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The equations for the diffusion-controlled electron transfer (DCET) theory of quantum dot blinking are extended to include
biexcitons. In contrast to excitons, which undego resonant light to dark transitions, the biexcitons, having a much larger total
energy, undergo a Fermi’s Golden rule type transfer (many acceptance states). The latter immediately gives rise to an exponential
tail for the light state, and it is explained why the dark state power law behavior is unaffected. Results are given for both
continuous and pulsed excitation. The typical -3/2 power law for the light state at low light intensities, and for the dark state at
all intensities, as well as dependence of the exponential tail on the square of the light intensity, and a decrease of the power in
the power law for the light state from -3/2 to less negative values with increasing light intensity are all consistent with the theory.
The desirability of measuring the dependence of the spectral diffusion coefficient on light intensity at room temperature as a test
of several aspects of the theory is noted.

1 Introduction

Single molecule spectroscopy is a powerful and sensitive tech-
nique that permits the investigation of spatially heterogeneous
samples one at a time and reveals phenomena masked by
ensemble averaging. It is also complementary to ensemble
studies.1,2 It has been widely used to study the fluorescence
of single quantum dots,1,3–16 single fluorophores in porous
silicon,17 single polymer segments,18 light harvesting com-
plexes,19 fluorescent proteins,20,21 and single dye molecules
on various surfaces.22–29

The interesting phenomenon of blinking or fluorescence in-
termittency has been observed in which abrupt transitions oc-
cur between alternating episodes of absorption of light and flu-
orecence recycling is followed by sustained periods of dark-
ness where no light is emitted. Numerous experiments have
been performed since the first observation3 of the fluorescence
blinking of quantum dots.1,7–16 Memory in subsequent fluo-
rescence or dark episodes30 and electric field modulation of
fluorescence31 have been observed. Several models have been
proposed to explain the phenomenon.2,32–38

In the present paper we extend a reaction diffusion differ-
ential equation to include biexcitons, prompted by recent ex-
perimental results.39–46 The theory now contains two differ-
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ent mechanisms for the intermittency, resonant and Fermi’s
Golden Rule, depending in the energy, and also now explain-
ing why the light( `̀ on´́ ) state shows, typically, on the aver-
age at low light intensity an ∼ −3/2 power law1,7–16 with an
exponential tail that depends on the light intensity while the
dark ( `̀ off´́ ) state only shows the ∼ −3/2 power law, even
under these high light intensity conditions.

Until now we have had a differential equation that treats the
common −3/2 power law and an argument in the literature
as to how biexcitons give rise to an exponential tail. This in-
teresting ”patchwork” is now replaced by a unified treatment,
a differential equation for the light state and one for the dark
state and their solution. A physical reason, based on amount of
excess energy, is given as to why there are two forms of change
of state, one that is a resonant transition (∼ 0.3 ev38,47) and the
other is a Fermi’s Golden Rule transition (∼ 2.2 ev41).What
emerges from the solution of the differential equations, under-
stood in physical terms, is an explanation of why the light state
but not the dark state shows an exponential tail. Before now
one had to assume some not understood difference in diffusion
constants for the explanation, an explanation that also would
not have explained the intensity dependence of the exponential
tail.

The paper is organized as follows: in Section 2, the previ-
ous Diffusion-Controlled Electrom-Transfer (DCET) model is
briefly summarized. The present extended DCET model with
biexcitons is introduced there and the equation for the bright
population density change with time is derived for both the
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continuous (Section 2.3) and pulsed laser excitation (Section
2.4) cases and solved for the survival probability. The equa-
tions of dark states population are also derived and the solu-
tion is given there. In Section 3, the quadratic dependence
of the exponential tail on the excitation power, the difference
between the bright and dark cycling, the dependence of the
linear portion of the log- log plot for the `̀ on´́ state on the
light intensity and other phenomena are discussed. Conclud-
ing remarks are given in Section 4.

