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Abstract 

 

By using different evaluation strategies, we systemically evaluated the performance of 

Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular 

Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodologies based on 

more than 1800 protein-ligand crystal structures in the PDBbind database. The results 

can be summarized as follows: (1) for the one-protein-family/one-binding-ligand case 

which represents the unbiased protein-ligand complex sampling, both MM/GBSA and 

MM/PBSA methodologies achieve approximately equal accuracies at the interior 

dielectric constant of 4 (with rp=0.408±0.006 of MM/GBSA and rp=0.388±0.006 of 

MM/PBSA based on the minimized structures); while for the total dataset (1864 

crystal structures), the overall best Pearson correlation coefficient (rp=0.579±0.002) 

based on MM/GBSA is better than that of MM/PBSA (rp=0.491±0.003), indicating 

that biased sampling may significantly affect the accuracy of the predicted result 

(some protein families contain too many instances and can bias the overall predicted 

accuracy). Therefore, family based classification is needed to evaluate the two 

methodologies; (2) the prediction accuracies of MM/GBSA and MM/PBSA for 

different protein families are quite different with rp ranged from 0 to 0.9, whereas the 

correlation and ranking scores (an averaged rp/rs over a list of protein folds and also 

representing the unbiased sampling) given by MM/PBSA (rp-score=0.506±0.050 and 

rs-score=0.481±0.052) are comparable to those given by MM/GBSA 

(rp-score=0.516±0.047 and rs-score=0.463±0.047) at the fold family level; (3) for the 

overall prediction accuracies, molecular dynamics (MD) simulation may not be quite 

necessary for MM/GBSA (rp-minimized=0.579±0.002 and rp-1ns=0.564±0.002), but is 

needed for MM/PBSA (rp-minimized=0.412±0.003 and rp-1ns=0.491±0.003). However, it 

depends when facing up with individual systems; (4) both MM/GBSA and MM/PBSA 

may be unable to give successful predictions for the ligands with high formal charges, 

with the Pearson correlation coefficient ranged from 0.621±0.003 (neutral ligands) to 

0.125±0.142 (ligands with 5 formal charges). Therefore, it can be summarized that, 
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although MM/GBSA and MM/PBSA perform similarly in the unbiased dataset, for 

the currently available crystal structures in PDBbind database, compared with 

MM/GBSA, which may be used in multi-targets comparison, MM/PBSA is more 

sensitive to the investigated systems, and may be more suitable for 

individual-target-level binding free energy ranking. This study may provide useful 

guidance for the post-processing of docking based studies. 

 

 

 

Introduction 

The MM/GBSA and MM/PBSA approaches have been widely used in free energy 

calculations.1-27 Compared with the theoretically rigorous methods such as free energy 

perturbation (FEP) and thermodynamic integration (TI),28-30 MM/GBSA and 

MM/PBSA are more computationally efficient and convenient with few rules having 

to be obeyed, such as various constrain rules in FEP/TI.31-34 For the MM/GBSA and 

MM/PBSA calculations, the separate trajectory strategy, namely using the trajectories 

of complex, receptor, and ligand separately, is more theoretically rigorous due to the 

consideration of the conformational change of the receptor and ligand when a free 

ligand binds to an unbound-state receptor.2, 35, 36 However, the intramolecular energies, 

such as bond energy, angle energy, etc., cannot be well canceled, and consequently 

leading to a large uncertainty or noise of the predicted binding free energies.36 On the 

contrary, the binding free energy predicted by a single trajectory (a trajectory 

containing only ligand-receptor complex) is more stable and this strategy has been 

widely used in previous studies.27, 37-40 The binding free energy can be calculated by 

MM/PBSA or MM/GBSA according to the following equations: 

)( ligreccombind GGGG +−=∆  (1) 

STGESTHG solMMbind ∆−∆+∆≈∆−∆=∆  (2) 

vdwticelectrostainternalMM EEEE ∆+∆+∆=∆  (3) 
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 (4) 

where ∆Gbind denotes the binding free energy and it can be decomposed into three 

terms: (1) the molecular mechanical energy (∆EMM), which is the summation of the 

intramolecular energy (∆Einternal, including bond, angle, and dihedral energies), 

electrostatic energy (∆Eelectrostatic), and van der Waals energy (∆Evdw) (Equation 3); (2) 

the solvation energy (∆Gsol), which is composed of the polar (∆GPB/GB) and non-polar 

contributions (∆GSA) (Equation 4); and (3) the entropic contribution (-T∆S), which is 

associated with the conformational entropy loss when a free-state ligand binds to the 

corresponding unbound-state receptor. Although the solvation energy calculated by 

Poisson-Boltzmann (PB) equation is thought to be more accurate than that solved by 

generalized Born (GB) models due to the reason that it is more physically sound, the 

rapidly developed GB models41-45 may be more competent in accurately calculating 

the solvation energy, such as the GB model developed by Onufriev (GBOBC1) was 

found more accurate than the PB model embedded in Delphi II in our previous 

study.46 Therefore, to give a comprehensive comparison, both the PB and GB 

approaches were used for the solvation energy calculations in this study. 

