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Dielectric spectra of ionic liquids and their conversion to solvation

dynamics: A detailed computational analysis of polarizable systems
Michael Schmollngruber, Christian Schröder,a) and Othmar Steinhauser
University of Vienna, Department of Computational Biologi-

cal Chemistry, Währingerstrasse 17, A-1090 Vienna, Austria

(Dated: 4 April 2014)

For the three molecular ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-
methylimidazolium trifluoromethanesulfonate and 1-butyl-3-methylimidazolium tetrafluoroborate, dielectric
spectra were calculated from molecular dynamics simulations based on polarizable force fields. Using the
reaction field continuum model the dielectric spectra were converted to the solvation dynamics of Coumarin
153. It is shown in detail that the inclusion of the static conductivity in this model is essential. When
simplifying the dielectric spectrum to the static conductivity hyperbola, the solvation response function
becomes mono-exponential. Taking into account the frequency dependence of the conductivity, the typical
two time-regimes of the solvation response function in ionic liquids are already obtained. However, the mean
relaxation time remains the same. When converting the complete dielectric spectrum , i.e. also including
frequency-dependent dielectric permittivity, quantitative changes are observed, but the qualitative shape is
conserved. In accordance with previous experimental studies, solvation dynamics in ionic liquids predicted
by the reaction field continuum model is too fast for longer times. This correlates with the suppression of the
fine structure of the dielectric spectrum at low frequencies by the static conductivity hyperbola. By scaling
down the static conductivity this effect can be partially amended. In addition to the impact of the solvent
dielectric spectrum on solvation dynamics, also solute-specific effects, i.e. anisotropy in shape and charge
distribution as well as polarizability, were studied.

I. INTRODUCTION

Ionic liquids are characterized by an anisotropy in
charge distribution and shape. This combination makes
them a challenging class of soft matter when dealing with
their electrostatic or dielectric properties, as they unite
the properties of polar liquids and ionic melts. At the
molecular level, they have a net charge and a dipole mo-
ment and as opposed to ionic solutions, both reside on the
very same molecule. At the dielectric or mesoscopic level
these properties correspond to the dielectric conductivity
ϑ(ω) and the dielectric permittivity ǫ(ω), respectively.1–3

While the former stands for collective translation, the lat-
ter is representative of collective rotation. In any case,
it is the response to an applied external electric field,
as measured in dielectric spectroscopy. An alternative
method is to detect the internal Maxwell field exerted on
a solute used as a probe, being Coumarin 153 in most
cases.4–10 In this case, the solute is excited to its elec-
tronic S1 state and it is the accompanying change in the
dipole moment that is coupling to the Maxwell field. The
relaxation of the surrounding solvent after the excitation
of the solute is recorded via time-resolved fluorescence
spectroscopy, yielding what is commonly known as the
solvation response function or solvation dynamics. This
method has a long tradition for polar solvents11–17. In
recent years, it was also applied to ionic liquids.5–9,18–34

As both methods, dielectric spectroscopy and solvation

a)Electronic mail: christian.schroeder@univie.ac.at

dynamics, operate with electric fields, either as a pertur-
bation or as a response, investigations into their mutual
relation exist in the literature. In most of these stud-
ies the focus was on experimental data.6–9,21,32,35 In this
study we operate with computational methods, calculat-
ing the dielectric spectrum and the solvation response
function from the very same simulation. For the con-
version of the former into the latter we use the reaction
field continuum model (RFCM), because it does not need
data from another source than the dielectric spectrum. In
previous studies based on experimental dielectric spectra,
the RFCM worked very well for polar liquids, but faced
problems for charged dipolar systems, i.e. ionic liquids.
A computational approach allows to study how parts of
the dielectric spectrum - when considered separately - in-
fluence the solvation response function. In this way we
hope to elucidate the peculiar problems encountered6–9,32

when applying the RFCM to ionic liquids.
Recently, there have also been other attempts beyond

those based on a simple continuum model to predict the
solvation response function of ionic liquids, either em-
ploying a semi-molecular approach30,31 or an extended
Debye-Hückel model5.