2 Theory

2.1 DCET model

The existence of an approximately −3/2 power law1,6–16 for
the blinking has suggested that diffusion ( a spectral diffusion)
is involved in the blinking34,48. Subsequently, a diffusion con-
trolled electron transfer (DCET) equation was proposed2,38,47

to treat the intermittency. The diffusion considered here differs
from that discussed in 49, which considers diffusion of elec-
trons rather than `̀ spectral diffusion´́ . A DCET mechanism
is assumed to govern the charge transfer reactions between
an `̀ on´́ state |e⟩ of the quantum dot and a charge-separated
state |d⟩ there ( FIG. 1). The latter appears dark due to a fast
Auger relaxation of an excited state |d∗⟩3,6,8–10,13. That relax-
ation dominates any fluorescence50. State |d⟩ is a long-lived
dark trapped state. However, what the theory did not do, and
what we do in this paper, is to explain why the `̀ off´́ state
only shows the power law, whereas the `̀ on´́ state has an ex-
ponential tail in addition to its power law and give and solve
differential equations for these two states.
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Qcoordinatereaction
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Fig. 1 Diffusion on the parabolic potential surfaces |l⟩ and |d⟩
across a sink at the energy-level crossing governs the intermittency
phenomenon.(corresponding to Figure 2 (b) from 38)

2.2 DCET model with biexcitons

We adopt the diffusion-controlled electron-transfer mecha-
nism where the equations are given in 38, and to it we add
a quite different mechanism for including biexcitons, different
because of their high energy, and so add a term in the DCET
equation containing this reaction step. In the present article
we add biexcitons, while multi excitons will be included in a

later paper. With biexciton generation, the previous four-level
system38 is generalized to now include the new bright species,
biexcitons.

We denote the ground state by |g⟩, the excited state (one
exciton) by |e⟩, the biexciton by |b⟩, the trapped state (the dark
state) by |d⟩ and the excited dark state by |d∗⟩. These symbols
each denote the state of the entire QD and not just part of it.

The assumed reaction mechanism can be written as follows:
For a bright QD:

Reaction step Rate constant
|g⟩+hν → |e⟩ Ige (i)
|e⟩ → |g⟩ keg (ii)
|e⟩+hν → |b⟩ Ieb (iii)
|e⟩ → |d⟩ ked (iv)
|b⟩ → |e⟩ kbe (v)
|b⟩ → |d′⟩ kbd′ (vi)

For a dark QD: we have
|d⟩+hν →|d∗⟩ Idd∗ (vii)
|d∗⟩ → |e⟩ kd∗e (viii)
|d∗⟩ → |d⟩ kd∗d (ix)
|d′⟩ → |d⟩ kd′d (x)

The state |d⟩ is the lowest energy dark ground state, |d∗⟩ is
a dark state with an extra exciton and |d′⟩ is a higher energy
dark state. The keg and kbe are both a sum of the radiative
and nonradiative rate constants, while kbd′ is an Auger assisted
ionization rate constant to form the dark state51, kd∗e is an
Auger- assisted rate constant to form the bright state47, and
kd′d is a fast relaxation process. The pulse duration of the
commonly used pulse lasers is on the order of 1 ps to 100
ps41,52. The Auger process occurs in similar time range42.
Even after an Auger assisted ionization, a dark QD is still in
the dark cycling, unlike the Auger kinetics in a bright QD.

2.3 Continuous laser excitation

Under continuous (cw) laser excitation the bright cycling
equations contain the added kinetic step and are given by

∂ρg(Q, t)
∂ t

= kegρe(Q, t)− Igeρg(Q, t), (1)

∂ρe(Q, t)
∂ t

= Igeρg(Q, t)+Leρe(Q, t)+ kbeρb(Q, t) (2)

−(keg + Ieb)ρe(Q, t)− kedδ (Q)ρe(Q, t),

∂ρb(Q, t)
∂ t

= Iebρe(Q, t)+Lbρb(Q, t)− (kbe + kbd′)ρb(Q, t),
(3)

where Le is the diffusion operator in state |e⟩ and Lb is the dif-
fusion operator for the biexciton state. From 1 we know that
a dark state is dark for an hour when there is no light. Our
interpretation of this result is two-fold: the dark to bright tran-
sition is in the time period of the experiments a light-induced
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Auger transition, and also the dark state doesn’t diffuse in the
absence of light (otherwise it would reach the intersection of
the potential energy curves) and the ground state doesn’t dif-
fuse. The remaining symbols are the reaction rate constants
shown in the reaction scheme given above. We have