Various guidelines and protocols have been proposed by previous studies for the 

MM/PBSA and MM/GBSA calculations.46-52 For instance, Genheden and coworkers 

have evaluated the different protocols for the calculation of entropy and declared that 

it is reasonable to use a truncated model to calculate the conformational entropy.47 

Maffucci et al. have studied how water molecules affect the prediction for ligand 

binding and found that when an explicit ligand hydration shells with 30~70 water 

molecules around the ligand was used, the MM/GBSA prediction could be 

significantly improved.49 Weis and colleagues have examined the impact of different 

force fields, solvent models, and boundary conditions to the avidin system bounded 

with seven biotin analogues, and shown that the MM/GBSA predictions based on 

different force fields and boundary conditions do not have large difference, but 

explicit water model is necessary.50 Greenidge et al. computed the binding free 

energies to a set of crystal structures in the PDBbind database (855 crystal structures) 

GBPBsolGG∆+∆=∆/ SAGBPBsol GGG ∆+∆=∆ /
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by using the MM/GBSA approach based on a variable dielectric GB model,53 and the 

predicted binding free energies show good correlation with the experimental data (the 

Pearson correlation coefficient is ~0.79).52 However, as analyzed in this study, it may 

need to use a larger dataset to give more reliable and comprehensive evaluation for 

MM/PBSA and MM/GBSA. Our group has also hierarchically studied the influences 

of different GB and PB models, length of simulation time, entropy effects, solute 

dielectric constants, force fields, and ligand charge models on the prediction 

accuracies of MM/GBSA and MM/PBSA.46, 48, 51 However, all the studies discussed 

above have focused on certain systems (at most 6 or 7 systems), and the results may 

be biased from the evaluation of the overall accuracies of MM/GBSA and MM/PBSA. 

Therefore, in this study, based on the well-tested strategy from our previous studies,46, 

48, 51 we have systemically evaluated the overall accuracies of the MM/GBSA and 

MM/PBSA methodologies based on more than 1800 protein-ligand complexes 

derived from the PDBbind database.54, 55 

 

Materials and Methods 

Preparation of the Dataset and Initial Simulation Structures 

1872 no-metal containing complexes in the protein-ligand refined set were 

downloaded from the PDBbind database (version 2011) and 1864 were used for the 

evaluation,54-56 where each complex has a Ki or Kd value (the detailed information can 

be found in Supporting Information Table S1). The experimental free energy (∆Gbind) 

was estimated by Equation (5), where T was set to 298 K. Although numerous studies 

have emphasized the way of choosing accurate experimental data to get more reliable 

results,52, 57 we did not employ predefined rules to select a sub-database to do the 

calculations due to the reason that no matter how accurate the experimental data is, 

uncertainty of errors still exists, and the common experimental results (without using 

extremely strict experimental methods) should be reasonable for the evaluation of 

currently widely used methods.57 Nevertheless, the purpose of this study is to evaluate 

the overall accuracies of the MM/GBSA (GBOBC1) and MM/PBSA (PBpbsa) 
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methodologies, rather than optimizing these methods. 

1
lnbind

i

G RT
K

∆ = −  or 
1

lnbind
d

G RT
K

∆ = −
 

(5) 

To automatically process the ligand-receptor complexes, the tleap and 

antechamber modules in AMBER11 were used to construct the topology files for the 

investigated proteins and ligands, namely, all the protonation states and the ligand 

charges were determined by the default parameters in AMBER11,58 such as the 

residues of HIS were all parameterized to HIE. Since the AM1-BCC (AM1 with bond 

charge corrections) charges59 performed well in our previous work,51 the partial 

charges for each ligand were fitted using the AM1-BCC method embedded in the sqm 

program in AMBER11.60 Counterions of Na+ or Cl− were added where has the lowest 

or highest electrostatic potential to neutralize the systems. The ff03 force field61 was 

employed for the proteins because it performed well in short-time MD simulation as 

evaluated by our previous work.51 The General Amber force field (gaff) was used for 

the ligands.62 Each system was immersed in a TIP3P water box63 with the water 

molecules extended 10 Å of the solute in each direction. 

 

Molecular Dynamics (MD) simulations 

Before MD simulations, each system was minimized using a protocol with three steps: 

at first, all the backbone heavy atoms of the protein were constrained with an elastic 

constant of 50 kcal/mol·Å2 and the other atoms were free (500 cycles of steepest 

descent and 500 cycles of conjugate gradient minimization); next, the elastic constant 

was weakened to 10 kcal/mol·Å2 (500 cycles of steepest descent and 500 cycles of 

conjugate gradient minimization); at last, the whole system was set free and 

minimized for 5000 steps (1000 cycles of steepest descent and 4000 cycles of 

conjugate gradient minimization). The Particle mesh Ewald (PME) algorithm was 

employed to handle the long-range electrostatics.64 All the covalent bonds involving 

hydrogen atoms were constrained using the SHAKE algorithm,65 and the time step 

was set to 2 fs. Each system was gradually heated from 0 to 300 K in the NVT 

ensemble over a period of 50 ps, and then relaxed by 50 ps in the NPT ensemble with 
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the temperature and pressure maintained at 300 K and 1 atm. Finally, 1 ns production 

simulations were performed for each system. The snapshots were collected at an 

interval of 5 ps, namely, 200 frames for each system. 