This paper is organized as follows: In the theory sec-
tion a short overview of the development of the RFCM
and its application to ionic liquids is given. Special atten-
tion was paid to anisotropic features of the solute C153.
The results and discussion section starts with the pre-
sentation of the computational dielectric spectra. Subse-
quently, the solvation response function is characterized
within the framework of the RFCM. Fundamental ana-
lytic results are collected in the appendix and background
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information concerning the calculation of the dielectric
spectra is given in the supplementary material.

II. THEORY

A. Calculation of the solvation response function from the
frequency-dependent generalized dielectric constant

The normalized time-dependent solvation response
function is given by

S(t) =
∆U(t)−∆U(∞)

∆U(0)−∆U(∞)
, (1)

where U(t) is the solvation energy. At time t = 0 the
charge distribution of a chromophore molecule embed-
ded in a solvent is changed due to photoexcitation. The
relaxation of the solvent molecules in response to this
change of the charge distribution ∆ρ(~r, t) of the solute
results in a transient shift of the solvation energy

∆U(t) =
1

2

∫

∆ρ(~r, t)Φ(~r, t)d~r, (2)

where Φ(~r, t) is the total electrostatic potential exerted
by the solvent. A first approximation of this potential is
given by enclosing the charge distribution of the solute
∆ρ(~r, t) in a spherical cavity of radius a and describing
the solvent outside by a dielectric continuum with a static
dielectric constant ǫ:

Φ(~r) =

∞
∑

l=0

+l
∑

m=−l

−
ǫ− ǫc

ǫ+ ǫc
l

l+1

qlm
a2l+1

rlY l
m(θ, φ). (3)

Furthermore, it is assumed that the cavity is filled with a
dielectric medium characterized by the constant ǫc. The
spatial variation of the potential within the cavity is de-
scribed by the solid spherical harmonics rlY l

m(θ, φ). The
anisotropy of the charge distribution of the solute is char-
acterized by its multipole moments

qlm =

∫

∆ρ(~r)rlY l
m(θ, φ)d~r. (4)

Inserting the static potential Φ(~r) into Eq. 2 one gets
the temporal average of the solvation energy

〈∆U〉 = −
1

2

∞
∑

l=0

ǫ− ǫc

ǫ+ ǫc
l

l+1

1

a2l+1

+l
∑

m=−l

qlmql∗m. (5)

For the special case l = 1, i.e. for a single dipole ~µ
enclosed in the cavity this reduces to the original formula
of Boettcher and Bordewijk36

〈∆Uµ〉 = −
1

2

∆~µ2

a3
ǫ− ǫc
ǫ+ ǫc

2

= −
1

2
∆~µ · ~ERF , (6)

where in the second step we have introduced the reaction
field

~ERF =
∆~µ

a3
ǫ− ǫc
ǫ+ ǫc

2

. (7)

The factor ∆~µ2/a3 in Eq. 6 is a dipolar energy repre-
sentative of the solute. The dimensionless co-factor in-
volving the dielectric constant stands for the solvation
properties of the solvent. Maroncelli and Fleming37 re-
alized that Eq. 7 gives an incorrect limit for ǫ = 1,
i.e. the reaction field does not vanish in the absence
of a solvent, but gives a value dependent on ǫc. In fact,
this represents a spurious self-interaction of the solute
dipole with its own cavity. This can be amended by
the method of Mazurenko38 as recommended by Maron-
celli and Fleming.37 This method augments the per-
manent dipole moment ∆~µ by an induced contribution
∆~µind = α~ERF

~ERF =
∆~µ+ α~ERF

a3
ǫ− 1

ǫ+ 1
2

, (8)

where α is the molecular polarizability of the solute. Con-
sequently, ǫc was set to unity. However, it re-enters via
the Clausius-Mosotti equation

α

a3
=

ǫc − 1

ǫc + 2
, (9)

yielding

~ERF =
∆~µ

a3
ǫc + 2

3

ǫ− 1

ǫ+ ǫc
2

. (10)

So far, the reaction field is only a temporal average as
it includes only the static dielectric constant. To intro-
duce the time dependence we start from the constitutive
relation in the frequency domain

~P (~r, ω) =
ǫ(ω)− 1

4π
~E(~r, ω), (11)

giving the dielectric polarization ~P (~r, ω) for systems com-
posed of neutral dipolar molecules. Both, ~P (~r, ω) and
~E(~r, ω) can be combined to the dielectric displacement