Le ≡ De
∂

∂Q
[

∂
∂Q

+
1

kBT
∂

∂Q
Ue(Q)], (4)

where De is the diffusion constant for a structural, e.g., spec-
tral, diffusion and Ue(Q) is the potential energy (more pre-
cisely a free energy curve)38 as a function of a generalized
coordinate Q53,54.

Unlike the resonant transition terms in Eq. (2) given by the
delta function (FIG. 1), we assume that because of the large
energy present in the biexciton state an electron or perhaps
even the more localized hole can be ejected to any site out-
side the core QD, a process treated in the present derivation
by Fermi’s Golden Rule and later leading to the exponential
factor in the decay of the bright states, as seen in Eq. (22) be-
low. Due to fast Auger processes the lifetime of biexcitons is
much shorter than the one of single exciton so we neglect any
structural diffusion, the Lbρb term in Eq. 3 in the biexciton
states during the time available.

In the meanwhile, the dark cycling equations remain the
same as in 38,

∂ρd(Q, t)
∂ t

= kd∗dρd∗(Q, t)− Idd∗ρd(Q, t), (5)

∂ρd∗(Q, t)
∂ t

= Ld∗ρd∗(Q, t)+ Idd∗ρd(Q, t) (6)

−kd∗dρd∗(Q, t)− kd∗eδ (Q)ρd∗(Q, t),

where Ld∗ is the diffusion operator in state |d∗⟩ and other sym-
bols are reaction rate constants shown in the table. Since |d′⟩
all goes back to |d⟩ the instaneous contribution of ρd′ is neg-
ligible. Biexciton and multi exciton terms are not specifically
included here because pumping to and relaxation from biex-
citon and multi exciton states is still in the dark cycling and
plays no role in the dark to bright electron transfer reaction.
In the present model the diffusion is stimulated by each ab-
sorption of light so a stepwise diffusion occurs just with light
and so occurs in the |e⟩, |b⟩ and |d∗⟩ states but not in the |g⟩
and |d⟩ states. So there is no Ld in Eq. 5 since in the theory
there is no spectral diffusion in this lowest dark state.

The sum of the three rate equations, Eqs. (1) - (3) yields
the rate of change of the total `̀ on´́ population ρg +ρe +ρb,
denoted by ρL,

∂ρL(Q, t)
∂ t

= Leρe(Q, t)− kedδ (Q)ρe(Q, t)− kbd′ρb(Q, t).
(7)

In comparison the sum of the rate equations for the two dark
states, Eqs. (5) and (6), yields the rate of change of the total
`̀ off´́ population ρd +ρd∗ , denoted by ρD:

∂ρD(Q, t)
∂ t

= Ld∗ρd∗(Q, t)− kd∗eδ (Q)ρd∗(Q, t), (8)

Here, the counterpart of the last term in Eq. (7) which later is
shown to result in the exponential tail in the solution is miss-
ing.

With Ige usually < 0.01 ns−1 1,6–13,15,16,27 ≪ keg (∼ 0.1
ns−1)52,55 and at any time t ≫ 1/Ige, a quasiequilibrium
is established between |g⟩ and |e⟩, yielding kegρe(Q, t) ≈
Igeρg(Q, t).There is a similar quasiequilibrium between |e⟩
and |b⟩ and so ρb ≈ ρeIeb/kbe. If the absorption cross-section
of a QD changes little with exciton generation, i.e., Ieb = Ige,
then

ρb =
Ige

kbe
ρe, (9)

and

ρL =
keg

Ige
ρe +ρe +ρe

Ige

kbe
∼

keg

Ige
ρe. (10)

Eq. (7) can now be written as Eq. (11) for cw

Ige

keg

∂ρL(Q, t)
∂ t

=LeρL(Q, t)−kedδ (Q)ρL(Q, t)−ρL(Q, t)Ige
kbd′

kbe
.

