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Abstract 

Using first principle methodologies, we investigate the subtle competition between σ H-bond 

and π stacking interaction between CO2 and imidazole either isolated, adsorbed on a gold cluster or 

adsorbed on a gold surface. These computations are performed using MP2 as well as dispersion 

corrected density functional theory (DFT) techniques. Our results show that the CO2 interaction goes 

from π-type stacking into σ-type when CO2 interacts with isolated imidazole and Au clusters or 

surface. The balance between both types of interactions is found when an imidazole is attached to a 

Au20 gold cluster. Thus, the present study has great significance in understanding and controlling the 

structures of weakly-bound molecular systems and materials, where hydrogen bonding and van der 

Waals interactions are competing. The applications are in the fields of the control of CO2 capture and 

scattering, catalysis and bio- and nanotechnologies. 
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I. Introduction 

Charge transfers through covalent and noncovalent interactions are playing a vital role in 

biomolecular devices and material applications.1,2 For instance, functionalization of materials for CO2 

capture is currently an active area of research in chemical and environmental sciences 3 through the 

development of nanodevices that are reducing environmental pollutant concentration in the 

atmosphere. One of the most promising material developments for carbon capture and sequestration 

(CCS) is storage as solid adsorbents through chemisorption.4 Even though amine based materials are 

good adsorbents, these methods have certain drawbacks.5 Alternatively, adsorption through 

physisorption is used. The adsorption or desorption of gases through this process requires relatively 

less energy when compared to the former one. Adsorption on coinage metals (such as Cu, Ag, and 

Au) is viewed as a promising route for materials for future technologies and applications as pointed 

out in Refs.6,7,8,9  

Interaction of small molecule(s) such as CO2,
10 CO11, NO2,

12 NH3,
13 H2O,14,15 H2S

16 and 

thiols17 on Au(111) surface received widespread attention. Particularly, the experimental studies by 

Farkas and Solymosi showed that the interaction between CO2 and a gold surface is very weak, 

whereas radical formation with potassium enhances the adsorption of CO2 on Au(111) surface.10 The 

capture of CO2 can be enhanced by functionalizing gold clusters, surfaces or self-assembled 

monolayers (SAMs). Previous investigations used nitrogen-based biomolecules such as guanine 

(G),18,19 cytosine (C),20,21 adenine (A),22 thymine (T),23 uracil (U),24 histidine25, cysteamine26 and DNA 

base pairs (AT and GC)27,28,29,30,31 with gold clusters and surfaces. At the microscopic level, the 

mechanisms of such enhancement are still unknown and worth investigating with modern 

computational chemistry. 

In the present contribution, we have used ab initio, both wave-function and DFT 

methodologies, to investigate the interaction between CO2 and imidazole (Im) either isolated, attached 

to a gold cluster or to a gold surface. Im and Im derivatives are the main organic molecular linker in 

the Zeolitic Imidazolate Frameworks (ZIFs), a subclass of Metal-Organic Frameworks (MOFs) that 

are promising materials for CO2 adsorption and gas separation.32,33,34 Our choice of Im – gold system 

is also motivated by the recently reported role and characterization of gold-imidazole nanoparticles in 

chemical and biological sensing 35 and in vivo and in vitro targeted drug delivery.36 Im is also used as 

corrosion inhibitor and possible adhesion promoter for electric devices.37 

 

II. Computational Details 

The geometries of the Im@Au20 clusters and of the CO2–Im and the CO2–Im@Au20 

complexes were fully optimized using density functional theory along with the Perdew–Burke–

Ernzerhof (PBE) GGA exchange– correlation functional38 as implemented in Gaussian 09.39 For gold, 

we used Los Alamos effective relativistic core potential (ECP) Lanl2DZ and the associated 6-

31+G**ULanl2DZ basis set.40 The H, C, O and N atoms were described using the aug-cc-pVTZ 
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Dunning and co-workers’ basis set.41,42 Further computations were performed at the Møller−Plesset 

second-order perturbation (MP2) theory 43 and with Truhlar’s hybrid meta-GGA functional (i.e. M05-