 

Free energy calculations 

The MM/GBSA and MM/PBSA approaches were employed for the evaluation of the 

binding free energy. For the solvation term of the free energy, according to our 

previous work,46 the modified GB model developed by Onufriev41 (GBOBC1) 

performed better than the other two GB models (GBOBC2 and GBHCT) and the PB 

model embedded in Delphi II program.66 Thus, in this study, the GBOBC1 model was 

used for the calculation of the solvation energy. Moreover, recently we found that the 

PB model developed by Tan and Luo (noted as PBpbsa in Amber11)67 could give better 

predictions to some systems compared with the GBOBC1 model.51 Therefore, the PB 

model developed by Tan and Luo was also employed to make an evaluation. The 

exterior dielectric constant (dielectric in bulk) was set to 80, and the interior dielectric 

constant (dielectric in solute) was set to 1, 2 or 4 as we did previously to give a 

comparison. No ionic strength was added to the MM/GBSA or MM/PBSA 

calculations. Due to the expensive computational demand and no apparent 

improvement of the predictions,37, 47, 48, 68 the entropy term was not included in the 

binding free energy calculation. Therefore, the free energy calculated here, in fact, is 

enthalpy or say that effective binding free energy. The non-polar part of the solvation 

energy (∆GSA) was estimated by the LCPO algorithm based on the solvent accessible 

surface area (SASA, ∆A).69 The parameters are illustrated in Equation (6), where γ 

and b were set to 0.0072 and 0, respectively. For each system, the binding free energy 

was calculated using both the 1 ns MD trajectory (based on 200 frames) and the 

minimized structure (the final-optimized frame after the three stages of minimization 

as mentioned above) to give a comparison. 

SAG A bγ∆ = ∆ +   (6) 
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Estimation methods. The Pearson correlation coefficient (rp) and Spearman ranking 

coefficient (rs) in conjunction with random sampling were used for the estimation of 

the linear correlation and ranking power of the predictions (all the uncertainties were 

reported in standard error). Although the Spearman ranking coefficient is useful in the 

ranking of the binding free energies,48, 51 The Pearson correlation coefficient is more 

appropriate when a large dataset is to be evaluated. Therefore, the analyses will be 

more focused on the Pearson correlation coefficient.  

In order to give a more detailed landscape of the two methodologies, proteins 

should be divided into clusters. Unfortunately, it will be hard for the multiple 

sequence alignment algorithm (MSA)70 to cluster a large dataset using pairwise-based 

sequence similarity method. Thanks to the establishment of Structural Classification 

of Proteins database (SCOP) that used a structural similarity-based algorithm to 

classify proteins into different scaffolds,71, 72 1546 out of 1864 tested proteins were 

successfully assigned to 240 different protein fold families according to the indexes of 

the SCOP database (version 1.75B). 

 

Results and Discussion 

The overall prediction accuracies of MM/GBSA and MM/PBSA 

As shown in Table I, the overall accuracy of MM/GBSA is better than that of 

MM/PBSA based on not only the minimized structures, but also the 1 ns MD 

trajectories calculated by 1, 2 or 4 inner dielectric constant. Interestingly, the 

MM/GBSA calculations based on the minimized structures with the inner dielectric 

constant of 4 achieve the best accuracy with the Pearson (rp) and Spearman (rs) 

coefficients up to 0.579 and 0.602, respectively (Figure 1), and they are slightly better 

than the MM/GBSA calculations based on the MD trajectories (rp=0.564±0.002 and 

rs=0.591±0.002). The reason why the prediction accuracy of MM/GBSA based on the 

1 ns MD trajectories is a bit worse than that based on the minimized structures may be 

explained by the fact that all the evaluated systems are crystal structures, and many of 

them have even been used for the optimization of the MM/GBSA parameters.41-43 
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Therefore, the structural adjustment from the MD simulations may disturb the best 

positions of the ligands in the crystal structures. However, the MM/PBSA predictions 

based on the MD trajectories are indeed better than those based on the minimized 

structures (with the Pearson and Spearman coefficients of 0.491 and 0.561 compared 

with 0.412 and 0.500 when the inner dielectric constant was set to 4), indicating that 

MM/PBSA designed with a more physically rigorous model may be more favorable in 

the adjustment of the binding energy. Nevertheless, the overall accuracy of 

MM/PBSA based on the MD trajectories (rp=0.491±0.003 and rs=0.561±0.002) is still 

worse than that of MM/GBSA based on the MD trajectories (rp=0.564±0.002 and 

rs=0.591±0.002), which seems inconsistent with our previous work51 as biased 

sampling was used in the evaluation (Some groups contain hundreds of instances, 

while most groups contain only one instance as shown below). However, the 

correlation and ranking scores (a criterion averaged all the rp/rs of the investigated 

systems on individual-fold-level, and here 29 fold families were used for the 

comparison as shown below, which may represent unbiased sampling) given by 

MM/PBSA for individual protein families are approximately equal or even a bit 

higher than those given by MM/GBSA (Table IV), suggesting that MM/PBSA can 

perform better on the individual-system level.51 The details will be discussed below. It 

was found that eight systems were too large for the pbsa module in AMBER to solve 

the PB equation. For a fair comparison, the 8 systems were eliminated for the 

MM/GBSA calculations as well, thereby, as mentioned above, a total of 1864 systems 

were remained for the evaluation. The best predicted binding free energies (calculated 

by MM/GBSA method based on the minimized structures and 1 ns MD trajectories 

and a dielectric constant of 4) could be found in Supporting Information Table S1. 