(11)
With a similar quasiequilibrium between |d⟩ and |d∗⟩, ρd ≈
ρd∗kd∗d/Idd∗ and ρD = ρd∗kd∗d/Idd∗ +ρd∗ ≈ ρd∗kd∗d/Idd∗ , and
Eq. (8) becomes

kd∗d

Idd∗

∂ρD(Q, t)
∂ t

= Ld∗ρD(Q, t)− kd∗eδ (Q)ρD(Q, t). (12)

The solution of Eqs. (11) for ρL and 12 for ρD is given in
Section 2.5.

2.4 Pulsed laser excitation

For pulsed laser excitation, there are two time frames, one aris-
ing at the start of the experiment, t, and the other, the time
between consecutive pulses counting from the start of every
pulse, tr, where 0 ≤ tr < T , T being the interval between con-
secutive pulses. Fluorescence lifetime, biexciton and multi ex-
citon lifetime and other transient properties occur within the tr
frame while the `̀ on´́ and `̀ off´́ time distribution occurs in the
t frame. With T (typically 200 ns) much greater than an exci-
ton lifetime (∼ 10 ns), before the next pulse starts, all bright
exciton states have relaxed either back to ground state or trans-
ferred to dark states.The density of biexcitons transferred to
dark states in every pulse, plost(b), is

plost(b) = Pionbρb(Q, t), (13)
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where Pionb is the ionization efficiency of a biexciton. If we
adopt T , the interval between successive incident light pulses,
as the unit of t, then plost(b) is the rate of biexcitons trans-
ferred to dark states and we then have

∂ρL(Q, t)
∂ t

=Leρe(Q, t)
τx

T
−kedδ (Q)ρe(Q, t)

τx

T
−Pionbρb(Q, t),

(14)
where τx is the single exciton lifetime, while for the dark states
we have

∂ρD(Q, t)
∂ t

= Ld∗ρd∗(Q, t)
τx

T
− kd∗eδ (Q)ρd∗(Q, t)

τx

T
, (15)

Treating the absorption of photons as consisting of indepen-
dent events, we then have a Poisson distribution. In every sin-
gle pulse, the probability of absorbing of m incoming photons
by a QD forming an m exciton is

P(m) = e−⟨Mx⟩ ⟨Mx⟩m

m!
(16)

where ⟨Mx⟩ is the average exciton number formed in a QD per
pulse. Here, we only consider ground states, single excitons
and biexcitons. Then ρL(Q, t) = ρg(Q, t)+ρe(Q, t)+ρb(Q, t)
and Eq. (14) can be rewritten as

⟨Mx⟩
1+ ⟨Mx⟩+ ⟨Mx⟩2/2

∂ρL(Q, t)
∂ t

= LeρL(Q, t)
τx

T
(17)

−kedδ (Q)ρL(Q, t)
τx

T
−ρL(Q, t)Pionb

⟨Mx⟩
2

.

For the dark states ρD(Q, t)= ρd(Q, t)+ρd∗(Q, t) and Eq. (15)
becomes

⟨Mx⟩
1+ ⟨Mx⟩

∂ρD(Q, t)
∂ t

= Ld∗ρD(Q, t)
τx

T
− kd∗eδ (Q)ρD(Q, t)

τx

T
.

