±3.8                                            | 53.14                    | >1                                       | 14%                               | polyAA      |
|         | 19.4±5.5                                            | 56                       | >1                                       | 15%                               | polyNHMA    |
|         | 16.1±2.1                                            | 17.96                    | >1                                       | 5%                                | polyNiPAm   |
|         |                                                     |                          |                                          |                                   |             |
| EMb     | 114.4±3.1                                           | 180.1                    | >1                                       | 13%                               | polyAA      |
|         | 315.5±3.1                                           | 146                      | >1                                       | 10%                               | polyNHMA    |
|         | 345.6±2.1                                           | 496.1                    | >1                                       | 35%                               | polyNiPAm   |
| BCat    | 23.3±0.6                                            | 17.28                    | >1                                       | 18%                               | polyAA      |
|         | 5.5±0.8                                             | 12.06                    | >1                                       | 13%                               | polyNHMA    |
|         | 20.4±0.2                                            | 20.36                    | >1                                       | 21%                               | polyNiPAm   |
| EMb     | 43 9+3 1                                            | 479 5                    | >1                                       | 33%                               | nolvAA*     |
| BCat    | 17.1±1.8                                            | 12.61                    | >1                                       | 13%                               | polyAA +    |
|         |                                                     |                          |                                          |                                   |             |
| ***EMb  | 11.7±4.1                                            | 194.6                    | >1                                       | 14%                               | BHb-polyAA* |
| **BSA   | 32.8±0.6                                            | 53.19                    | >1                                       | 14%                               | BHb-polyAA  |

403 Table 2 - Representative MIP-protein dissociation constants ( $K_d$ ), capacity binding sites 404 ( $B_{max}$ ), % of theoretical binding sites and Hill coefficients ( $n_h$ ), \*denotes a 15% cross-linking 405 density, <sup>+</sup> denotes a 5% cross-linking density in HydroMIP synthesis, \*\*denotes the cross-406 selective EMb and BSA proteins on a BHb-MIP<sub>polyAA</sub>. Data represents mean ± S.E.M., n = 3.



408 409

410 Fig. 1 - Equilibrium binding isotherms for proteins BHb,BSA, EMb and BCat for: (a)

411 respective polyAA-MIPs, and cross-selected (BSA, Mb) on BHb-MIP; (b) NIP controls. Data

412 represents mean  $\pm$  S.E.M., n = 3.





417 Fig. 2 – Specific binding with Hill slope saturation profiles: (a) BHb template protein 418 recognition for cognate polyAA, polyNHMA and polyNiPAm HydroMIPs; (b) cross-419 selective EMb and BSA binding data in relation to template BHb on a BHb-MIP<sub>polyAA</sub>. 420 Specific binding was calculated by subtracting the amount of protein bound to the NIP from 421 that bound to the MIP, based on the assumption that binding exhibited by the NIP is an 422 estimation of non-specific, low affinity interactions. Data represents mean  $\pm$  S.E.M., n = 3.

423



426 Fig. 3 - Distribution of Adhesive Forces obtained between BHb functionalised AFM probe

427 and polyAA MIP or NIP surfaces.





# Highlights

- Selective synthetic MIP recognition of a range of bio-significant proteins.
- Comparison of functional acrylamide-based polymer hydrogels as MIPs.
- MIP-protein dissociation constants within the micro-molar range.

AFM measurements exhibited specific MIP interactions with cognate protein.