PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Journal Name

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Lead-lodide Nanowire Perovskite with Methylviologen Showing Interfacial Charge-Transfer Absorption: A DFT Analysis

Jun-ichi Fujisawa^{*ab} and Giacomo Giorgi^c

Methylviologen lead-iodide perovskite (MVPb₂I₆) is a self-assembled one-dimensional (1-D) material consisting of lead-iodide nanowires and intervening organic electron-accepting molecules, methylviologen (MV²⁺). MVPb₂I₆ characteristically shows optical interfacial charge-transfer (ICT) transitions from the lead-iodide nanowire to MV^{2+} in the visible region and unique ambipolar photoconductivity, in which electrons are transported through the three-dimensional (3-D) organic network and holes along the 1-D lead-iodide nanowire. In this paper, we theoretically study the electronic band-structure of MVPb₂I₆ by density functional theory (DFT) calculations. Our results clearly confirm the experimentally reported type-II band alignment, whose valence band mainly consists of *5p* (I) orbitals of the lead-iodide nanowires and conduction band of the lowest unoccupied molecular orbital of MV^{2+} . The DFT calculation reveals weak charge-transfer interactions between the lead-iodide nanowires and MV^{2+} . In addition, the electronic distributions of the valence and conduction bands indicate the 3-D transport of electrons and 1-D transport of holes, supporting the reported experimental result.

Introduction

Organic-inorganic metal-halide perovskites are self-assembled hybrid materials, which consist of anionic metal-halide inorganic semiconductive frameworks and chargecompensating organic cations.¹⁻³ For the organic-inorganic hybrid perovskites, the dimensionality of the inorganic framework can be controlled by the kind of organic cations from 0 (dot) to 1 (wire), 2 (well) and 3 (bulk).¹⁻³ The optical and conductive properties of these perovskites have been studied extensively.¹⁻³ Photoconductive properties of the perovskites was reported in 2005 for one-dimensional (1-D) lead-iodide nanowire perovskite $(MVPb_2I_6)$ with methylviologen (MV²⁺).⁴ In 2009, Miyasaka's group first developed TiO₂-based electrochemical photovoltaic cells sensitized by three-dimensional (3-D) methylammonium leadhalides (MAPbX₃, X: Br, I).⁵ Since then, efficient perovskite solar cells with 3-D MAPbX₃ have been rapidly developed by Park's, Snaith's and Gratzel's groups.⁶⁻⁹ For the 3-D perovskites, their light-absorption and photoconductive properties are governed by the 3-D inorganic semiconducting framework.¹⁰⁻¹³ On the other hand, the mentioned 1-D MVPb₂I₆ nanowire perovskite has intriguing optical and photoconductive properties, in which both the organic and inorganic components

Figure 1. Photograph of a single crystal of $MVPb_2l_6$ with back-side illumination and crystal structure.

take part.4,14,15

As shown in Figure 1, the 1-D MVPb₂I₆ perovskite is a unique nanowire material that consists of ultrathin face-sharing lead-iodide chains ($[PbI_3]_{\infty}$) with a diameter of ca. 0.5 nm and intervening organic electron-accepting MV²⁺ molecules.¹⁶ MVPb₂I₆ shows a dark red crystal colour, although the inorganic nanowire and MV²⁺ have wide optical-gaps higher than 3.5 eV¹⁷⁻¹⁹. This dark-red coloration of MVPb₂I₆ results from the optical interfacial charge-transfer (ICT) transitions (so-called spatially indirect transitions) from the valence band of the lead-iodide nanowire to the unoccupied molecular orbitals of MV²⁺, as shown in Figure 2(a).^{4,14,15} With the ICT transitions, MVPb₂I₆ shows a broad absorption band in the

Journal Name

Figure 2. (a) Schematic picture of staggered type-II band structure experimentally deduced for MVPb₂I₆ and (b) Near UV-visible absorption spectrum of a cleaved crystal of MVPb₂I₆ (red curve) and the excitation spectrum of photocurrent divided with incident photon number (N_{in}) for MVPb₂I₆ (red circles). The experimental data were reported in Refs. 4 and 14.

visible region in addition to a 1-D exciton absorption at 400 nm, as shown in Figure 2(b). The ICT transitions induce photocurrent much more efficiently as compared to the 1-D exciton absorption.^{4,14} In addition, the measurement of the anisotropy in the photoconductivity suggested ambipolar photocarrier transport, in which photogenerated electrons are transported three-dimensionally through the organic network and holes one-dimensionally in the nanowire.⁴ Unfortunately, conclusive results concerning the staggered band structure (so-called type-II band alignment, see Figure 2(a)) and electronic properties of photocarriers are not available yet. In this paper, we theoretically study the electronic band structure of $MVPb_2I_6$ by density functional theory (DFT) calculations and discuss the photocarrier properties.