(18)

2.5 Solution

Without the last term Eqs. (11) and (17) (and in the case of
Eq. (17) without the ⟨Mx⟩2/2 term) are similar to the eq (4a)
obtained by Tang and Marcus38, as are Eqs. (12) and (18) for
the dark states. Comparing Eqs. (11) and (17) with eq (4a)
we then see that the solution of Eqs. (11) and (17) equals that
of eq (4a) multiplied by e−kct , where kc = I2

gekbd′/[kegkbe] and
kc = Pionb⟨Mx⟩2/[2(1+ ⟨Mx⟩+ ⟨Mx⟩2/2)] for Eqs. (11) and
(17), respectively while for the dark states the solution of Eqs.
(11) and (17) is the same as the solution of eq (4a). Here, we
consider the case that41 during a pulse excitation there is no
accumulation of excitons from previous pulses, i.e., all bright
exciton states have relaxed either back to the ground state or
transformed to dark states. The integration of the probability
density function ρL(Q, t) over Q gives the survival probability

at time t for an `̀ on´́ state that started at t = 0. Treating the
survival probability for `̀ on´́ as a step function, noting that
the derivative of a step function is a δ function, the derivative
gives the time at which a change occurs from `̀ on´́ to `̀ off´́ ,
so giving the waiting-time distribution PL(t). This PL(t) for
a quantum dot, defined in Eq. (19) as the derivative of the
survival probability, is the probability of a QD that has been
in the `̀ on´́ cycling for t and transfers to an `̀ off´́ cycling
during dt per unit dt. It is given by

PL(t) =− d
dt

∫ ∞

−∞
dQρL(Q, t), (19)

where Q is the reaction coordinate. When the quantum dot is
in the vicinity of the intersection of the relevant electronic state
potential energy surfaces56, the effect of the slopes of the cor-
responding potential energy surfaces U11(Q)38,57 on the dy-
namics will be assumed to be small (t < 1/Γ, in the notation
of refs 38 and 2). The diffusion operator L11 defined in Eq.
(4) can then be approximated as D11∂ 2/∂Q2 which is the no-
forced diffusion term. We use the Green function method58 to
solve Eq. (17) with the free energy derivatives2,38 with respect
to Q absent and, as before38, obtain a closed form solution in
Laplace transform space. The solution for ρl(Q, t) and hence
for PL(t) is given by

PL(t) =
1+2kct√

πtct
[1−

√
πt
tc

et/tcerfc(
√

t
tc
)]e−kct , (20)

with the limiting forms 21 and 22 for t ≪ tc and t ≫ tc.

PL(t)≈
1√
πtct

, t ≪ tc (21)

and

PL(t)≈
√

tc√
4πt3

e−kct , t ≫ tc. (22)

where tc is the critical time2,38 in which the population has
largely been depleted near the sink (time to set up a steady-
state) due to disappearance into the sink at the crossing and

tc = 4DeIge/[kegk2
ed ] (23)

and

tc = 4DeT ⟨Mx⟩/[τx(1+ ⟨Mx⟩+ ⟨Mx⟩2/2)k2
ed ] (24)

for Eqs. (11) and (17) respectively. For cw excitation,

kc = I2
ge

kbd′

kegkbe
, (25)

and for pulsed excitation,

kc = Pionb
⟨Mx⟩2

2(1+ ⟨Mx⟩+ ⟨Mx⟩2/2)
∼ Pionb⟨Mx⟩2/2, (26)
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where ⟨Mx⟩ is the average exciton number formed in a QD per
pulse. Comparing Eqs. (7) and (14), we can see that kbd′ plays
the role of Pionb. I2

ge/(kegkbe) and ⟨Mx⟩2/2 are the ratio ρb/ρL,
respectively, for the continuous and pulsed laser excitation.

In concluding this section, we make one further remark on
Eq. (22). The complete form of Eq. (22) is

PL(t)≈
√

tc√
4πt3

e−kct(1+2kct), t ≫ tc. (27)

The second term in the parentheses in Eq. (22) only con-
tributes when at t ∼ 1/kc and would contribute to the little
rise from the power law ( FIG. 3) at the beginning of the ex-
ponential tail. It is a very small effect and would be hard to
see in experimental results.41,46 For the dark states the distri-
bution is again given by Eq. 20, with the kc in Eqs. 21 and 22
equal to zero, and with the tc given by Eqs. 28 and 29 for cw
and pulsed laser excitation instead of Eqs. 23 and 24.

tc = 4Dd∗ Idd∗/[kd∗dk2
d∗e] (28)

tc = 4Dd∗T [1+ ⟨Mx⟩]/[τx⟨Mx⟩k2
d∗e] (29)