2X). 44 

Gold surface calculations were carried out with the Quickstep 45 module of the CP2K program 

package version 2.246 using DFT-PBE. The CP2K package adopts a hybrid basis set formalism known 

as a Gaussian and Plane Wave47 (GPW) method where the Kohn–Sham orbitals are expanded in terms 

of contracted Gaussian type orbitals (GTO), while an auxiliary plane wave basis set is used to expand 

the electronic charge density. In this study, atomic structures of gold Au(111) surface are taken from 

previously resolved global minimum structures on the basis of combined photoelectron spectroscopy 

(PES) measurements.48 We use a slab approach to simulate the Au(111) surface which consists of 

three layers of 48 gold atoms each. Only the bottom layer was fixed and the two upper layers were 

fully optimized throughout the study. The unit cell parameters were a = 20.93 Å, b = 12.54 Å, 

c = 10.70 Å, α = 90°, β = 90 and γ = 90°. The calculations were performed at the gamma-point of the 

Brillouin zone. Valence electrons were treated explicitly, whereas core electrons were described using 

norm-conserving Goedecker–Teter–Hutter (GTH) pseudopotentials.49 The molecularly optimized 

triple-zeta valence basis set with one polarization function (TZV2P-MOLOPT-GTH) was used for all 

atoms except gold, for which the shorter range molecularly optimized double-zeta basis set with one 

polarization function (DZVP-MOLOPT-SR-GTH) was used.50 Both 5d and 6s electrons of Au were 

included in the valence and we used an auxiliary plane wave cut-off of 400 Ry. 

To address long range interactions, such as hydrogen bonding (H-bonding) and van der Waals 

interactions (vdWs), we used Grimme’s latest version of empirical correction term (DFT-D3).51,52,53 

We performed single-point energy correction for the geometries optimized using PBE. 

 

III.  Results 

The binding energies (BEs) were calculated using the following energy expression: 

( )( )BAAB EEEBE +−=                                                                (1) 

For CO2-Im and CO2-Im@Au20 complexes, the computations were performed within the 

supermolecule approach and corrected for basis set superposition error (BSSE) using the procedure 

suggested by Boys and Bernardi.54 Here, EAB is the total energy of the complex at equilibrium, EA is 

the energy of the monomer Im or Im@Au20 and EB is the energy of CO2, where the energies of the 

complex and the monomers were computed in the full basis set of the complex. For CO2-Im@Au(111) 

and Im@Au(111), EAB correspond to their total energies at equilibrium, EA are those of CO2 or Im and 

EB is the energy of Im@Au(111) or Au(111), respectively. Using expression (1), BEs have negative 

values for stable complexes, where the monomers were kept fixed to their optimized equilibrium 

geometries before complexation. 
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The main geometrical parameters and the corresponding binding energies are listed in Table 1 

and Figures 1 - 3. These BEs are computed with and without considering the D3 dispersion for 

comparison.  

a. CO2 - Im 

Three isomeric forms were found for the CO2 – Im complex. They are displayed in Figure 1. 

However, only those denoted by Model I and Model II (Table 1 and Figure 1) are relevant for the 

present study since third conformation (referred as MIN) doesn’t allow for possible binding to the Au 

surface or cluster. In 2009, Froudakis and co-workers 55 investigated the interactions between CO2 and 

N-containing organic heterocycles at the CCSD(T)/CBS level of theory. Similar to the CO2 – Im 

complex, in-plane MIN type structures turn out to be the most stable forms. This is due to favorable 

electron donor-electron acceptor (EDA) mechanism between the carbon of CO2 and the nitrogen of 

the heterocycle and to weak hydrogen bonds. All of them stabilize hence such complexes. In the 

following, MIN structure will not be considered since the lone pair of nitrogen binding to CO2 cannot 

undergo another bonding with Au. This clearly reveals that MIN mode of interaction is not favorable 

at Au surface. The calculated distances (N1···C and C-H···O (~2.7 Å)) and geometry of the complex 

shows that quadrupole and induced dipole interactions are in action. Indeed, considerable charge 

separation in C=O bond results on a relatively large quadrupole moment. 