Indeed, even for the MM/GBSA predictions based on the minimized structures 

and the solute dielectric constant of 4, the Pearson correlation coefficient and 

Spearman ranking coefficient are only 0.579 and 0.602, respectively. Interestingly, a 

recent publication by Greenidge et al52 as mentioned above showed that the 

MM/GBSA calculations based on a variable dielectric GB model (VSGB 2.0) could 

improve the Pearson coefficient to ~0.79 (rp
2=0.63),53 which is much higher than that 
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given by our study. However, when we evaluated the dataset used in the Greenidge’s 

study, the MM/GBSA predictions based on the minimized structures and solute 

dielectric constant of 4 also gave comparable predictions, with the Pearson correlation 

coefficient and Spearman ranking coefficient up to 0.752 and 0.760, respectively 

(Figure 2). Greenidge et al. designed many rules to select the crystal structures used 

for method assessment, and therefore many structures were filtered out by the rules. 

However, in this study, we retained most structures in the PDBbind refined dataset 

(only the structures containing metal atoms have been removed). Therefore, our 

strategy may be more robust and comprehensive to reveal the actual prediction 

accuracies of MM/GBSA and MM/PBSA. Besides, it should be noted that, as shown 

in Figure 1, the predicted binding affinities by MM/GB(PB)SA are unphysically large  

(-120~-20 kcal/mol) compared with those derived from the experimental data (-16~-2 

kcal/mol). This indicates that both MM/GBSA and MM/PBSA may be failed in 

reproducing the absolute binding free energy. Thereby, to some extent, it may regard 

the predicted binding affinities as MM/GBSA or MM/PBSA scores but not the true 

binding affinities. 

 

Impact of ligand formal charges on the prediction accuracies of MM/GBSA and 

MM/PBSA 

Ligand charge plays an important role in the binding of a ligand to its target. In this 

section, we evaluated the impact of the number of the ligand formal charges on the 

prediction accuracies of MM/GBSA and MM/PBSA. As shown in Figure 3, the 

overall accuracy becomes worse with the increase of the ligand formal charges, which 

means the methodologies (MM/GBSA and MM/PBSA) may fail in the predictions for 

the systems with high ligand charges. It can be found in Table II that the prediction 

accuracy of MM/GBSA, indicated by rp and rs, can rise to 0.621 and 0.641, 

respectively, when the number of ligand formal charges is 0 (neutral ligand). When 

the number of ligand formal charges is 1, the predictions become a bit worse (rp and rs 

are 0.578 and 0.618, respectively), but are still acceptable. However, the predictions 

become much worse (rp=0.125~0.524, rs=0.285~0.538) when the number of ligand 
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formal charges is more than 1. Greenidge’s work has shown that the number of ligand 

formal charges does not have substantial impact on the prediction accuracy of 

MM/GBSA based on VSGB 2.0 that uses a variable dielectric constant ranged from 1 

to 4. But if only these structures in the Greenidge’s dataset were used in the evaluation, 

the rp and rs values of the charged ligands only slightly decrease to 0.723 and 0.730, 

compared with those of the neutral ligands (rp=0.771±0.005 and rs=0.778±0.005) 

(Figure 4). That is to say, for the Greenidge’s dataset, our predictions given by 

MM/GBSA or MM/PBSA are also not quite sensitive to the number of ligand formal 

charges. However, according to the predictions based on the enlarged dataset used in 

this study, the impact of the ligand formal charges on the prediction accuracies of 

MM/GBSA and MM/PBSA becomes obviously. This may partly attribute to the 

unbalanced samples in some groups, such as the groups containing 5 and 6 formal 

charges only involve 10 and 13 samples, respectively, thereby lead to large 

uncertainties (Table II). However, even considering the upper limits of the 

uncertainties (using the upper rp or rs to give a comparison), the performance of 

MM/GBSA and MM/PBSA are still worse in the prediction of ligands with high 

formal charges (Figure 3). 

The overall prediction accuracy of MM/PBSA is worse than that of MM/GBSA, 

whereas the predictions accuracy of MM/PBSA for the neutral and 1 charged ligands 

based on the MD trajectories are comparative to that of MM/GBSA based on the 

minimized structures. As shown in Table II, the MM/GBSA and MM/PBSA 

approaches can give more reliable predictions of the binding affinity for the ligands 

with the total formal charges of 0 and 1. 

 

The prediction accuracies of MM/GBSA and MM/PBSA at the fold family level 

A total of 1546 proteins were successfully mapped to 240 protein folds according to 

the SCOP database (version 1.75B, http://scop.berkeley.edu/), which hierarchically 

classifies protein architectures into several levels, such as class, fold, superfamily, 

family, etc., based on the structural features and sequence similarities of a diverse set 

of crystal structures.73 It can be found in Figure 5 that the distribution of the protein 
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folds follows a Power-law-like behavior, where the number of the protein folds 

decays with the increase of their occurrence in the fold space. For two protein folds, 

namely b.47.1.2 and b.50.1.1, which take up only 0.8% of the investigated fold 

families, each is shared by more than 200 ligands, while for 123 protein folds (51.3%), 

each has just one ligand, meaning that much unbalanced samples are across the 

PDBbind dataset. If only considering one instance in each fold family (240 folds), 

decreased Pearson and Spearman coefficients will go across all the categories (Table 

III) compared with those in the corresponding overall accuracies (Table I). In fact, it 

may represent the true accuracies of the MM/GBSA and MM/PBSA methodologies 

which do not depend on the number of instances incorporated in a protein family. 

