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Template-assisted Nano-patterning of 

Magnetic Core-shell Particles in Gradient Fields 
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a
 and Edward P. Furlani

a,b
, 

A method is proposed for controlling the assembly of colloidal magnetic core-shell 

nanoparticles into patterned monolayer structures with nanoscale feature resolution. The 

method is based on magnetic field-directed self-assembly that is enhanced using soft-magnetic 

template elements. The elements are embedded in a nonmagnetic substrate and magnetized 

using a uniform bias field. A key feature of this approach is the combined use of a uniform 

field with induced gradient-fields produced by the template elements. This enables the 

customization of a force field with localized regions of attractive and repulsive magnetic force 

that provide extraordinary control of particle motion during assembly. The method is 

demonstrated using a computational model that simulates the assembly process taking into 

magnetic and hydrodynamic forces including interparticle interactions, Brownian diffusion, 

Van der Waals force and effects of surfactants. The analysis shows that extended geometric 

patterns of particles can be assembled with nanoscale resolution, beyond that of the template 

elements, within milliseconds. This is achieved by tailoring key parameters including the 

template geometry to produce a force field that focuses the particles into prescribed patterns; 

the thickness of the dielectric particle shell to control the magnetic dipole-dipole force upon 

contact and the particle volume fraction to suppress undesired aggregation during assembly. 

The proposed method broadly applies to arbitrary template geometries and multi-layered core-

shell particles with at least one magnetic component. It can enable the self-assembly of 

complex patterns of nanoparticles and open up opportunities for the scalable fabrication of 

multifunctional nanostructured materials for a broad range of applications. 

Keywords: Field-directed assembly of core-shell nanoparticles, template-assisted self-

assembly of magnetic-dielectric core-shell nanoparticles, magnetic dipole-dipole interactions. 

 

 

1 Introduction  

The interest in the field-directed manipulation of colloidal 

magnetic particles has grown dramatically over the years due to 

rapid advances in particle synthesis and related enabling 

technologies1-4, there has been a corresponding proliferation of 

applications spanning a range of fields that include drug 

delivery5,6, gene transfection7,8,9, microfluidic-based 

bioseparation10 and sorting11, micro-mixing and bio-chemical 

sensing. More generally, there has been ongoing emphasis on 

the development methods for controlling the self-assembly of 

colloidal particles of all kinds into extended patterned 

structures. The motivation for this work comes in part from a 

desire for a bottom-up approach for the scalable fabrication of 

integrated nanostructured materials, e.g. for photonic12,13, 

magnetic, micro-optical14 and electronic15,16 applications. Such 

an approach would provide advantages over conventional top-

down lithographic-based fabrication and would open up 

opportunities for the low-cost high-throughput production of 

functional nanostructured materials. Various methods have 

been demonstrated for the assembly of single17-22 and multiple 

component23,24 colloids into extended patterns. Some methods 

rely on directed23,25 or template-assisted26 assembly or 

combinations thereof. However, despite this progress, the 

assembly of patterned structures with nanoscale feature 

resolution still remains very challenging. The focus of this work 

is on a method for achieving this using magnetic-dielectric 

core-shell nanoparticle colloids.  

In this paper we propose a method for controlling the directed 

assembly of colloidal magnetic-dielectric core-shell 

nanoparticles into extended monolayer patterns with nanoscale 

resolution. The method is based on magnetic field-directed self-

assembly that is enhanced using soft-magnetic template 

elements. The elements are embedded in a nonmagnetic 

substrate and magnetized using a uniform bias field. An 

example of a system with hollow cylinder template elements is 

shown in Fig. 1. The template elements can be geometrically 

tailored to produce localized regions of attractive and repulsive 

magnetic force. The ability to customize the force field in this 

way is a key feature of the assembly method as it enables 
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Figure 1. A self-assembly system showing soft-magnetic hollow cylinder 

template elements embedded in a nonmagnetic substrate. 

extraordinary control of particle motion during assembly, which 

results in nanoscale precision in particle placement. We 

demonstrate the method using a computational model that takes 

into account dominant mechanisms of particle transport and can 

be used to simulate the assembly process. To date, various 

computational techniques have been successfully applied for 

the study of magnetic particle systems. These include Brownian 

dynamics27,28,29, the discrete element method30, the lattice-

Boltzmann method31, Monte Carlo32,33 and molecular dynamic 

simulations34, stochastic dynamics35 and various analytical 

methods36,37,38. The model used here is based on Langevin’s 

equation and takes into account magnetic and hydrodynamic 

forces including inter-particle interactions, Brownian diffusion, 

Van der Waals force and the effects of surfactants. A dynamic 

time-stepping scheme is used to integrate the equations of 

motion, which greatly accelerates and stabilizes the 

simulations. We demonstrate the assembly process for the 

system shown in Fig. 1 using core-shell Fe3O4-SiO2 particles. 

The hollow cylinder template elements produce a force field 

that focuses the particles into a ring-like pattern. An analytical 

force expression is used to optimize the dimensions of the 

elements for this purpose. Once the template element 

dimensions are known, the computational model is used to 

simulate the assembly process as a function of the particle 

volume fraction. The analysis demonstrates that extended 

monolayer single particle chain-like patterns can be assembled 

within milliseconds with nanoscale precision by tailoring key 

parameters including the template geometry to produce a force 

field that provides precise positioning of the particles; the 

thickness of the dielectric shell to control the strength of the 

interparticle dipole-dipole force upon contact and the particle 

volume fraction to suppress undesired aggregation during 

assembly. To date, various experimental studies have 

demonstrated self-assembly of nanoparticles with 

nanoscale39,40,41 and microscale42,43,44 resolution using uniform 

and/or gradient fields as well as the field induced self-assembly 

of magnetic core-shell particles45. Of particular relevance is 

experimental work by Henderson et al.39, wherein a 

nanoparticle assembly was tailored using a combination of a 

spatially alternating gradient field, which was provided by a 

nanoscale patterned template in the form of magnetic recording 

media, with a uniform external field. This combination of fields 

closely matches the approach that we propose, albeit our 

gradient field is provided by lithographically-patterned 

standalone soft-magnetic elements and the particles are multi-

layered, which provide advantages. Nevertheless this prior 

work can serve as particle proof-of-concept of our proposed 

assembly method. We demonstrate the method for three 

different template geometries (hollow cylinders, hollow cubes 

and cross-structures) and two different core-shell particle sizes. 