The bonding in Model I isomer is ensured by a σ type H- bond (N-H···O) whereas a π type 

stacking interaction is responsible for bonding in Model II form. The intermonomer distances are 

evaluated 2.2 Å and of 3.1 Å for Model I and Model II, respectively. These distances are consistent 

with the bonding type of each complex as well documented by Froudakis and co-workers.55 

At the PBE-D3/aug-cc-pVTZ level, we compute BEs of –9.3 and –11.1 kJ/mol for Model I 

and Model II, respectively. The use of M05-2X functional or MP2 is in favor for the stabilization of 

Model II isomer. For instance, Model I M05-2X-D3/aug-cc-pVTZ BE is calculated –9.1 kJ/mol i.e. 

about 2/3 of Model II M05-2X-D3/aug-cc-pVTZ BE (of –15.1 kJ/mol). Such behavior is not 

surprising and was recently reported in the benchmark studies of the π–π interactions between CO2 

and benzene, pyridine, and pyrrole by Chen et al.56 At the MP2/aug-cc-pVTZ level, we compute a π 

stacking CO2 - Im BE of –14.8 kJ/mol, which is consistent with that computed by Chen et al. at the 

same level of theory for T-pyrrole - CO2 complex (of –15.4 kJ/mol). Our work shows however the 

importance of the inclusion of Grimme’s dispersion term for an accurate description of the long range 

type interactions (H-bonding and vdWs interaction) since this term contributes up to 15–50% to BE of 

Model II. Nevertheless, σ type H-bond (N-H···O) seems to be less sensitive to this term. 

b. Im@Au20 and CO2 - Im@Au20 

Detailed benchmark studies on gold nanoclusters (Aun; where n=2 – 20) with Im have shown 

that reactivity and stability depends on the size of the gold nanoclusters (unpublished results).57 

Presently, we choose Au20 cluster of highly symmetrical tetrahedral (Td) geometry, which mimics the 

bulk phase fcc gold surface. Figure 2 displays the optimized structures for Im@Au20 and for CO2 - 
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Im@Au20. This figure shows that the highly symmetric Td structure is slightly perturbed by attaching 

Im. The Au atom attached to Im is now promoted out of the surface of the Au20 cluster. The calculated 

BEs for (Im@Au20) using PBE and M05-2X with aug-cc-pVTZ basis set are –34.0 and –53.0 kJ/mol, 

respectively. A priori, M05-2X functional overestimates the BEs of surface model. Nevertheless, 

Prakash et al. showed that this functional may lead to reliable description of noncovalent 

interactions58, close to CCSD(T)/CBS limit59). The inclusion of D3 correction increases the PBE BE 

by ~30 kJ/mol to –63.7 kJ/mol (see Table 1). 

For Im@Au20, we identified three bonds between Im and the Au cluster surface:  

(i) a strong interaction between the nitrogen (N1) of Im and Au evidenced by a relatively short 

N-Au distance (of ~2.4 Å), which is the signature of the occurrence of a covalent bond. The electron 

density isosurface (cf. supplementary material, Figure S1) shows that the bonding between N and Au 

is due to a charge transfer between Au and N1, resulting in a covalent heteroatom-metal interaction.57 

Recent theoretical studies on guanine with gold nanoparticles are in line of these findings.19 The 

fragmented orbital analysis reveals that there is electron donation from the N lone pair to the 

unoccupied orbital of the Aun clusters. In addition, π back donation also from the polarized dyz orbital 