3 Results and discussion

3.1 Absence of exponential decay of the dark cycling

While the dark cycling is similar to the bright cycling, the dif-
ference is that in dark cycling the fluorescence is quenched by
an Auger process. If there is an Auger-assisted ionization from
the dark state with two extra excitons, then after ionization the
QD is still in the dark cycling phase and not yet transformed
to the bright cycling: there are now two extra charges of the
same kind in the conduction band or in the valence band that
can participate in the Auger process. The exponential decay
seen in Eq. (22) for the `̀ on´́ state is absent in the `̀ off´́
waiting-time distribution PD(t), since the dark state remains a
dark state after this transition.

3.2 Quadratic dependence of the exponential tail of the
`̀ on´́ time distribution on the excitation power

At an intermediate excitation intensity when the chance of
multi exciton generation higher than a biexciton is small, only
the ground, exciton and biexciton states need be considered,
ρL/ρe ∼ keg/Ige and ⟨Mx⟩ is small but large enough to cause
the exponential tail. The exponential for the `̀ on´́ state in Eq.
(22) is exp(−kct). For cw excitation, kc ∼ I2

gekbd′/[kegkbe] and
for pulsed excitation, kc ∼ Pionb⟨Mx⟩2/2. This result agrees
with the quadratic dependence of the exponential tail on the
excitation power, as in the present FIG. 2 and FIG. 3 and in
Figure 4 of 41. According to41, for the 3 points in FIG. 2 ⟨Mx⟩
is ∼ 0.1 to 0.3. When the excitation intensity increases and

multi excitons have to be taken into account, and in general
this quadratic dependence is not expected. The general case
with multi exciton species taken into account will be treated
in a later paper.
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Fig. 2 kc vs I2 fitting where I is laser intensity.

3.3 Slope of power law at short time

A prediction of the diffusion controlled electron transfer
model for the power law is that the power at short times will
be −1/2 instead of −3/2 at longer times and the transition
happens at the critical time tc as seen in Eqs. 21 and 22. A
subsequent test of this prediction was made and the expected
change of unity in the slope59 was observed. However, while
the result is supportive of the theory it doesn’t confirm it since
in principle it might have some other origin.

3.4 Slope deviation from -3/2

For the dark state the slope m of the logP vs logt plot is −3/2
but for the light state at high intensities in FIG. 3 m is dif-
ferent (lower power) from -3/2 and this difference increases
with increased light intensity.41 The mechanism of this light
intensity dependence of the power law slope remains to be
analyzed. One possibility is a binning effect on the log-log
plot.60 If there is not a sharp distinction between `̀ dark´́ and
`̀ light´́ for example, if there are different degrees of apparent
brightness in the bright state due to fluctuations in numbers of
bright periods within a bin, then the analysis would be more
complex. In such a case, the trajectories would look `̀ ragged´́
for a light state, instead of an ideal `̀ picket fence´́ type trajec-
tory. When possible, we have focused on systems that display
the even height `̀ picket fence´́ type trajectory rather than a
`̀ ragged´́ one, as in the trajectories shown in 41 and 61 but
not those in 62. In general, it would be helpful to decrease the
bin size when analysing high excitation intensity experimental
results and see if the power exponent converges to a constant
value, signal intensity permitting.

Another possible origin is the change of the critical time tc
with a change of laser excitation intensity I. tc ∝ DeIge. Since
both De and Ige increase with increasing I, tc becomes larger
and the probablity of `̀ on´́ events shorter than tc (slope -1/2 as
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in Eq. (21))becomes larger. If we assume De ∝ I and Ige ∝ I,
then tc ∝ I2. Scaling t with I2 (FIG. 4) one sees that the data
points of the power law parts at the 3 different intensities in
FIG. 3 merge and are fit with tc = 3 ms at 230 W/cm2 by Eq.
20 without the exponential term. This tc is comparable to re-
sults obtained at approximately the same absorption rate in
59, a tc ∼ 5 ms. Recently Bawendi and coworkers directly ob-
served spectral diffusion dynamics in single CdSe- CdS QDs
at low temperature.63 If diffusion constants can be obtained at
room temperature this possibility can be tested.