The proposed method broadly applies to arbitrary template 

geometries and multi-layered core-shell particles that have at 

least one magnetic component. As such, it  can enable the self-

assembly of complex patterns of nanoparticles and opens up 

opportunities for the scalable fabrication of multifunctional 

nanostructured materials for a broad range of applications in 

fields that include photonics, magnetics, electronics, chemical 

and biological sensing, energy storage and harvesting and 

catalysis. The computational model enables the rational design 

of novel media for such applications. 

2 The Computational Model 

The behaviour of colloidal magnetic particles in the presence of 

an external field is complex function of a number of 

competitive factors including hydrodynamic and magnetic 

forces, Brownian motion, Van der Walls force and the effects 

of surfactants. We predict the self-assembly of such particles 

using a computational model based on Langevin’s equation that 

takes these effects into account,  

( )
2

, , , , , , ,2
1

( )
N

i
i mag i vis i B i dd ij vdw ij surf ij hyd ij

j

j i

d
m

dt
t

=

≠

= + + + + + +∑
x

F F F F F F F ,    (1) 

where ��  and ����� are the mass and position of the i’th particle. 

The right-hand-side of this equation represents the sum of forces on 

the i’th particle: ��	
,� due to the applied magnetic field, which is a 

superposition of the bias field and induced gradient-fields; 	���,� , 
viscous drag due to relative motion between the particles and the 

surrounding fluid (Stokes drag); ��,���� a stochastic force to account 

for Brownian motion; ���,�� the interparticle magnetic dipole-dipole 

force due to induced dipole moments; ���,�� Van der Waals force; 

�����,�� a repulsive force due to surfactant contact between particles 

and ����,��  due to interparticle hydrodynamic interactions. We 

predict the particle dynamics by numerically integrating Eq. (1) 

using an adaptive time stepping method to accelerate and stabilize 

the computation. The various terms in the model and its 

implementation are described in the following sections. 

2.1 Magnetic force 

The magnetic force on a particle due to an external field is computed 

using an “effective” dipole moment method in which the particle is 

modeled as an “equivalent” point dipole with an effective moment 

���� . The force on the i’th particle is given by36 

( ), ,mag i f i eff aµ= ∇⋅F m H ,   (2) 

where ��  is the permeability of the fluid and �	  is the applied 

magnetic field intensity at the center of particle. The moment is 

given by ���� � ����  where �� �
 

!
π#�!  and ��  are the volume 

and magnetization of the particle, respectively. In the case of 

magnetic-dielectric core-shell particles, ���� � �$%���� , where 

�$%�� �
 

!
π#$%��! .  The moment can be determined using a 

magnetization model that takes into account self-demagnetization 

and magnetic saturation of the particles36,37 

( ),i eff p a aV f H=m H ,   (3) 

where46 
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In this expression, &� is the susceptibility of the fluid and &� is the 

intrinsic magnetic susceptibility of the particle, i.e. 	�� � &���' , 

where ��' is the field inside the particle. ��' differs from �	 by the 

demagnetization field i.e. ��' � �	 ( )���  where )�  is the 

demagnetization factor of the particle, i.e.  )� � 1 3⁄  for a spherical 

particle.  The value of &� can be obtained from a measured � vs. � 

curve. However, � is often plotted as a function of Ha in which case 

�� � &	�	, where &	 is the apparent susceptibility. The two values 

of susceptibility are related as follows&� � &	 �1 (⁄ )�&	�, which 

reduces to &� � 3&	 �3 (⁄ &	�  for a spherical particle47. The 

magnetic force can be rewritten as 

( )( )mag f p a a aV f Hµ= ⋅∇F H H ,  (5) 

This can be determined once an expression for -	 is known. For the 

system shown in Fig. 1, the applied field is a superpostion of the 

uniform bias field and the induced localized gradient-fields produced 

by the magnetized soft-magnetic template elements, i.e. -	 �
-.�	� /-0���1	0� . We use analytical closed-form expressions to 

predict the fields and force as described in the Appendix. The use of 

analytical analysis reduces the complexity and increases the 

accuracy of the computation as comparred to more commonly used 

numerical field analysis. In the latter, the magnetostatic field 

equations are discretized and solved using a computational mesh. 

Since the magnetic field has a long range, an extended 

computational domain is often used to account for for this. 

Moreover, the field gradient, which defines the force, tends to be 

sensitive to the size of mesh. Mesh size sensitivity studies are 

usually required to ensure accurate force analysis and while a 

smaller mesh can provide increased accuracy, it also increases 

computational cost. An analytical analysis eliminates the need for 

this complexity. However, it should be noted that the use of 

analytical methods for the magnetic analysis is based on the 

assumption that the bias and template fields are uneffected by other 

materials, i.e. the substrate and carrier fluid are assumed to be 

nonmagnetic.  