(Au) to the py-π* (N) orbital takes place. For further details, readers are referred to our benchmark 

studies on Im@Aun clusters.57  

(ii) two weak type H-bondings (C-H···Au) with a H···Au distance of ~3 Å. These additional 

unconventional H-bonds stabilize this complex. These three Im-Au interactions are of σ type. They 

are preferable to the possible π stacking of Im to Au, which leads to less stable isomeric forms (not 

shown here). This results into an Im perpendicular to the Au surface of the Au20 cluster, which 

preserves the Td symmetry. These findings are detailed in our recent benchmark studies on Im 

interacting with gold clusters.57 

 

For CO2 - Im@Au20, two isomeric forms were found: Type Model I with a N-H···O, H-bond 

and Type Model II where Im and CO2 are stacked (Figure 2). For Model I, we compute N1-Au and N-

H···O distances of ~ 2.4 Å and 2.1 Å respectively. For CO2 - Im@Au20 Model II, N1-Au is slightly 

shorter than in CO2 - Im@Au20 Model I. The distances between CO2 and the adsorbed Im on Au20 are 

of ~3.8/3.4 Å, which are distinctly longer than between CO2 and the isolated Im (Table 1). The 

lengthening of the CO2 - Im distance upon adsorption is due to the weakening of the π stacking type 

bonding between CO2 and Im in CO2- Im @Au20. This is related to the strong perturbations of the 

electron density of the Im ring upon complexation and the creation of the Au-N bond as noticed 

above. This is also illustrated in Figure S2 of the supplementary material. This figure reveals that 

charge transfer through an H-bonded model is more favorable than the π stacking of CO2 on Im 

functionalized gold clusters. 

At the PBE/aug-cc-pVTZ level of theory, we compute BEs of –10.5 and –6.3 kJ/mol in favor 

of Model I. After inclusion of D3 corrections, BEs of Model I and Model II are close (~ –12 kJ/mol). 
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Therefore, the contribution of D3 corrections (∆E) for Model I and Model II are –1.3 and –5.6 kJ/mol, 

respectively (Table 1). This clearly reveals that Model II complex is mostly stabilized through long 

range dispersion interaction whereas Model I contains strong N-H···O H-bonding. One can note that 

these BEs are compatible with the calculated distances between the complexes. Again, M05-2X 

slightly overestimates the BEs compared to their corresponding values computed with PBE. 

c. Im@Au(111) and CO2 - Im@Au(111) 

The interaction of an adsorbate (Im here) with the Au(111) surface may occur at three distinct 

positions: namely top (t); bridge (b) and hcp-hollow (h) (Figure 3). The optimized geometries of 

Im@Au(111) and of CO2 - Im@Au(111) are shown in Figure 3 along with the main geometrical 

parameters. The respective geometrical distances and BEs are presented in Table 1. 

The surface calculations started with constrained bottom layer at PBE/DZVP (for Au SZV) 

followed by PBE/TZVP (for Au DZVP). It can be found from our periodic boundary condition (PBC) 

computations, that the most favorable mode of interaction at gold surface is a top site with 

unprotonated N1 atom of Im. After optimization at PBE/TZVP, the top site interaction of Im Au···N 

distance is 2.376 Å with exactly perpendicular Im to the surface (the angle between the gold surface 

and Im plane is ~90°). This agrees with the recent combined soft X-ray photoelectron (XPS) and near 

edge X-ray absorption fine structure (NEXAFS) spectroscopic investigations of cyclo(glycyl-histidyl) 

and cyclo(phenylalanyl-prolyl) on Au(111)60, and the spectroelectrochemical studies of the 

electrosorption of imidazole on a gold electrode by Holze.61 Both works indicated a molecular 

adsorption to gold surface with a perpendicular orientation. The other favorable positions of 