~D(~r, ω) = ~E(~r, ω) + 4π ~P (~r, ω) = ǫ(ω) ~E(~r, ω). (12)

The static reaction field (Eq. 7) was obtained as a solu-
tion of the Laplace equation under the boundary condi-
tions that the parallel component of ~E(~r) and the nor-
mal component of ~D(~r) are continuous at the spherical
surface. Again applying these boundary conditions, but
now to the general frequency-dependent electric field and
dielectric displacement (Eq. 12), yields39

~ERF (ω) =
∆~µ

a3
ǫc + 2

3

ǫ(ω)− 1

ǫ(ω) + ǫc
2

. (13)
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Here, ǫc as a constant value describes the fixed geometry
of the solute, whereas ǫ(ω) stands for the relaxation of
the solvent. As an ionic liquid is composed of charged,
dipolar molecules, its dielectric properties have to be de-
scribed by the generalized permittivity3

Σ(ω) = ǫ(ω)− 1 +
4πiσ(ω)

ω
, (14)

where the dielectric conductivity 4πiσ(ω)/ω describes
the creation of collective dipole moments by the mutual
translational motion of charged species. This generalizes
the constitutive relation to

~P (~r, ω) =
Σ(ω)

4π
~E(~r, ω) (15)

and the dielectric displacement to

~D(~r, ω) = ~E(~r, ω)+4π ~P (~r, ω) = (Σ(ω)+1) ~E(~r, ω). (16)

In other words, for charged dipolar systems Σ(ω) + 1 re-
places ǫ(ω) in Eq. 12 in case of neutral dipolar systems.
Applying the same boundary conditions as above the re-
action field can be generalized to

~ERF (ω) =
∆~µ

a3
ǫc + 2

3

Σ(ω)

Σ(ω) + 1 + ǫc
2

. (17)

Generalizing the theory developed by Hsu et al.
39 for

neutral dipolar solvents to the case of ionic liquids by
replacing Eq. 13 with Eq. 17 we get the analogous ex-
pression for the solvation energy

∆UΣ(t) =
2

π

∫

∞

0

cos(ωt)

ω
Im

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

dω. (18)

Strictly speaking, the above equation should contain the
dipolar energy −(∆~µ2/a3)((ǫc + 2)/3) as a prefactor.
However, when substituting ∆U(t) into Eq. 1, giving
the solvation response function, the dipolar energy can-
cels out. Therefore, it is omitted in the above and fol-
lowing equations, where only the dimensionless part is
retained.

B. Analytical calculation of the mean relaxation time of
SΣ(t)

At the global level, the most important property of the
solvation response function SΣ(t) is its mean relaxation
time

τΣ =

∫

∞

0

SΣ(t)dt. (19)

According to Eq. 1, SΣ(t) is calculated from the solva-
tion energy ∆UΣ at times t, zero and infinity. As the
asymptotic value of ∆UΣ(t) approaches values close to

zero (data not shown), its asymptotic value is omitted in
order to simplify SΣ(t) to

SΣ(t) ≃
∆UΣ(t)

∆UΣ(0)
. (20)

Consequently, the mean relaxation time is given by

τΣ =
T

∆UΣ(0)
, (21)

where

T =

∫

∞

0

∆UΣ(t)dt = (22)

= lim
ω→0

1

ω
Im

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

= (23)

= lim
ω→0

1

ω

(1 + ǫc
2 )Σ

′′(ω)

(Σ′(ω) + 1 + ǫc
2 )

2 + (Σ′′(ω))2
. (24)

With

Σ(ω) =ǫ(ω)− 1 +
4πiσ(ω)

ω
(25)

Σ(ω) =Σ′(ω) + iΣ′′(ω) (26)
ǫ(ω) =ǫ′(ω) + iǫ′′(ω) (27)
σ(ω) =σ′(ω) + iσ′′(ω). (28)

Eq. 24 can be rewritten upon substitution as

T = lim
ω→0

1

ω
Im

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

= (29)

= lim
ω→0

(1 + ǫc
2 )(ǫ

′′(ω)ω + 4πσ′(ω))

(ω(ǫ′(ω) + ǫc
2 )− 4πσ′′(ω))2 + (ωǫ′′(ω) + 4πσ′(ω))2

(30)