Thus, the methods (MM/GBSA and MM/PBSA) may be happened to work well on 

individual-fold-level due to the fact that the increased fold instances could indeed 

improve the prediction accuracies (Table I). To this end, in order to make a good 

evaluation of the prediction accuracies of MM/GBSA and MM/PBSA, we would 

better go back to the results based on individual protein folds. 

According to Table IV, the proteins bounded with more than 9 ligands belonging 

to a same protein family take up ~60% of the investigated crystal structures 

(1109/1864). It can be found that the performance of MM/GBSA and MM/PBSA for 

many groups are much better than the highest overall accuracy (rp=0.579±0.002 and 

rs=0.602±0.002, Table I), for example, the family of b.47.1.2, which denotes the 

thrombin-like protein family and is the largest group of the dataset (226 individuals), 

has its rp and rs of 0.797 and 0.782, respectively. However, as shown in Figure 6, the 

second largest group with 220 complexes (b.50.1.1) performed much worse. Given 

the fact that the proteins in the family b.50.1.1 are HIV proteases, it is not surprising 

that the accurate prediction for this fold cannot be achieved. For example, Greenidge 

et al.52 found that the ignorance of water-bridge had significant impact on the 

prediction of the binding free energy for the HIV proteases, and Lafont et al.74 argued 

that the HIV protease is an “enthalpic and entropic compensated” system since the 

binding of drugs can seriously affect the motion of the flap of the HIV-1 protease. 

Therefore, it seems that the entropic contribution can significantly affect the binding 
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free energies of the ligands of the HIV-1 protease. Unfortunately, the expensive 

computational demand hindered us adding the entropic term to the predicted binding 

free energies. Moreover, the close distribution of the experimental binding free 

energies may also contribute to the low correlation for the b.50.1.1 family, where most 

drugs are crowded into the region of -14 to -10 kcal/mol (Figure 6D). However, the 

distribution of the ligands in b.47.1.2 is more balanced compared with that in b.50.1.1, 

with most of the ligands ranged from -12 to -5 kcal/mol (Figure 6C). If only the 

compounds located in the region of -14~-10 kcal/mol in the group b.47.1.2 were used 

in the predictions, the Pearson correlation rp becomes only 0.3, which is much worse 

than that based on all compounds in the group b.47.1.2. For the third largest group 

d.144.1.7 that contains 118 individuals belonging to the tyrosine kinase family, the 

predictions are worse either (rp and rs = ~0.5), but still acceptable compared with the 

predictions for the group b.50.1.1 (Table IV). It is well known that the tyrosine kinase 

inhibitors can be roughly divided into two classes, Type I inhibitors and Type II 

inhibitors, which bind to the ATP-binding pocket and the allosteric pocket, 

respectively. However, as shown in Figure 7, both of the two classes of inhibitors can 

directly interact with the P-loop and/or A-loop region(s) (activation loop) of the 

tyrosine kinase that are flexible and associated with a substantial change of the 

conformational entropy during the binding of small molecules.27, 36, 75, 76 Hence, the 

ignorance of entropy may be one reason for the low correlation coefficients for the 

tyrosine kinase family. 

It has been mentioned above that the overall prediction accuracy of MM/PBSA is 

worse than that of MM/GBSA based on the currently available PDBbind dataset, but 

here at the fold family level, the correlation and ranking scores given by MM/PBSA 

are comparable to (or even slightly better than) those given by MM/GBSA (this is 

consistent with our previous study51 and the case of 

one-protein-family/one-binding-ligand as discussed above), indicating that 

MM/PBSA is more sensitive to the investigated systems, and may be more suitable 

for the individual-target-level binding free energy ranking. Meanwhile, both 

MM/GBSA and MM/PBSA approaches can be used in virtual screening for 
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well-tested systems, such as the rescoring of the docking results for the groups of 

a.45.1.1, b.47.1.2, b.50.1.2, b.60.1.1, c.1.2.4, c.26.1.4, c.45.1.2, c.69.1.1, d.5.1.1, 

d.68.2.2, e.3.1.1, and e.8.1.4, which all have the Pearson and Spearman 

coefficients >0.6, as shown in Table IV. However, for a blind searching, such as 

reverse molecular docking, where many different drug targets were docked using a 

given set of small molecules, MM/GBSA will be more accurate based on the 

minimized structures and the dielectric constant of 4 (Table I). Moreover, as listed in 

Table IV, the correlation and ranking scores given by MM/PBSA based on the 

minimized structures is slightly better than those based on the 1 ns MD trajectories, 

implying that, rather than the overall accuracies of MM/PBSA (minimized and 1 ns 

trajectory results), it depends, whether to perform MD simulations to improve the 

prediction results, when an individual system is to be evaluated. 