2.2 Magnetic dipole-dipole interaction  

In the presence of an applied field, the magnetic core of the 

nanoparticles becomes magnetized and aquires an effective moment 

����  as described above. The potential energy for two dipoles is 

given by 

( )( ), , , ,

, 5 3
3

4

i eff ij j eff ijf i eff j eff

dd ij

ij ij

U
r r

µ

π

 ⋅ ⋅ ⋅
 = − −
 
 

m r m r m m
, (6) 

where ��,���  and ��,���  are the moments of i’th and j’th particle, 

respectively, and 2��  is the displacement vector between them. The 

dipole-dipole force in Eq. (1) is obtained as the gradient of the 

potential, 

, ,dd ij dd ijU= −∇F .    (7) 

2.3 Van der Waals interaction 

Van der Waals force is taken into account as an attractive force, 

which is calculated using48, 
6

, 2 2 3
 

6 ( 2 ) ( )

i
vdw ij

ij i ij ij i

A d

h d h h d
=

+ +
F ,  (8) 

where 3 is the Hamaker constant and  4��  is the surface-to-surface 

separation distance between the i’th and j’th particle.  

2.4 Surfactant force 

The repulsive force caused by the surfactant-surfactant contact is 

taken into consideration in our model. The potential energy 5�  of 

this interaction is given by49, 

2
2 2 2

2 2 ln( )
ij p ij p

s p s B

ij

r R r R
U R N k T

r

δ
π

δ δ

 − + 
= − − 

  
, (9) 

where #� , δ  and )�  are, respectively, the radius of particle, the 

thickness of the surfactant layer and the surface density of surfactant 

molecules. The repulsive force is calculated as the gradient of this 

potential energy: 
2

,

2 2 2
ln( )

p s b p

rep ij s

ij

R N k T R
U

r

π δ

δ

+
= −∇ =F . (10) 

2.5 Viscous drag 

The drag force on a particle due to the viscosity of the fluid is 

computed using Stokes’ formula 

,
i

D i

d
D

dt
=

x
F ,   (11) 

Where 7 � 69:#���,� is the drag coefficient, : is the fluid viscosity 

and #���,� is the hydrodynamic radius of the particle.  

2.6 Interparticle Hydrodynamics Interactions 

Hydrodynamic interactions between particles become important at 

small surface-to-surface separation distances. The force between two 

neighboring particles is based on lubrication theory and can be 

expressed as follows48, 
2

, ,

,

6

16

f r i j i
lub ij

ij

d

h

πµ
=

V
F ,  (12) 

where 4��  is the separation bewteen the surfaces and ;�,�,�  is the 

relative velocity between the particles. When the particles are in 

contact (4�� < 0) this force is considered to be negligible. 

2.7 Brownian diffusion 

Brownian motion needs to be considerd when predicting the 

dynamics of nanoscale particles. We use the following equation to 

account for these effects in each dimension: 

22
,

2
  

2
       B

B i
B

k T t
x

T t
x

DD

k
δ δ

∆
∆ = ⋅ ⋅

∆
= = ⋅ ⋅

ur r r

x n n , (13) 

where >� is Boltzmann’s constant, 7 is the Stokes’ drag coefficient 

as described above,  ∆@�,� is implemented in Eq. (16),  ABBC and δ  is a 

randomly generated directional unit vector and a random distribution 

number between zero and one, which represents the direction  and 

magnitude of the displacement due to Brownian motion. These 

displacements will be applied into the 3 Cartesian directions 

individually. 

2.6 Equations of Motion 

Particle motion during assembly is predicted by solving Langevin’s 

equation, which can be rewritten as 
2

, ,2
 +  ( )i i

i sum i B i

d d
m D t

dt dt
+ =

x x
F F ,  (14) 

where 

( ), , , , , ,
1

N

sum i mag i dd ij vdw ij rep ij lub ij

j

j i

=

≠

= + + + +∑F F F F F F ,  (15) 

Eq.(14) can be solved by first reducing it to a pair of coupled first-

order equations and then integrating these equations using a 

numerical time stepping scheme. The discretized first-order 

equations are as follows: 

, ,

,0 ,
1- i

D

sum i sum i mi
i i B i

m
e

D D D

τ

τ
−  

∆ = + − + ∆     

F F
x v x , (16) 

and 
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Figure 3.  Axisymmetric magnetic field and force components at z=100 

nm above the template element: (a) Br  (b) Bz,  (c) D�	
,�, and  (d) D�	
,E 

 

 
Figure 2.  Axial magnetic force D�	
,E 

along a horizontal line 100 nm above the 

template element as a function of the height 

h. Rout is outer radius of the element.  

, ,

, ,0
i

D

sum i sum i m

i f i e
D D

τ− 
= + − 

 

F F
v v ,  (17) 

where F is the integartion time step, G�,H and G�,� are the velocity of 

the i’th particle at the beginning and end of the time step and ∆@�,� is 

the displacement due to Brownian motion. In our analysis, the time 

step F is dynamically adjusted based on the relative velocities and 

surface-to-surface separations 4��  of the particles. When the time 

step F is large enough (F ≫ �J

K
 ), Eq. (17) can be simplified to 

,

,  
sum i

i f
D

=
F

v .                                       (18) 

3 Analysis of Self-assembly  

We demonstrate the proposed assembly method for the system 

shown in Fig. 1. Here, the templates are hollow soft-magnetic 

cylinders that are embedded in a non-magnetic substrate. A uniform 

bias field -.�	� is applied upward, perpendicular to the substrate, to 

magnetize the elements along their axis. When a colloid of core-shell 

nanoparticles are introduced onto the substrate they assemble into 

structures, the geometry of which depends on parameters that 

include the strength of the bias field, the dimensions of the template 

elements, the core and shell dimensions and the volume fraction of 

the nanoparticles. The computational model can be used to predict 

the assembled structure given these parameters, or alternatively, to 

determine a specific mix of parameters that produce a pre-defined 

assembled structure. In this section, we demonstrate the latter and 

determine parameters that produce a prescribed monolayer ring-like 

particle pattern.  For the purpose of analysis, and without loss of 

generality, the core shell particles are taken to be 60 nm Fe3O4-SiO2 

with a core diameter of 30 nm (#$%�� � 15	M�) and a shell thickness 

of 15 nm. In principle, any multi-layered core-shell particle can be 

used as long as it has at least one magnetic component. Fe3O4 has a 

density N$%�� � 5000	 >O �!⁄  and a saturation magnetization	��� �
4.78 T 10U 	3 �⁄ . The SiO2 shell has a density N���11 �
2648	 >O �!⁄ . The template elements are chosen to be permalloy 