Im@Au(111) surfaces are bridge and hollow sites. DFT-PBE PBC calculations have shown that 

bridge site Im conformation slightly differs from top site Im position. Indeed, Im@Au(111)(bridge) 

plane is not exactly perpendicular to the surface. Instead, it is slightly tilted towards the surface. The 

calculated Au···N distance and angle are 2.360 Å and ~88°, respectively. Furthermore, a tilted 

conformation has been observed for the hollow site interaction with Au···N distance and 

tilted/inclined angle (of ~86°). The calculated distance between Au and N1 atoms is about ~2.4 Å 

which is closer to the pure covalent (2.18 Å) bond rather than to the vdW (3.21 Å) contact distance of 

Au and N atoms. This is confirmed by our surface PBC calculation (cf. Figure S2 of the 

supplementary material), which clearly reveals that Im forms covalent bond with the Au(111) surface. 

Consequently, these small changes in geometrical parameters (from perpendicular to inclined) induce 

large differences in BEs due to the favorable orbital overlap between Au and N1 atom (lone pair) at 

top site and the less favorable overlap for the other positions. The calculated PBE/TZVP BEs of top, 

bridge and hollow conformation are –42.1, –23.4, and –20.7 kJ/mol, respectively. The first value is 

consistent with the earlier DFT-PBE value reported for histidine@Au(111) (of –45.6 kJ/mol) 

adsorbed on top position.25  

In order to quantify the role of dispersive and vdW interactions between surface and substrate, 

we incorporated DFT-D3 term, which leads to a significant enhancement in the BEs because of the 
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 8 

crucial role played by the dispersive terms in the stability of these complexes. The calculated BEs at 

PBE with DFT-D3 level in bridge, top, and hollow are –69.4, –67.5, and –67.5 kJ/mol, respectively. 

Note that adsorptions at the top and hollow sites become degenerate for this level of theory. Moreover 

tilted conformations (Im@Aub and Im@Auh) have larger ∆E effects than the Im@Aut site interactions 

(Table 1). Recent reports on the DNA base pairs in interaction with gold surface have shown that 

vdW interactions play crucial role in the geometries and energetics of the complexes.62 This is in line 

with our findings.  

Figure 3 displays the CO2 - Im@Au(111) optimized geometries. Again, two configurations 

are found: (i) where the CO2 is bound to Im by an H-bond (Model I) and (ii) CO2 interacts to the 

chemisorbed Im by π stacking type interaction (Model II). In Model I configuration, Im remains 

perpendicular to the Au surface whereas Im is inclined by ~25° to the Au(111) surface in Model II 

(Table 1). This induces strong perturbations on the overlap between the orbitals of Im and of Au. This 

results in a positive BE for Model II without inclusion of dispersion D3 term. After inclusion of this 

term, Model II is predicted to be bound with a small BE (of ~ –4.5 kJ/mol). In contrast, a large BE is 

evaluated for Model I with or without D3 (of ~ –20 kJ/mol). This corresponds to a reversed situation 

with respect to the isolated CO2 - Im complex described earlier. 

 

IV. Discussion 

Our study shows that interaction of CO2 with Im is occurring either via σ H-bond or π 

stacking interactions. In gas phase, CO2 adsorption at Model II (π stacking) is more stable than Model 

I (σ H-bond). For an Im@Au20, both interactions are of similar strength leading to comparable BEs. 

Whereas a reversed situation, in favor of H -bond is found when CO2 bonds to an Im attached to a 

gold surface. This modulation of weak interaction upon complexation is worth exploring. This 

represents an important phenomenon for gas storage processes on monolayers of Im at gold surface or 

clusters. Indeed, we show for the first time that the competition between σ H-bond and π stacking 

interaction between CO2 and Im may be modulated after attaching the Im to a gold cluster or a gold 

surface. On a related topic, Das and coworkers recently reported about competition between H-

bonding and dispersion as well as conventional H-bonding with π models using combined 

experimental and theoretical methods.63,64 They also scrutinized the competition between a weak 

n→π*Ar and a strong H-bond (N-H···N) interaction present in the complexes of 7-azaindole with a 

series of 2, 6-substituted fluoropyridines.65 These authors showed how the weak interaction modulates 

the overall structural motif of these complexes in the presence of the strong interaction.  