Computational details

Both a periodic and a cluster approach have been employed in our research. Concerning the former, DFT calculations of the band structure of $MVPb_2I_6$ have been performed with the generalized gradient approximation as implemented in the VASP code^{20,21} by means of the electron exchange-correlation

electron-ion interaction is described by the projector augmented wave method (PAW)^{23,24}. Also, still concerning the PAW potential, a $5d^{10}6s^26p^2$ valence electron potential was used for Pb atom. The plane-wave basis set energy cut-off was 500 eV. For the structural optimization, a 2x2x2 Γ -centered k-point sampling of the Brillouin Zone was used, while for the study of electronic properties denser meshes have been used (30 kpoints). Due to the presence of heavy elements, relativistic effects are taken into account in the calculation of the electronic properties of MVPb₂I₆. Recent papers concerning Pb-based perovskite bulk systems have shown how the inclusion of spinorbit coupling (SOC) effects becomes mandatory in order to obtain an improved description of such properties^{12,13}. Additionally, preliminary calculations based on meta-GGA functionals have been performed. In detail the RTPSS functional²⁵ has been used without the inclusion of relativistic effects. We are aware that the modified Becke & Johnson (MBJ) potential^{26,27} in principle yields band gaps with an accuracy very close to that of hybrid functional or GW methods, at the same time it is well-documented that the same potential tends to diverge (as we found in our calculations) in the case of low-dimensional systems. For this reason after a careful testing procedure we did not consider MBJ potential in our calculations. We remind that meta-GGA calculations require pseudo-potentials including information on the kinetic energy density of the core-electrons; thus in this last case a slightly different set (compared with calculations at DFT+SOC level) of pseudo-potentials were used. Negligible differences were found by the comparison of the results obtained with the two sets employed at the initial DFT level.

functional proposed by Perdew-Burke-Ernzerhof (PBE)²². The

The experimental rhombohedral crystal structure reported by Tang et al.¹⁶ (*R-3*, *Z*=3) was used and kept frozen in the calculations. Since no hydrogen coordinates of MV^{2+} have been reported in their paper, the C-H bonds were optimized by DFT. Since $MVPb_2I_6$ includes heavy Pb and I atoms, spin-orbit couplings of all the atoms were taken into account. At cluster level, DFT calculations of MV^{2+} and piperidinium ions (PD⁺) were carried with the PBEPBE²² functional and 6-31G+(d,p)^{28,29} basis set using Gaussian 09 software³⁰. As reported by Matteo, for MV^{2+} , a slightly twisted structure about the inter-ring C-C bond is the most stable.³¹ However, since MV^{2+} in $MVPb_2I_6$ has a planar form, our calculation was carried out with the restriction that the two methylpyridinium rings are coplanar. We confirmed that similar calculation results are obtained with other functionals such as B3LYP^{32,33}.

Results and discussion

Figures 3(a) and 3(b) show the DFT+SOC calculated band structure and density of states (DOS) of $MVPb_2I_6$, respectively. From these figures, we can see that the valence band mainly consists of the 5p (I) orbitals with a very minor contribution of the 6s (Pb) orbitals of the lead-iodide nanowires. Accordingly, the valence band is localized in the lead-iodide nanowires, as

Journal Name

(a) 3.0

Conduction-band bottom at the Γ point Figure 4. Isosurface plots of electron-density distributions of (a) the top of the

Figure 4. Isosurface plots of electron-density distributions of (a) the top of the valence band and (b) the bottom of the conduction band in $MVPb_{2}l_{6}$. (isovalue = 0.0001). Large dark gray: lead, purple: iodine, small gray: carbon, blue: nitrogen, white: hydrogen atoms.

PDPbI₃ consists of similar lead-iodide nanowires to those in $MVPb_2I_6$ and piperidinium cations (PD⁺) instead of MV^{2+} . For PDPbI₃, both the valence and conduction bands are localized in the lead-iodide nanowires, indicating a type-I band alignment. The atomic-orbital component of the valence band in $MVPb_2I_6$ almost agrees with that in PDPbI₃. Therefore, the difference in the electronic structure between $MVPb_2I_6$ (type-II) and PDPbI₃ (type-I) is considered to be due to the difference in electronic properties between MV^{2+} and PD⁺.