(78% Ni, 22% Fe), which has a saturation magnetization 		��,� �
8.6 T 10U 	3 �⁄ . The bias field is taken to be �.�	� � 3.9 T
10U 	3 �⁄ 	�X.�	� � 5000	YZ[\\� , which is sufficiently strong to 

saturate both the nanoparticles and the template elements as 

discussed below. This field can be obtained by positioning a rare-

earth NdFeB magnet immediately beneath the substrate37. The 

effective dipole moment of the saturated particles is ���� �
�$%����� . To simplify the analysis, we assume that the 

hydrodynamic radius of the particles is the same as their physical 

radius		#���,� � 30	M�. However, it should be noted that in general, 

the hydrodynamic radius is larger because of the presence of 

surfactants. Similarly, we assume that the colloid is monodispersed, 

whereas in reality there will be a particle size distribution. The 

carrier fluid is assumed to be nonmagnetic (&� � 0), with a viscosity 

and density equal to that of water, : � 0.001	) ∙ \ �^⁄  and 	N� �
1000	 >O �!⁄ .   

3.1 Magnet Force Analysis 

We first analyze the magnetc force. The goal is to determine 

template dimensions that produce a force field that focuses the 

particles into a prescibed pattern, in this case a ring-like structure. To 

demonstrate the analysis, we choose the inner and outer radial 

dimensions of the ring assembly to be #��'
,�' � 400	M�  and 

#��'
,%�0 � 500	M�, respectively. Let #�' and #%�0 denote the inner 

and outer radii of the template element and let h  denote its height. 

To obtain the desired assembly, set #�' � #��'
,�' � 400	M�  and 

#%�0 � #��'
,%�0 � 500	M�. These are chosen so that the particles 

assemble over the annulus of the element. The spacing of the 

elements is taken to be 2 µm center-to-center so that there is 

negnigible overlap of their fields, which we verify below. Thus, it 

sufficies to perform the 

template design for a 

single isolated element. 

Analytical closed-form 

expressions for the 

field and force of a 

single hollow cylinder 

soft-magnetic element 

in a uniform bias field 

are presented in the 

Appendix. These are 

used to optimize the 

force field as a 

function of the element 

dimensions. These 

formulas can be easily 

adapted for the more 

general case of closely spaced elements as described in the Appendix. 

We determine a template height h that provides a viable force field 

for assembly. For the force analysis, a reference frame is chosen 

with the x-y plane coincident with the surface of the substrate and 

with the z axis aligned with the axis of the element. Thus, the top 

surfaces of both the substrate and the template element are at _ � 0. 

We use Eqs. (A3) and (A4) in the Appendix to compute the radial 

and axial force components D�	
,�  and D�	
,E  across a horizontal 

line that spans a unit cell of the system and falls along the diameter 

of the element, i.e.  (1	�� < � < 1	��. The force components are 

computed at a distance _ � 100	M� above the element for a range of 

element heights: h  = 100, 200 and 300 nm. The force profiles for 

D�	
,E  are plotted in Fig. 2 and show relatively little change for 

4 ` 200	M� .  Thus, we choose the element height to be 4 �
200	M�. Note that the force profiles are axisymmetric because of 

the cylindrical symmetry of the template geometry. The 3D force 

and corresopnging field profiles are shown in Fig. 3. Also, recall that 
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Figure 5.  Magnetic force field D�	
,E��, a, _� at _ � 100	M� above a 3 

by 3 array of template elements.  

 
Figure 6.  Ratio of magnetic to thermal energy along a vertical line over 

the annulus of a template element. 

 
Figure 4.  Magnetic force along horizontal 

lines 100, 150 and 300 nm above the 

template (arrows indicate direction of 

force): (a)D�	
,b and (b)D�	
,E 

this analysis is based on the assumption that the template element is 

saturated. It remains to verify this. From Eq. (A8) in the Appendix, 

this occurs when -.�	� ` )�c��, where )� is the demagnetization 

factor of the element. For the chosen element dimensions (#�' �
400	M�, #%�0 � 500	M�, 4 � 200	M�), )� d 0.450 and it follows 

that the element is saturated because -.�	� ` 0.4c��. 

Next, the magnetic force provided by a template element with 

dimensions: #�' � 400	M�, #%�0 � 500	M�, 4 � 200	M�  is 

analyzed in more detail. The x and z components of the force D�	
,b 

and D�	
,E are computed along the same horizontal line as above, i.e.  

(1	�� < � < 1	��, for a range of distances above the element, z =  

100, 150 and 300 nm. The force profiles are  plotted in Fig. 4 and the 

analysis shows that 

there is a relatively 

strong attractive 

(downward-directed) 

axial force D�	
,E  over 

the annulus of the 

element, #�' < e <
#%�0  as indicated by 

the red arrows, which 

promotes assembly in 

this region. 

Significantly, there is 

also a relatively weak 

repulsive (upward-

directed) axial force 

above a substantial 

protion of its interior 

region (0 < e < #�' ) 

as indicated by the 

blue arrows, which 

prevents particles 

from assembling there. 

The repulsive force is 

due to the 

superposition of the 

uniform bias field and the gradient-field of the element. Specifically, 

the bias field induces an upward-directed moment	����_C, whereas 

the magnetized element produces a spatially varying field gradient 

f�	 that changes in sign depending on the location relative to the 

element. Since the force is proportional to the product of these two 

terms as shown in Eq. (2), it is attractive (negative) in regions where 

these terms have opposite signs and repulsive (positive) when they 

have the same sign. The radial field component D�	
,� also plays a 

critical role in focusing the particles over the annulus. Note from Fig. 