= lim
ω→0

(1 + ǫc
2 )4πσ

′(ω)

(−4πσ′′(ω))2 + (4πσ′(ω))2
(31)

= lim
ω→0

(1 +
ǫc
2
)

1

4πσ′(ω)
(32)

=(1 +
ǫc
2
)

1

4πσ0
. (33)

When proceeding from Eq. 30 to 31 we have omitted all
terms involving ǫ′(ω) and ǫ′′(ω) as they are multiplied by
ω and thus vanish in the zero-frequency limit. Further-
more, limω→0 σ

′′(ω) = 0.
As can be seen from Eq. 21, the calculation of the

mean relaxation time needs both, the time integral (see.
Eq. 22) and the amplitude ∆UΣ(0). For t = 0 Eq. 18
becomes

∆UΣ(0) =
2

π

∫

∞

0

1

ω
Im

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

dω. (34)

Following the elegant formalism described by Rips et

al.
40, we get

∆UΣ(0) = lim
ω→0

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

− lim
ω→∞

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

(35)
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Using Eqs. 25-28, the infinite-frequency limit above gives

lim
ω→∞

[

Σ(ω)

Σ(ω) + 1 + ǫc
2

]

=
2(ǫ∞ − 1)

2(ǫ∞ − 1) + ǫc + 2
, (36)

while the zero-frequency limit gives unity. Altogether,
the amplitude becomes

∆UΣ(0) =
ǫc + 2

ǫc + 2ǫ∞
. (37)

Combining Eqs. 33 and 37 we get the mean relaxation
time

τΣ =
T

∆UΣ(0)
=

ǫc + 2ǫ∞
2

1

4πσ0
. (38)

This shows that τΣ is determined only by three param-
eters, namely ǫc, σ0 and ǫ∞. ǫc characterizes the po-
larizability of the solute, σ0 stands for the translational
mobility of the solvent environment and ǫ∞ describes the
polarizability of the solvent. Although the above deriva-
tion differs in parts, we get the same analytical result for
the mean relaxation time as Zhang et al.

6

C. Using components of the dielectric spectrum to calculate
the solvation response function

While experiments always yield the dielectric spectrum
as an inseparable entity, except for the static conductiv-
ity σ0, which is also accessible from other experimen-
tal methods, simulation studies offer the possibility to
analyze how different components of the computational
spectrum determine the shape of the solvation response
function S(t). For conducting systems, the hyperbola
4πiσ0/ω dominates the imaginary part of the general-
ized dielectric permittivity Σ(ω). Therefore, it is usually
subtracted:

Σ0(ω) =Σ(ω)−
4πiσ0

ω

=ǫ(ω)− 1 +
4πi(σ(ω)− σ0)

ω
.

(39)

The complement Σ0(ω) of the conductivity hyperbola
4πiσ0/ω is representative of the fine structure of the spec-
trum. Its role can be highlighted by reducing Eq. 18 to

∆UΣ0
(t) =

2

π

∫

∞

0

cos(ωt)

ω
Im

[

Σ0(ω)

Σ0(ω) + 1 + ǫc
2

]

dω.

(40)
The subtraction of 4πiσ0/ω corresponds to the replace-
ment of σ′(ω) with (σ′(ω)− σ0) in Eq. 32:

∫

∞

0

∆UΣ0
(t)dt = lim

ω→0
(1 +

ǫc
2
)

1

4π(σ′(ω)− σ0)
. (41)

Unfortunately, this integral diverges. In other words, the
inclusion of the conductivity hyperbola is essential for

this model theory.7 Because of its fundamental role, it
makes sense to study the influence of 4πiσ0/ω separately,
simplifying Eq. 18 to

∆Uσ0
(t) =

2

π

∫

∞

0

cos(ωt)

ω
Im

[

4πiσ0

ω
4πiσ0

ω + 1 + ǫc
2

]

dω (42)

=
2

π

∫

∞

0

cos(ωt)
T

1 + (ωT )2
dω (43)

=e−t/T (44)

with the relaxation time

T = (1 +
ǫc
2
)

1

4πσ0
. (45)