This effect was also observed in solution. Indeed, Zhang et al.66 used DFT and 13C-NMR 

approaches to point out the existence of competition between π···π interaction and halogen bond in the 

binary liquid mixtures of C6D6 with C6F5X (X = Cl, Br, I). For X = Cl, Br, their experimental and 

theoretical results clearly show that there are no C–X···π halogen bonds and that only the π···π 

interactions exist. In contrast, both C–I···π halogen bonds and π···π interactions are present in the 
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binary liquid mixtures of C6D6 with C6F5I. As stated there, the entropy is dominating the competition 

between π···π interaction and halogen bond in solution.  

Therefore, the competition between weak interactions may occur at substrate – solid surface 

interfaces and not only in gas phase or in solution. The control of the bonding between the substrate – 

solid surface entities opens the way for a wide range of applications. For instance, we can cite the 

fields where gold plays an important role such as in sensors, biosensors, drug-delivery, molecular 

electronic devices and energetic materials 67,68 and for the design of new materials for CO2 capture and 

sequestration. 

In addition, this work establishes Im as viable anchor for gold surfaces. This N-heterocyclic 

organic anchor has a relatively low BE, which is ~ 1/4 of that of N-heterocyclic carbene (ANHC) 

anchors on gold surfaces69 and ~ 1/3 of that of the S−Au bond in thiols chemisorbed on gold surfaces 

S−Au monolayers.70 New applications are expected since this low BE can lead to monolayer 

desorption at moderate and ambient temperatures (less than 100°C). 

 

V. Conclusion 

The interaction of CO2 with three categories (i.e. isolated Im, Im attached to a gold cluster and 

Im attached to a gold surface) is investigated using ab initio (DFT) approaches. We show that the 

inclusion of dispersive terms is crucial for the correct description of this kind of systems. Adsorption 

of molecules at gold surface mainly depends on the vdWs interaction and dispersion character. For 

instance, the prediction of exact binding sites of atoms and molecules on metal surface is not 

straightforward. Moreover, we show that the strength of the interaction between adsorbate and metal 

surface depends clearly on the quality of functional and on the inclusion of dispersion correction. 

Additionally, our results show that the equilibrium structures result on the competition between two 

types of weak interactions between CO2 and Im: either H-bond or π stacking. The origins of such 

behavior are detailed.  

From an application point of view, it can be concluded that a gold surface enhances the Im 

capacity to adsorb CO2 through charge transfer process and electrostatic H-bonded interaction in [N-

H···O(CO2)] Model-I, whereas the π stacked Model-II CO2 adsorption capacity is decreased. This is 

due to the substantial charge transfer from one side of the aromatic π-cloud of Im moiety to the gold 

surface. In addition, our stacked model reveals that adsorption/desorption mechanism occurs at 

particular conformations. This is worth further investigated for gas storage processes on monolayers 

of Im at gold surfaces. 

The present findings may be complemented by dynamical simulations similar to the recent 

work on the electron transfer processes in alkanethiolate self-assembled monolayers at the Au(111) 

surface.2 As pointed out presently, this work suggests a rational control of the dynamics of the 

electron transfer process via the modulation of the interactions between the organic and the gold 

surface. 
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Figure captions 

 

Figure 1: Optimized geometries of CO2 – Im Model-I (σ-type), Model-II (π-type) and MIN, which 

corresponds to the most stable form. We give also the corresponding BSSE corrected BEs computed 

at the MP2/aug-cc-pVTZ level.  

 

Figure 2: Optimized structures of Im@Au20 and of CO2 – Im@Au20 complexes.  