3a that it is directed  outward over the interior of the annulus0 < e <
#�', and inward over the exterior of the annulus e ` #%�0. This is 

also reflected in the plot of D�	
,b, which is directed outward over the 

interior of the annulus 0 < � < #�', and inward over the exterior of 

the annulus � ` #%�0. as indicated by the arrows Thus, the magetic 

force field directs the particles over the annulus, which promotes 

assembly of the ring structure. It is imporatnt to note that the ability 

to produce regions of attractive and repulsive magnetic force is a key 

feature of the propsed assembly method as it enables nanoscale 

precsion of particle placement.  
It is instructive to investigate the impact of  neighboring template 

elements on the magnetic force. It is assumed that there is negiligble 

overlap of the magnetic force. It remains to verify this. To this end, 

we compute the axial force field D�	
,E��, a, _� for a 3 by 3 array of 

elements (2 µm center-to-center spacing) at a distance _ � 100	M� 

above the elelemnts. The force, which is shown in Fig. 5, is 

computed by first forming the total field via superposition of the 

individual elelemnt fields and then computing the force using the 

total field as described in the Appendix. The analysis shows that the 

force falls off dramatically between the elements and that there is 

negligible overlap of their effects.  
Lastly, we estimate the effective range of the magnetic force, i.e. the 

distance z beyond which directed assembly is thwarted by Brownian 

motion. The particles within this distance contribute to a rapid 

assembly (on the order of milliseconds), while those beyond this 

range have a negligible contribution. We use the following criterion 

to estimate this distance, 

, ( ) ~
mag z p B

z D k TF ,   (19) 

Here, g��	
,E�_�g is the magnitude of the magnetic force acting on a 

particle of diameter 7� at a distance z above the element and >� and 

T are as defined in Eq.  (13). This relation is basically a comparison 

between thermal energy and the energy expended by the magnetic 

force in moving a particle a distance 	7h . The particles within a 

distance z from the element such that g��	
,E�_�g7� i >Xj  will 

predominantly contribute to the assembly, much less so for those 

beyond this height will not. We evaluate ��	
,E�_� over the center of 

the annulus #	� � �#�' / #%�0� 2⁄  where the attractive force is 

maximum. A plot of the ratio ��	
,E�#Zkl, _�7� >Xj⁄   vs. z is shown 

in Fig. 6. From this plot we see that the magnetic force is dominant 

below 0.75 µm and the Brownian force is dominant above this height. 

Thus, we estimate that the effective range of directed assembly for 

this template is approximately	_ < 1	��. We study the dynamics of 

assembly next.  
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Figure 9. Normalized particle spacing m�  and variation in spacing vs. 

volume fraction.    

 
Figure 7. Initial and final particle distributions for φ = 0.0873%: (a) 

initial random particle distribution, (b) perspective of final assembled 

particle ring, (c) lateral  view of assembled particle ring, (d) magnified 

top view of assembled ring. 

 

 
Figure 8. Initial and final particle distributions for φ = 0.1750%: (a) 

initial random particle distribution, (b) perspective of final assembled 

particle ring, (c) lateral view of assembled particle ring, (d) magnified top 

view of assembled ring. 

 

3.2 Dynamics of the Assembly Process 

In this section we use the computational model to study the 

dynamics of the assembly process. The bias field and template 

dimensions are as above. We use a computational domain centered 

with respect to a single element. The domain spans a unit cell, i.e. 2 

µm along both the x and y axes and 1 µm in the z-direction as shown 

in Fig. 7a and 8a.  The base of the domain is at 	_ � 0, which 

coincides with the top surface of both the substrate and the template 

element. Periodic boundary conditions for particle transport are 

imposed at the lateral sides of the domain to account for a 2D array 

of template elements. We simulate the assembly of 60 nm Fe3O4-

SiO2 particles for a range of different percent volume fractions: φ = 

0.0655, 0.0873, 0.11, 0.131, 0.153 and 0.175%. These values 

correlate to an integer number of particles in the computational 

domain, e.g. φ = 0.0655 and 0.175% correspond to 15 and 40 

particles, respectively. The modeling shows that the final assembly 

for all of the φ  values is chain-like ring pattern. Representative plots 

of the initial and final particle distributions for φ = 0.0873 and 

0.1750% are shown in Figs. 7 and 8, respectively. Animations of the 

particle dynamics during assembly are provided in the supporting 

information. 