 

Conclusions 

We have systemically investigated the overall prediction accuracies of MM/GBSA 

(GBOBC1) and MM/PBSA (PBpbsa) methodologies using more than 1800 

ligand-receptor complexes. The results can be concluded as follows: 

(1) Both the unbiased accuracies (the one-protein-family/one-binding-ligand case 

or the correlation/ranking score case) and the overall accuracies (based on the 1864 

protein-ligand complexes), indicated by the Pearson correlation and Spearman 

ranking coefficients, reach the best when a dielectric constant of 4 was used in both 

MM/GBSA and MM/PBSA calculations. For the 

one-protein-family/one-binding-ligand case, the accuracies are similar between 

MM/GBSA and MM/PBSA in the minimized structures and the 1-ns MD trajectories. 

While for the overall case (1864 individuals), the MM/GSBA predictions based on the 

minimized structures are slightly better than those based on the 1 ns MD trajectories, 

and the MM/PBSA predictions based on the 1 ns MD trajectories have better overall 

accuracy than those based on the minimized structures but are still worse than the 

MM/GBSA predictions. Therefore, considering the currently used PDBbind dataset, 
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MM/GSBA can be used in most cases, such as reverse molecular docking. 

(2) The accuracies of both MM/GBSA and MM/PBSA predictions decrease with 

the increase of the number of ligand formal charges, implying that the predictions for 

low charged or neutral ligands are more reliable. 

(3) At the fold family level (another kind of unbiased sampling case), the ranking 

and correlation scores given by MM/PBSA are comparable to those given by 

MM/GBSA, indicating that MM/PBSA is more sensitive to the investigated systems 

than MM/GBSA, and may be more suitable for the individual-target-level prediction. 

Therefore, the structural based classification is needed to distinguish which groups 

can be reliably predicted by which approach (MM/PBSA or MM/GBSA).  
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Legend of the Figures 

Figure 1. Overall distribution of the 1864 systems used in this study. The minimized 

structures and the interior dielectric constant of 4 were used for the Pearson 

correlation coefficient calculation. 

 

Figure 2. Pearson correlation for the Greenidge’s dataset. The minimized structures 

and the interior dielectric constant of 4 were used to give a comparison. Due to the 

different protocol and the different version of PDBbind we used, only 814 PDBbind 

ID were mapped to the Greenidge’s dataset (855). The Spearman ranking coefficient 

(rs) of 0.760 is a bit higher than the Pearson correlation coefficient (rp) of 0.752. 

 

Figure 3. Change of the Pearson correlation coefficients (A) and Spearman ranking 

coefficients (B) with the number of ligand form charges predicted by various 

simulation protocols. 

 

Figure 4. Pearson correlation coefficient and Spearman ranking coefficient for the 

neutral (A) and charged (B) ligands using the Greenidge’s dataset based on the 

MM/GBSA calculations and inner dielectric constant of 4. 

 

Figure 5. Distribution of the protein folds based on the family level SCOP index, 

where a Power-law like behavior was observed. The number of the protein folds (N) 

decays with the increase of their occurrence in the fold space (S). 

 

Figure 6. Performance of the groups b.47.1.2 (A) and b.50.1.1 (B), and their 

corresponding distributions of the ligands (C and D) based on the MM/GBSA 

calculations and interior dielectric constant of 4. It can be found that the distribution 

of ligands in the group of b.50.1.1 is more unbalance than that of b.47.1.2. 

 

Figure 7. A-loop and P-loop (yellow) in (A) ALK tyrosine kinase and (B) CDK 

tyrosine kinase. It can be found that the Type I inhibitor (A, orange) tightly interacts 
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with the P-loop region of ALK kinase, and the type II inhibitor (B, orange) can 

interact with not only P-loop, but also the A-loop region of CDK kinase, which are 

both involved in large conformational change when binding to the inhibitors. 
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Table I. Overall prediction accuracies of MM/GBSA and MM/PBSA based on 

various simulation protocols (a total of 1864 systems were used for the evaluation). 

MM/GBSA MM/PBSA 

Classificationa rp
b rs

c Classification rp
b rs

c 

GB-1ns-1 0.353±0.002d 0.437±0.002 PB-1ns-1 0.071±0.002 0.198±0.003 

GB-1ns-2 0.521±0.002 0.563±0.002 PB-1ns-2 0.306±0.004 0.480±0.002 

GB-1ns-4 0.564±0.002 0.591±0.002 PB-1ns-4 0.491±0.003 0.561±0.002 

GB-min-1 0.352±0.002 0.416±0.003 PB-min-1 -0.043±0.002 -0.041±0.003 

GB-min-2 0.535±0.002 0.567±0.002 PB-min-2 0.152±0.002 0.248±0.003 

GB-min-4 0.579±0.002 0.602±0.002 PB-min-4 0.412±0.003 0.500±0.002 

aThe classification is named by different simulation protocols, i.e. GB-1ns-1, where GB or PB denotes for 

MM/GBSA or MM/PBSA, -1 ns or -min means that the calculations were based on the 1 ns simulation trajectories 

or the minimized structures, and -1, -2, or -4 represents the interior dielectric constant of 1, 2, or 4 of for the GB or 