Figure 5 shows the DFT calculated energy-level diagram of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of MV^{2+} and PD^+ in vacuum. The DFT calculations revealed that the LUMO of MV^{2+} is much lower in energy by 5.8 eV than that of PD⁺. The deeper LUMO level is consistent with the electron-accepting

Figure 3. (a) Band structure and (b) density of states (DOS) of $MVPb_2l_6$ calculated by DFT including spin-orbit coupling effects.

shown in Figure 4(a). On the other hand, the conduction band in MVPb₂I₆ is located ca. 0.8 eV above the valence band. The conduction band consists of 2p (C) and 2p (N) orbitals of the MV²⁺ molecules. In consequence, in contrast to the valence band, the conduction band of $MVPb_2I_6$ is localized on the MV^{2+} molecules, as shown in Figure 4(b). Therefore, the valence and conduction bands in MVPb₂I₆ are spatially separated in the inorganic and organic moieties, respectively. Thus, the DFT+SOC calculation reveals the experimentally reported staggered band alignment (Figure 2(a)). However, the band gap (ca. 0.8 eV) of $MVPb_2I_6$ is quite underestimated as compared to the absorption onset energy $(2.15-2.16 \text{ eV})^4$ of the ICT band. Such underestimation is considered to be a typical shortcoming of DFT calculations.^{12,13} On the other hand, we found that the conduction band is weakly hybridized with the 5p orbitals of the I atoms. In addition, the DFT calculation suggests higherenergy unoccupied bands significantly delocalized on both the MV²⁺ molecules and lead-iodide nanowires. Calculations by means of meta-GGA functional²⁵ (as stated without SOC effects) significantly improved the band gap up to 1.66 eV, without altering the band-edge properties.

We compare the electronic structure of $MVPb_2I_6$ with that of the 1-D PDPbI₃ perovskite reported by Azuma et al.³⁴

Figure 5. Energy-level diagram of HOMO and LUMO of PD⁺ and MV^{2+} calculated by DFT together with optimized structures of PD⁺ and MV^{2+} . Gray: carbon, blue: nitrogen, white: hydrogen atoms.

Figure 6. Isosurface plots of electron-density distribution (yellow isosurface, isovalue = 0.0001) of the conduction-band bottom on MV^{2+} and electronic distribution (green and brown isosurfaces, isovalue = 0.02) of LUMO of MV^{2+} . Gray: carbon, blue: nitrogen, white: hydrogen atoms.

property of MV^{2+} . We compare the electron-density distribution of the conduction-band bottom with the electronic distribution of the LUMO in MV^{2+} . As shown in Figure 6, it can be seen that the conduction band of $MVPb_2I_6$ consists of the LUMO of MV^{2+} . Therefore, the difference in the band structure between PDPbI₃ (type-I) and $MVPb_2I_6$ (type-II) is attributed to the difference in the energy of the LUMO level between MV^{2+} and PD⁺.

As mentioned above, the conduction band localized on MV^{2+} is weakly hybridized with the *5p* orbitals of I atoms in the lead-iodide nanowires, as shown in Figure 3. Since the valence band is predominantly comprised of the *5p* orbitals, the electronic hybridization is considered to result from weak charge-transfer interactions between the valence band located in the lead-iodide nanowires and LUMO of MV^{2+} . In the previous paper, we deduced the existence of the charge-transfer interaction between the lead-iodide nanowire and MV^{2+} from the vibrational structure measured by FT-IR.¹⁵ The calculation result supports the deduction.

Here, we discuss the properties of the photocarrier transports in $MVPb_2I_6$ on the basis of the calculation results. At first, as shown in Figure 3, the band widths of the conduction

Figure 7. Electron-density distributions of (a) the valence-band top (green isosurface, isovalue = 0.0001) and (b) conduction-band bottom (yellow isosurface, isovalue = 0.0001) viewed along the *a* axis.

and valence bands are estimated to be less than ca. 0.3 eV. The narrow band widths imply the polaron formation of the photogenerated electrons and holes with the strong electronlattice interactions in MVPb₂I₆.⁴ Fujisawa et al. examined the electron-lattice interaction in MVPb₂I₆ from the analysis of the absorption tail of the ICT band with Urbach's equation $(A=A_0\exp(\sigma\beta(E - E_0)), \sigma$: steepness constant).⁴ The obtained steepness constant of 0.35 is quite small as compared to those (0.6-3) for other inorganic semiconductors and insulators.³⁵ This result indicates that the electron-lattice coupling in MVPb₂I₆ is quite strong. Thus, because of the narrow band widths of the conduction and valence bands and strong electron-lattice interaction, photogenerated electrons and holes are considered to relax to polarons. The polaron formation is the consistent with reported observation of the photoluminescence from spatially-separated polaron-pairs in MVPb₂I₆.¹⁴