In this analysis the particles are initially randomly distributed and 

their final configuration is a single particle ring pattern that forms 

over the annulus of the template element. The assembly was 

completed in less than 30 ms for all the cases studied. The final 

particle assembly has many important features. For example, it has a 

line width of 60 nm, i.e. the diameter of the nanoparticles. This is 

smaller than the line width of the template element, i.e. the width of 

the annulus which is 100 nm. Another interesting feature is that the 

particles are nearly uniformly spaced. This occurs because 

neighbouring particles are pushed apart by a mutually repulsive 

dipole-dipole force, which is due to the alignment of all dipole 

moments upward, parallel to the applied field. The spacing between 

the particles m� in the first layer (i.e. monolayer) varies somewhat 

because of the effects of Brownian motion. However, as the particle 

volume fraction increases, both this spacing and the variation in 

spacing decrease as shown in Fig. 9.  In this plot, the nearest 

neighbouring spacing is normalized with respect to the particle 

diameter 7�  and the error bars reflect the range of spacing in the 

final assembly as computed by the model. The decrease in spacing 

and its variation is due to an increase in strength of the repulsive 

dipole-dipole force, which ultimately dominates the Brownian force 

and produces a denser particle packing. As the volume fraction 

increases further, the particles will eventually begin to form an 

addition layer of the ring. It is useful to determine a first-order 

estimate of the volume fraction at which this occurs. To this end, we 

study the energetics of competing assembly configurations. Let N be 

the number of particles in the assembly. In the first configuration, all 

N particles are arranged in a ring pattern with uniform spacing 

between them. In the second configuration, N-1 particles are in a 

ring pattern and the remaining particle is vertically stacked on one of 

these particles, thereby forming a vertical two particle chain. The 

second configuration represents the transition from a single layer of 

particles to the beginning of a second layer. We compare the 

magnetostatic energy of the two configurations, n�  and 	n$ , 

respectively. The magnetostatic energy of each assembly is 

computed using		n�	
 � ∑ ∑ 5��,��p
�q�rs

p
�qs / ∑ �� ∙ X	,�p

�qs , where 

5��,��  is the potential energy due to dipole-dipole interaction 

between the i’th and j’th particles as given in Eq. (6) and �� ∙ X	,� is 
the energy of the i’th dipole due to its interaction with the applied 

field X	,� , which is evaluated at the center of the particle. It is 

instructive to compare the relative energy difference 	∆n � n$ ( 	n� 

between the two configurations at different heights above the 

elements as a function of the number of particles, which translates 

into a volume fraction. When	∆n i 0, the energetics favor a single 

layer ring-like pattern because	n$ is higher than	n�. However, when 
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Figure 11. Initial and final particle distributions for a hollow cube 

template element  for a volume fraction of φ  = 0.2185%: (a) initial 

random particle distribution, (b) perspective of final assembled  particle 

pattern, (c) lateral view of assembled particle pattern, (d) magnified top 

view of assembled rectangular pattern. 

 
Figure 10. Normalized relative energy ∆E as a function of volume 

fraction and distance z above the template element. 

 
Figure 12. Initial and final particle distributions for a cross template 

element  for a volume fraction of  φ  = 0.1750%: (a) initial random 

particle distribution, (b) perspective of final assembled  particle pattern, 

(c) lateral view of assembled particle pattern, (d) magnified top view of 

assembled cross pattern. 

∆n d 0  the two particle chain configuration is favored, which 

corresponds to the initial formation of an additional layer of particles. 

Parametric plots of normalized ∆n are shown in Fig. 10. This figure 

can be used to obtain a first-order estimate of the onset of a 

subsequent layer of particles (assembled upon the current layer) as a 

function of an initial volume fraction of the particles and the height 

of the current layer above the substrate. From this data we find that 

at z = 50 and 100 nm ∆n i 0 for all volume fractions up to 0.2%. 

Thus, a monolayer ring pattern is favoured at these heights, which is 

consistent with the simulations above. Partial vertical stacking 

occurs at z = 150, 200 and  250 nm at volume fractions above 0.18%, 

0.13% and 0.055%, respectively, which implies that an additional 

layer will form under these conditions.  It is important to emphasize 

that the analysis above is simply a first order estimate of the impact 

of the volume fraction on the formation of an additional particle 

layer. It is based on magnetostatic analysis alone, i.e. ignoring Van 

der Waals force and the effects of surfactants. It does not account for 

the possibilities that the particles assemble into multiple rings or zip-

chain patterns etc. A full simulation needs to be performed to obtain 

a rigorous understanding of the formation of multilayerd systems. 

Finally, in the analysis above we have demonstrated the assembly 

process for a hollow cylinder template element. However, the 

approach broadly applies to arbitrary template geometries. To 

confirm this, we now model self-assembly for two other template 

geometries, a hollow cube and a cross structure. Both geometries are 

200 nm deep and have a 100 nm wall thickness. The cube is 1000 

nm on a side and each segment of the cross is also 1000 nm long. 

The particles are as above i.e. 60 nm Fe3O4-SiO2, as is the 

computational domain, which spans 2 µm along both the x and y 

axes and 1 µm in the z-direction. The initial and final particle 

distributions for these geometries are shown in Figs. 11 and 12, 

respectively. The particle volume fractions for these simulations are 

0.2185% and 0.1750%, respectively. We used semi-numerical 

models to compute the 3D field distribution and force of the 

template elements as described by Furlani51. A similar analysis is 

performed with smaller particles, i.e. with a 30 nm core and 10 nm 

thick shell. The assembly of these particles for the same cross 

structure as above is shown in Fig. 13 assuming a volume fraction of 

0.0650%.  The particles form a zip-chain like patterns at the ends of 

the cross and a multilayer structure at its centre due to the smaller 

size of the particles.      

 

 

  

 
Figure 13. Initial and final particle distributions for a cross template 

element  for a volume fraction of  φ  = 0.0650%: (a) initial random 

particle distribution, (b) perspective of final assembled  particle pattern, 

(c) lateral view of assembled particle pattern, (d) magnified top view of 

assembled cross pattern. 
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4 Discussion 

The analysis above demonstrates the viability of controlling the 

assembly of the core-shell nanoparticles into extended monolayer 

geometric patterns with nanoscale precision. To achieve this, various 

parameters need to be carefully chosen and computational modeling 

is invaluable for determining these. There are three groups of 

parameters that are especially important: the particle properties, the 

template properties and the particle volume fraction. With regards to 

the particles, both the core properties, magnetization ��  and 

especially radius #$%��  and the shell thickness are important. The 

first two parameters directly impact the magnetic and dipole-dipole 

forces, i.e. D�	
~��#$%��!  and	D��~��
^#$%��u . These parameters can 

be tuned to control the particle motion and interparticle coupling 

during assembly. The shell thickness also impacts the dipole-dipole 

force, but only when the particles are in contact. It can be increased 

to reduce D�� in order to suppress undesired chaining and promote 

the formation of a monolayer. The overall particle size also impacts 

the hydrodynamic forces, e.g. larger particles exhibit greater viscous 

drag and assemble more slowly. As for the template elements, the 

most important properties are the dimensions and to a lesser extent 

the level of magnetization 	�� . The template dimensions are 

especially critical as they can be tailored to produce localized 

regions of attractive and repulsive force that enable nanoscale 

precision in particle placement. On the other hand, �� depends on 

the template material and the strength of the bias field and has a 

nonlinear contribution to the magnetic force	D�	
~��
^. Finally, the 

particle volume fraction can be adjusted to control undesired 

aggregation during the assembly process. Specifically, as the volume 

fraction increases the particles are closer together and tend to 

aggregate during assembly, which interferes with the formation of 

the desired monolayer pattern. Thus, the volume faction must be 

kept low enough to avoid this. All the aforementioned parameters 

can be determined for a given application using a combination of 

magnetic field modeling and particle transport modeling as 

demonstrated above. 