PB calculations; brp represents Pearson correlation coefficient; crs represents Spearman ranking coefficient; dThe 

standard error was estimated by randomly sampling 80% of the tested dataset with 100 times. 
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Table II. Overall prediction accuracies of MM/GBSA and MM/PBSA for the datasets 

with different numbers of ligand formal charges (the interior dielectric constant of 4 

was used) 

Charge Coefficient GB-1ns GB-min PB-1ns PB-min Total 

0 
rp 0.608±0.003a 0.621±0.003 0.594±0.003 0.551±0.003 

780 
rs 0.633±0.002 0.641±0.003 0.631±0.002 0.589±0.003 

1 
rp 0.564±0.003 0.578±0.003 0.569±0.003 0.537±0.003 

663 
rs 0.600±0.003 0.618±0.003 0.596±0.003 0.551±0.003 

2 
rp 0.452±0.005 0.471±0.005 0.409±0.005 0.328±0.006 

286 
rs 0.516±0.005 0.538±0.005 0.500±0.005 0.428±0.006 

3 
rp 0.567±0.010 0.524±0.012 0.471±0.012 0.319±0.011 

82 
rs 0.560±0.010 0.525±0.012 0.488±0.012 0.331±0.011 

4 
rp 0.434±0.031 0.367±0.035 0.421±0.029 0.341±0.025 

30 
rs 0.422±0.040 0.330±0.040 0.504±0.026 0.472±0.021 

5 
rp 0.094±0.157 0.125±0.142 0.061±0.093 0.165±0.067 

10 
rs 0.285±0.125 0.285±0.101 0.236±0.124 0.309±0.108 

6 
rp 0.343±0.079 0.417±0.098 0.136±0.074 0.199±0.068 

13 
rs 0.454±0.073 0.459±0.102 0.330±0.099 0.399±0.077 

a
The standard error was estimated by randomly sampling 80% of the tested dataset with the repeat times of the 

Total, namely 780, 663, 286, 82, 30, 10, and 13 times for each group. 
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Table III. Unbiased prediction accuracies of MM/GBSA and MM/PBSA with one 

instance in the 240 fold families. 

Dielectric 

constant 
Coefficient GB-1ns GB-min PB-1ns PB-min 

1 
rp 0.298±0.007a 0.298±0.008 0.179±0.010 0.195±0.007 

rs 0.321±0.006 0.315±0.008 0.310±0.006 0.287±0.006 

2 
rp 0.388±0.006 0.393±0.007 0.283±0.009 0.300±0.008 

rs 0.407±0.006 0.405±0.006 0.401±0.006 0.399±0.006 

4 
rp 0.406±0.005 0.408±0.006 0.371±0.007 0.388±0.006 

rs 0.418±0.006 0.395±0.006 0.427±0.007 0.433±0.005 

a
The standard error was estimated by randomly selecting one instance from the fold families containing many 

instances (> 1) with 100 repeats. 
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Table IV. Overall prediction accuracies of MM/GBSA and MM/PBSA for the protein 

fold families with more than 9 ligands. The highest Pearson and Spearman 

coefficients and the corresponding solute dielectric constant (εGB/εPB) were listed. 