The theory for the other experimental observations de-
scribed earlier is independent of this possible explanation of
this light intensity dependence of the initial linear slope in the
experiments of 41.
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Fig. 3 On-time probability distributions measured under pulsed
laser conditions at λexc=434 nm and laser intensities of 230 (red l),
120 (blue s), and 66 W/cm2 (green n). The solid lines are fits to
the data of power law with exponential cut-offs kc
(kc = 11.3, 2.2, 0.8 /s, respectively) and bumps according to Eq.
(22) and the dashed lines are fits to the data only of power law. Here
the slopes are not fixed at 3/2. The curves 41 had been vertically
shifted by unspecified amounts. Data reprinted with permission
from 41. Copyright (2009) American Chemical Society.
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Fig. 4 On-time probability distributions with time t scaled with
excitation intensity I2. Only the continuity of the linear portion of
the plot should be examined.

3.5 Nature of the trapped states

Indirect evidence for a localized dark state with a localized
charge trapped in a set of surface sites is seen in the experi-
ment of Barbara and coworkers31. Their result indicates that
there is no uniform surface band, but rather that a localized

charge is trapped at different surface sites at different times,
there being perhaps a trap to trap diffusion of the charge on
the surface. The Babara experiment doesn’t determine the
sign of the surface trapped state. Here, the `̀ off´́ times are
attributed to surface charge trapped states. Efros, Hermier
and coworkers have measured the polarization- resolved PL
spectra in magnetic fields in which the sign of the circular po-
larization degree indicates the sign of the resident charge to
determine the extra charge64 in the core is an electron. Thus
the dark state is formed when a hole transfers from an exciton
state to a trap |d⟩ off the valence band leaving an extra electron
in the core. Guyot-Sionnest and coworkers showed that an 1Se
electron pumped to 1Pe state has a large chance to tunneling to
the surface65. This is interpreted as the electron transfer dis-
cussed in 47. In 47 the state was assumed to be a state off the
valence band. In the latter, the trapped state is a surface Se2−

prior to the transition that causes it to become a Se− after the
transition, in the case of a CdSe QD57. That is, it is a trapped
hole off the valence band. Correspondingly, in this trapped
state there is in the body of the QD an excess electron in the
1Pe state. This view treats the trapped state as formed in an
Auger process from a possible resonance to 1Pe to 1Se transi-
tion from a transition between a 1S hole state in the valence
band and a Se2− surface state. For biexcitons, with two elec-
trons in the 1Se state and two holes in the 1Sh state, we have
an Auger assisted ionization process in which one hole comes
deeply from the valence band to the Se2− ion and another hole
annihilates one electron in the 1Se state. In this trapped state
with an excess electron in the core of the quantum dot when
another electron is photo excited from the ground state to the
conduction band Auger dominated nonradiative pathways can
dominate the fluorescence. This oxidation by hole was evi-
denced recently in electrical charging experiments66.

3.6 Other remarks

A memory in consecutive bright or consecutive dark events
has been reported by Stefani et al 30. It may now be due to suc-
cessive trapping preferentially at or near a particularly favor-
able local site a dangling surface Se2−, for example, reflecting
an expected heterogeneity in properties of the individual sur-
face sites.

4 Conclusions

The equations for the DCET model have been extended so as
to include biexcitons at the higher light intensities. The new
partial differential equation modified from an earlier work by
the inclusion of biexcitons provides an interpretation of the
exponential cut-off of the power law time distribution of the
`̀ on´́ state of the single quantum dot fluorescence blinking
process, the quadratic dependence of the exponential tail on
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the excitation intensity, and, particularly, the previously un-
explained asymmetry between `̀ on´́ and `̀ off´́ states, only
the former having an exponential tail in the observed time do-
main. Several other experiments including an effect of electric
fields31 are also stated30,59.
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