5 Conclusions 

We have presented a method for controlling the assembly of 

colloidal magnetic-dielectric core-shell nanoparticles into 

extended geometric patterns with nanoscale precision. This is 

achieved using soft-magnetic template elements with nanoscale 

line-widths to guide the assembly in the presence of a uniform 

bias field. The combination of a uniform field and localized 

high gradient fields produced by the template elements enables 

nanoscale precision of particle placement. We demonstrate 

proof-of-concept using a computational model that takes into 

account dominant mechanisms that govern the assembly 

dynamics. We show the first time that prescribed geometric 

patterns of particles can be assembled within milliseconds and 

with a line width resolution substantially greater than that of the 

template geometry. The increased resolution is due to the 

nanoscale precision in particle placement, which is achieved by 

tailoring key parameters including the template geometry to 

produce a force field that focuses the particles into prescribed 

patterns; the thickness of the dielectric particle shell to control 

the magnetic dipole-dipole force upon contact by providing a 

separation between the magnetic cores; and the particle volume 

fraction to suppress undesired aggregation during assembly. We 

have demonstrated the model using hollow cylinder, hollow 

cube and cross-shaped templates and dual-layer core-shell 

particles. However, it broadly applies to templates with an 

arbitrary geometry and multiple-layer particles that have at least 

one magnetic component. Furthermore, once particle patterns 

have been formed, they can be transferred to a different 

substrate using techniques similar to those described by 

Henderson et al.39 In this previous experimental study, field-

directed patterning of magnetic nanoparticles was achieved 

using the magnetic field gradients at the surface of commercial 

disk drive media. The particle patterns were successfully 

transferred to the surface of a polymer film by spin-coating and 

peeling. The assembled particle patterns were preserved after 

peeling because the particles were immobilized during the spin-

coating process by the large field gradients provided by the 

recording media. However, the lower limit gradient threshold 

required for viable pattern transfer is not known. It seems 

reasonable to assume that a similar pattern transfer process may 

apply to our approach, albeit this may require the fabrication of 

nanoscale template elements to provide sufficient particle 

immobilization, which could be challenging. In this case, a 

single template substrate could be used to reproduce numerous 

nano-patterned materials. In summary, we have used modelling 

to demonstrate the feasibility of new and interesting phenomena 

in the form of template-assisted assembly of single aligned 

magnetic core-shell particle structures at the millisecond time 

scale and the use of a nonmagnetic (e.g. silica) shells to further 

control interparticle forces. Prior experimental work39 

reinforces the viability of our approach. The ability to produce 

such nanostructured materials opens up opportunities for the 

scalable high-throughput fabrication of multifunctional 

nanostructured materials for a broad range of applications and 

our    computational model enables the rational design of such 

media. 
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Appendix 

In this section we present analytical closed-form expressions for the 

magnetic field and force due to a soft-magnetic hollow cylindrical 

template element in a uniform bias field as shown in Fig.1. The total 

applied field -	 is a superposition of the bias field -.�	� and the 

gradient-field -�  due to the element. The bias field is directed 

upward along the z-axes and since the cylindrical element is 

axisymmetric we can express the total field as 

( ), , ,
ˆ ˆ

a bias e e r bias z e z
H H H= + = + +H H H r z .  (A1) 

The force on a magnetic particle is given by Eq. (5) 

( )( )mag f p a a aV f Hµ= ⋅∇F H H  , (A2) 

which can be decomposed into radial and axial components 

( ) , ,

, ,,

a r

mag

a r

a r ar zf p a
V f H

r z
µ

∂ ∂ 
⋅ + ⋅ ∂ ∂ 

=
H H

F H H , (A3) 

and 

( ) , ,

, ,,

a z

mag

a z

a r az zf p a
V f H

r z
µ

∂ ∂ 
⋅ + ⋅ ∂ ∂ 

=
H H

F H H . (A4) 

The function v��	� depends on the magnetization of the element 

c�   which is induced by -.�	� as describe in Eq. (A1). We model 

the magnetization of the element using a linear model that takes into 

account saturation. Specifically, below saturation, 

                                     e e inχ=M H , (A5) 

whereas above saturation c� � c�� , where c��  is the saturation 

magnetization and &� � �� �H⁄ ( 1 and �� are the susceptibility and 

permeability of the template element, respectively. In Eq.(A5), 

-�' � -.�	� /-���	
  is the field inside the element, -���	
 �
()�c� is the demagnetization field and )� is the demagnetization 

factor of the element, which depends on its geometry51.  Thus, below 

saturation 

                                
( )1

e
e bias

d eN

χ
χ

=
+

M H , (A6) 

which, for a soft-magnetic element (&� ≫ 1),  reduces to 

( )1 .bias
e e

dN
χ= >>

H
M   (A7) 

Thus, the magnetization of the element is obtained using, 

bias

bias d es

d

es bias d es

N
N

N


<

=
 ≥

e

H
H M

M

M H M

.  (A8) 

Once c�  is known, -� can be computed. The field distribution -� 

of a hollow cylinder element that is magnetized upward along its 

axis (positive z direction) can be obtained via superposition using the 

field due to a solid cylinder �$�1�#$�1� of radius	#$�1 . Let #�' and 

#%�0  denote the inner and outer radii of the hollow cylindrical 

element and let h denote its height.  Then 

( ) ( ) ,e cyl out cyl inR R= −H H H   (A9) 

where (-$�1�#�'�  represents the field due to a cylinder that is 

magnetized downward (negative z direction) and accounts for the 

missing core of the hollow cylinder. A semi-analytical expression for 

-$�1�#$�1�   has been derived using an equivalent current source 

model (see section 3.3 of Furlani (2001)51) as described by Furlani 

and Xue52. The solution method is summarized here for convenience.  