SCOP ID 
Dielectric 

constant 

Correlation 

coefficient 
GB-1ns GB-min PB-1ns PB-min Total 

a.123.1.1 1a/4b 
rp 0.489±0.021f 0.540±0.024 0.426±0.023 0.495±0.022 

48 
rs 0.292±0.024 0.350±0.025 0.206±0.023 0.259±0.021 

a.133.1.2 1c 
rp 0.120±0.134 0.124±0.106 0.096±0.143 0.019±0.172 

11 
rs 0.236±0.126 0.282±0.120 0.010±0.167 0.009±0.164 

a.45.1.1 4 
rp 0.676±0.067 0.706±0.024 0.728±0.108 0.708±0.055 

11 
rs 0.683±0.086 0.706±0.052 0.761±0.122 0.797±0.037 

b.1.1.1 4/1 
rp 0.059±0.031 0.052±0.032 0.201±0.024 0.164±0.033 

33 
rs 0.084±0.037 0.095±0.037 0.275±0.032 0.281±0.033 

b.3.4.1 1 
rp 0.534±0.091 0.471±0.055 0.355±0.059 0.267±0.044 

10 
rs 0.590±0.061 0.596±0.077 0.432±0.050 0.432±0.046 

b.47.1.2 4 
rp 0.797±0.003 0.796±0.003 0.799±0.002 0.801±0.003 

226 
rs 0.782±0.003 0.784±0.003 0.780±0.003 0.787±0.003 

b.50.1.1 4 
rp 0.129±0.012 0.165±0.010 0.063±0.011 0.096±0.011 

220 
rs 0.070±0.009 0.100±0.009 -0.002±0.009 0.015±0.008 

b.50.1.2 4 
rp 0.693±0.019 0.761±0.013 0.678±0.016 0.700±0.014 

44 
rs 0.661±0.025 0.700±0.018 0.657±0.021 0.701±0.017 

b.60.1.1 1/2 
rp 0.813±0.012 0.726±0.022 0.831±0.009 0.778±0.015 

20 
rs 0.841±0.009 0.845±0.014 0.873±0.018 0.834±0.016 

b.60.1.2 4 
rp 0.368±0.086 0.325±0.060 0.388±0.058 0.257±0.043 

15 
rs 0.322±0.097 0.243±0.073 0.356±0.074 0.111±0.062 

b.61.1.1 1 
rp 0.070±0.050 0.211±0.108 0.213±0.067 0.534±0.077 

13 
rs 0.148±0.083 0.242±0.105 0.264±0.096 0.670±0.078 

c.1.1.1 1 
rp 0.373±0.115 0.022±0.125 0.329±0.161 0.071±0.115 

11 
rs 0.218±0.117 0.018±0.127 0.100±0.169 0.218±0.154 

c.1.2.4 1/2 
rp 0.897±0.201 0.976±0.139 0.901±0.230 0.980±0.047 

9 
rs 0.333±0.173 0.804±0.113 0.473±0.216 0.770±0.061 

c.1.8.3 1 
rp 0.237±0.080 0.329±0.048 0.046±0.074 0.563±0.031 

17 
rs 0.042±0.083 0.128±0.065 0.142±0.077 0.733±0.048 

c.1.8.4 4 
rp 0.217±0.060 0.273±0.067 -0.021±0.052 -0.016±0.051 

21 
rs 0.008±0.052 0.160±0.079 -0.014±0.059 -0.100±0.054 

c.26.1.4 4 
rp 0.619±0.040 0.664±0.045 0.658±0.068 0.695±0.035 

16 
rs 0.540±0.055 0.550±0.075 0.624±0.066 0.696±0.058 

c.45.1.2 4 
rp 0.649±0.018 0.708±0.016 0.688±0.019 0.751±0.014 

32 
rs 0.677±0.018 0.712±0.018 0.678±0.020 0.752±0.015 

c.56.2.1 4 
rp 0.525±0.031 0.495±0.026 0.508±0.031 0.469±0.042 

24 
rs 0.499±0.040 0.408±0.041 0.449±0.044 0.312±0.054 

c.69.1.1 4 rp 0.763±0.050 0.792±0.059 0.705±0.052 0.729±0.121 13 
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rs 0.654±0.071 0.588±0.102 0.632±0.056 0.560±0.124 

c.87.1.4 1 
rp 0.062±0.093 0.300±0.081 -0.365±0.125 0.479±0.043 

19 
rs 0.223±0.065 0.316±0.067 0.029±0.109 0.498±0.047 

d.93.1.1 4 
rp 0.488±0.070 0.621±0.111 0.372±0.132 0.583±0.096 

9 
rs 0.410±0.121 0.494±0.144 0.427±0.121 0.544±0.106 

c.94.1.1 1/4 
rp 0.277±0.018 0.342±0.015 0.193±0.020 0.253±0.020 

58 
rs 0.278±0.017 0.329±0.016 0.213±0.017 0.236±0.020 

d.117.1.1 4 
rp 0.547±0.153 0.713±0.074 0.476±0.081 0.579±0.098 

12 
rs 0.175±0.142 0.378±0.098 0.161±0.098 0.315±0.098 

d.122.1.1 1/4 
rp 0.601±0.050 0.532±0.064 0.336±0.036 0.346±0.065 

21 
rs 0.336±0.067 0.279±0.060 0.056±0.040 0.144±0.069 

d.144.1.7 4/2 
rp 0.499±0.006 0.497±0.007 0.524±0.006 0.498±0.008 

118 
rs 0.555±0.007 0.533±0.008 0.558±0.007 0.530±0.009 

d.5.1.1 4 
rp 0.571±0.040 0.628±0.028 0.658±0.026 0.712±0.026 

35 
rs 0.407±0.020 0.514±0.024 0.554±0.024 0.667±0.018 

d.68.2.2 4 
rp 0.824±0.028 0.778±0.028 0.801±0.051 0.806±0.035 

10 
rs 0.818±0.028 0.806±0.036 0.794±0.052 0.794±0.056 

e.3.1.1 4 
rp 0.714±0.025 0.698±0.018 0.699±0.047 0.681±0.027 

21 
rs 0.710±0.028 0.647±0.029 0.636±0.058 0.592±0.027 

e.8.1.4 4 
rp 0.702±0.037 0.706±0.044 0.684±0.051 0.683±0.057 

12 
rs 0.790±0.048 0.811±0.052 0.783±0.047 0.783±0.062 

Correlation score (rp score)d 0.494±0.047g 0.516±0.047 0.447±0.057 0.506±0.050 
1109 

Ranking score (rs score)e 0.427±0.048 0.463±0.047 0.411±0.052 0.481±0.052 

a,bThe corresponding interior dielectric constants for achieving the best aMM/GBSA and bMM/PBSA predictions; 

cA same interior dielectric constant was found in best MM/GBSA and MM/PBSA predictions; d,eThe dcorrelation 

score or eranking score is the average of the summation of the rp or rs for the above fold families, and they have 

been proven to be effective in distinguishing a series of similar results [51]. 
f
The standard error was estimated by 

randomly sampling 80% of the tested dataset with the repeat times of the Total. 
g
The standard error was calculated 

based on the 29 groups above. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 
 
 
 

 
 
 
 
 
 

 
 
 
 

Page 31 of 33 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



32 

 

 

 

Figure 7 
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