The measurement of the anisotropy in the photoconductivity in $MVPb_2I_6$ indicated ambipolar photocarrier transport, in which photogenerated holes are transported one-

hand, photogenerated electron-polarons are considered to be transported by thermally-activated hoping through the 3-D organic network, since there are little electronic overlaps between neighbouring molecules, as shown in Figure 7(b). Therefore, the calculation result is consistent with the ambipolar transport.⁴

Conclusion

Journal Name

We theoretically clarified the electronic band-structure of $MVPb_2I_6$ by the DFT calculations. DFT calculations reveal the experimentally reported type-II band alignment, in which the conduction band is localized on the MV^{2+} molecules and valence band in the lead-iodide nanowires. The DFT calculation reveals electronic hybridization between the conduction band on MV^{2+} and the valence band in the nanowires by charge-transfer interactions. The narrow band widths (< 0.3 eV) of the conduction and valence bands suggest the polaron formation of the photogenerated electrons and holes. In addition, the electronic distributions of the conduction and valence bands indicate the 3-D electron and 1-D hole transports, which are consistent with the reported experimental result.

Acknowledgements

This research was supported by the Precursory Research for Embryonic Science and Technology (PRESTO) program of the Japan Science and Technology Agency (JST). The author (G.G.) thanks Prof. Koichi Yamashita of the University of Tokyo for supporting the analysis of electronic properties of the material and for the always fruitful and stimulating scientific discussions.

Notes and references

^aResearch Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. E-mail: ufujisw@mail.ecc.u-tokyo.ac.jp

^bJapan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

[°]Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

 T. Ishihara, *Optical Properties of Low-Dimensional Materials*, edited by T. Ogawa and Y. Kanemitsu Ch. 6, World Scientific, Singapore, 1995.

- 2. G. C. Papavassiliou, Prog. Solid St. Chem., 1997, 25, 125.
- 3. D. B. Mitzi, Prog. Inorg. Chem., 1999, 48, 121.
- 4. J. Fujisawa and N. Tajima, Phys. Rev. B, 2005, 72, 125201.
- A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050.
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, *Scientific Rep.*, 2012, 2, 591.
- M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643.
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, *Nature*, 2013, 499, 316.
- 9. M. Liu, M. B. Johnston, H. J. Snaith, Nature, 2013, 501, 395.
- T. Umebayashi, K. Asai, T. Kondo and A. Nakao, *Phys Rev B*, 2003, 67, 155405.
- E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. D. Angelis, J. Phys. Chem. C, 2013, 117, 13902.
- 12. J. Even, L. Pedesseau, J.-M. Jancu and C. Katan, J. Phys. Chem. Lett., 2013, 4, 2999.
- G. Giorgi, J. Fujisawa, H. Segawa and K. Yamashita, J. Phys. Chem. Lett., 2013, 4, 4213.
- 14. J. Fujisawa and T. Ishihara, Phys. Rev. B, 2004, 70, 113203.
- 15. J. Fujisawa, N. Tajima, K. Tamaki, M. Shimomura and T. Ishihara, J. Phys. Chem. C, 2007, 111, 1146.
- 16. Z. Tang and A. Guloy, J. Am. Chem. Soc., 1999, 121, 452.
- 17. A. Nagami, K. Okamura and T. Ishihara, Physica B, 1996, 227, 346.
- T. Fukumoto, M. Hirasawa and T. Ishihara, J. Lumin., 2000, 87-89, 497.
- 19. M. Mohammad, J. Org. Chem., 1987, 52, 2779.
- 20. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15.
- 21. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 22. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 23. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 24. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- 25. J. Sun, M. Marsman, G. I. Csonka, A. Ruzsinszky, P Hao, Y.-S. Kim, G. Kresse, and J. P. Perdew, *Phys. Rev. B*, 2011, 84, 035117.
- 26. A. D. Becke and E. R. Johnson, J. Chem. Phys. 2006, 124, 221101.
- 27. F. Tran and P. Blaha, Phys. Rev. Lett., 2009, 102, 226401.
- 28. R. Ditchfield, W. Hehre and J. Pople, J. Chem. Phys., 1971, 54, 724.
- 29. W. Hehre, R. Ditchfield and J. Pople, J. Chem. Phys., 1972, 56, 2257.
- M. J. Frisch, at al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
- 31. A. di Matteo, Chem. Phys. Lett. 2007, 439, 190-198.
- 32. A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 33. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 34. J. Azuma, K. Tanaka, M. Kamada and K. Kan'no, J. Phys. Soc. Jpn. 2002, 71, 2730.
- 35. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa and E. Hanamura, *Excitonic Processes in Solids*, Springer-Verlag, Tokyo, 1984.