A cylinder with a uniform axial magnetization produces the same 

external field as that of a conventional surface current that flows 

around the circumference of the cylinder. We discretize the 

“equivalent” surface current into a finite set of current loop elements, 

and compute the total field by summing the field contribution from 

the individual elements, which is well-known (see p 263 in Stratton 

(1941)53). The field distribution for a magnetized cylinder of 

radius	#$�1  and height h that is magnetized to saturation  ��  and 

centered about the z-axis with its top surface at _ � 0 can be written 

as 
0

,

0

,

( , , ) ( , , )   
2

( , , ) ( , , )
2

s
cyl r cyl r

h

s
cyl z cyl z

h

M
H R r z r z z dz

M
H R r z r z z dz

π

π

−

−

′ ′= Π

′ ′= Π

∫

∫
, (A10) 

where the #$�1 functional dependence is implicit in the terms 

( ) ( , )
( , , ) [ ( , ) ( ) ( )]

r t

z z f z z
r z z R z z E k K k

r

′ ′−′ ′Π = − ,       (A11) 

 ( , , ) ( , )[ ( , ) ( ) ( )]z tr z z f z z Z z z E k K k′ ′ ′Π = + .           (A12) 

In these expressions n�>�  and w�>�  are the complete elliptic 

integrals of the first and second kind, respectively54, 

2 22 2

0 2 2 0

1
( )      ( ) 1 sin ( )

1 sin ( )
K k d E k k d

k

π π

φ φ φ
φ

= , = −
−

∫ ∫ , (A13) 

And 

( )

2 2

2 2 1/2

1/2
2 2 2

2 2

2 2 2

1
( ) ( , ') ,     ( , ) ,     

(( ) ( , ') )

4 ( , ')
 ,  ( , ) ,        

( ) ( , ')

( , ')
( , ) , ( , ') .

cyl

cyl

cyl cyl

t

cyl

cyl

t

d R r z z f z z
R r z z

rR R r z z
k R z z

R r z z d

R r z z
Z z z z z z z

d

δ
δ

δ

δ

δ
δ

′= − + =
+ +

  + +
′= =  + + 

− −
′ ′= = −

 (A14) 

The field components in Eq. (A10) are evaluated using numerical 

integration. To compute the force, the gradient of the field is needed, 

which can be determined using the following relations, 
'

2( , , ) 1 ( )
( ( ) ) [ ( ) ( ( ) ( ))]tr

m r t

RH r z z z z f k
R r f E k R dE k dK k

r r r r r

′ ∂∂ − ∂
= − + + ∏ + + −

∂ ∂ ∂
,    (A15) 

2 2 '

'

( )( , , ) ( )
[ ( ) ( ( ) ( ))]m tr

r t

f R r RH r z z z z f k
E k R dE k dK k

z r z zz z

′ + ∂∂ − ∂
= ∏ + + −

∂ ∂ ∂−
,     (A16)   

2( , , )
( ) [ ( ) ( ( ) ( ))]tz

m z t

ZH r z z k
f R r f E k Z dE k dK k

r r r

′ ∂∂ ∂
= − + ∏ + + +

∂ ∂ ∂
,     (A17) 

2 '( , , )
( ) [ ( ) ( ( ) ( ))]tz

z t

ZH r z z k
f z z f E k Z dE k dK k

z z z

′ ∂∂ ∂
= − − ∏ + + +

∂ ∂ ∂
.     (A18) 

Eqs. (A15)-(A18) can be used to predict the field and force 

distribution due to a solid magnetic cylinder and this can be used in 

Eq. (A9) to determine the field of a hollow cylinder. Additional 

useful models of magnetic structures can be found in various 

references 55-59.  

The magnetic field and force due to an array of template elements 

can be obtained by superimposing their fields.  Let N be the total 

number of elements in the array, and let n = 0, 1, 2, 3, 4,… N-1 

identify the individual elements. Choose a reference frame in which 

the central element, which is labelled n=0, is located at the origin in 

the x-y plane. The field components of this element are given by Eq. 

(A10).  These need to be carefully converted to Cartesian 

coordinates to implement the superposition. The field solution for 

this element in Cartesian coordinates at an arbitrary observation 

point (x,y,z) is denoted by, 
(0) (0) (0) (0)

, , ,
ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )

e e x e y e z
x y z H x y z H x y z H x y z= + +H x y z .    (A19) 

The n’th magnet in the array is centred at � � �' and a � a' in the 

x-y plane. The field components for this element can be written in 

terms of the field of the 0’th element as follows: 
( ) (0)( , , ) ( , , )  ( 1,2,3, , -1)n

e e n nx y z x x y y z n N= − − = KH H . (A20) 

The total field distribution of the array is obtained by summing the 

field contributions from all the elements,  
1

( )

0

( , , ) ( , , )
N

n

e e n n

n

x y z x x y y z
−

=

= − −∑H H . (A21) 

The total applied field is 	-	 � -.�	� /-� . Finally, the total 

magnetic force on a particle due the array of elements is given by 

( )( )m f p a a aV f Hµ= ⋅∇F H H . (A22) 
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