 

Figure 3: Optimized structures of Im@Au(111) and of CO2 – Im@Au(111) complexes at PBE/TZVP 

method along with the distances (in Å). 
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Table 1: Main geometrical parameters (distances in Å and angles in degrees) and binding energies 

(BEs, in kJ/mol) of CO2 - Im, Im@Au20, CO2 - Im@Au20, Im@Au(111), CO2 - Im@Au(111) 

computed at the PBE/aug-cc-pVTZ and PBE-D3/aug-cc-pVTZ levels of theory. Further computations 

for CO2 - Im, Im@Au20, CO2 - Im@Au20 are also given See text for more details. 

CO2 – Im 

 
PBE/aug-cc-pVTZ PBE–D3/aug-cc-pVTZ 

N-H…O/Nim…C BE BE ∆E 
a)

 

CO2 - Im Model I  
σ type H-bond (N-H…O) 

2.259 
2.221 b) 
2.133 c) 

–8.0 
–8.2 b) 
–9.3 c) 

–9.3 
–9.1 

- 

–1.3 
–0.9 

- 

CO2 - Im Model II 
π Stacking (Nim…C) 

- 
3.057 b) 
3.082 c) 

–5.0 
–13.8 b) 
–14.8 c) 

-11.1 

–15.1 b) 
- 

–6.1 
–1.3 b) 

- 

Im@Au20 

 
PBE/aug-cc-pVTZ PBE–D3/aug-cc-pVTZ 

N-Au  C2-H…Au BE BE ∆E
a
 

Im@Au20 
2.387  

2.359 b) 
3.172 

3.143 b) 
–34.0 

–53.0 b) 
–63.7 
–61.3 

–29.7 
–8.3 

CO2 - Im@Au20 

 
PBE/aug-cc-pVTZ PBE–D3/aug-cc-pVTZ 

N-Au 
N-H…O/ 

Nim…C 
BE BE ∆E

a
 

CO2 - Im@Au20 Model I 
2.405 

2.345 b) 
2.139 

2.130 b) 
–10.5 

–10.7 b) 
–11.8 

–11.9 
–1.3 
–1.2 

CO2 - Im@Au20 Model II 
2.393 

2.369 b) 
3.756 

3.393 b) 
–6.3 

–9.7 b) 
–11.9 
–13.6 

–5.6 
–3.9 

Im@Au(111) Surface 

 
PBE/TZVP PBE–D3/ TZVP 

Au…N Au-Au-N BE Total ∆E
a 

Im@Au (top) 
2.376 

 
90 
 

–42.1 
–45.6 d) 

–67.5 
 

–25.4 
 

Im@Au (bridge) 2.360 88 –23.4 –69.4 –46.0 

Im@Au (hollow) 2.401 86 –20.7 –67.5 –46.8 

CO2 - Im@Au(111) Surface 

CO2 - Im@Au(111) Model I 2.361 90 –19.9 –22.6 –2.7 

CO2 - Im@Au(111) Model II 2.449 77 9.7 –4.5 –14.2 
a. Enhancement of BEs after inclusion of hybrid meta functional for clusters and dispersion term 

(Grimme correction for surface) at PBE/TZVP calculations [∆E=((PBE–D3) – PBE].  

b. This work. M05-2X/aug-cc-pVTZ 

c. This work. MP2/aug-cc-pVTZ 

d. Earlier reported value at PBE method is –45.6 kJ/mol from ref. [25] computed at the PBE 

method. 
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Figure 1 

 

         –18.4 kJ/mol 

 

       –9.3 kJ/mol                                                         –14.8 kJ/mol 
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Figure 2 
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Figure 3 
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Supplementary material 

Figure S1: Electron density surface (isosurface value 0.02 a.u) of Im@Au20 (left) and Im@Au(111) 

(right). 
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Figure S2: Iso surface and contour profile for CO2-Im @Au20 (iso surface value 0.02 a.u).  
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Highlights 

• Ab initio calculations of imidazole interaction with CO2 

• Influence of the substrate to which imidazole is adsorbed 

• Competition between hydrogen bonding and π stacking interactions 
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Graphical abstract 

 

 

Interplay between σ H-bond and π stacking interaction is monitored by the substrate 
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