In other words, the conductivity hyperbola - when taken
solely - leads to a mono-exponential function. To get a
more realistic S(t), the logical next step is to replace the
static conductivity σ0 by its frequency-dependent ana-
logue σ(ω), yielding

∆Uσ(t) =
2

π

∫

∞

0

cos(ωt)

ω
Im

[

4πiσ(ω)
ω

4πiσ(ω)
ω + 1 + ǫc

2

]

dω,

(46)
representing the complete translational contribution. Re-
ferring to Eq. 31 it is clear that this replacement does
not affect T . Thus we have shown that T is universal for
all three cases discussed. The amplitudes, however, dif-
fer. Repeating the calculation in Eq. 35 for 4πiσ0/ω or
4πiσ(ω)/ω instead of Σ(ω) we get ∆Uσ0

(0) = ∆Uσ(0) =
1. Hence, the mean relaxation time for these two cases
is τσ0

= τσ = T as opposed to Eq. 38. We anticipate
from the results shown later, that time dependence of
Sσ0

(t) and Sσ(t) is rather different, although the respec-
tive mean relaxation times are identical.

D. Describing the solute using an ellipsoidal cavity

All previous expressions are based on a spherical cavity
containing the solute. As the studied solute Coumarin
153 is rather anisotropic in shape it seems prudent to
make the cavity anisotropic as well. Following previous
works using reaction field methods with an ellipsoidal
solute cavity in polar liquids,39,41–43 we applied this ap-
proach to ionic liquids. The response function in this
case is given by

F (ω) =





fa(ω) 0 0
0 fb(ω) 0
0 0 fc(ω)



 , (47)

where

fi =
3Ai(1−Ai)Σ(ω)

1 + Σ(ω)(1−Ai)
, i = a, b, c (48)

describe the response function along the three axes of the
ellipsoid and Ai are ellipsoidal shape factor integrals.41
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The solvation energy is then given by

∆U(t) = −
ǫc + 2

3abc
∆µ ·

2

π

∫

∞

0

cos(ωt)

ω
Im[F (ω)]dω ·∆µ.

(49)

III. METHODS

The results presented here were gathered from polar-
izable molecular dynamics simulations of three differ-
ent ionic liquids, 1-ethyl-3-methylimidazolium tetraflu-
oroborate (EMIM+BF−

4 ), 1-ethyl-3-methylimidazolium
trifluoromethanesulfonate (EMIM+TfO−) and 1-butyl-
3-methylimidazolium tetrafluoroborate (BMIM+BF−

4 ),
each containing 1000 ion pairs and a single coumarin
153 (C153) molecule with a charge distribution reflect-
ing its electronic ground state. All simulations were run
at a temperature of 300K in cubic boxes with respec-
tive box lengths of 64.4Å for EMIM+BF−

4 , 67.9Å for
EMIM+TfO−and 68.65Å for BMIM+BF−

4 using a time
step of 0.5 fs. Non-bonded interactions were calculated
using the Lennard-Jones potential with a switch func-
tion between 11 and 12Å and the PME method44,45 with
a real-space cut-off of 12Å and a κ of 0.41 Å−1. The
lengths of all bonds involving a hydrogen atom were held
fixed by the SHAKE algorithm.46 The charge distribution
of the solvent molecules was made polarizable by adding
Drude particles to all non-hydrogen atoms.47 These sim-
ulations are the same as in Ref. 10, where more detailed
information on the computational setup is given. For
each system, 60 ns of trajectory data containing only co-
ordinates and additional 15 ns of trajectory data also
containing velocities were produced using the molecular
dynamics package CHARMM48. For a quantification of
the various solvation response functions we fitted them
to the function

S(t) ≈ ae−t/τ1 + (1− a)e−(t/τ2)
β

, (50)

consisting of an exponential and a Kohlrausch-William-
Watts (KWW) function.10,12,25,35 The set of parameters
is collected in Table I.

IV. RESULTS AND DISCUSSION

A. Dielectric spectra

The dielectric relaxation data shown in Fig. 1 was
calculated from molecular dynamics simulation data fol-
lowing the approach used in previous work.3 The time
correlation functions of the total rotational dipole mo-
ment (〈 ~MD(0) · ~MD(t)〉), the total current (〈 ~J(0) · ~J(t)〉)
and their cross-correlation function (〈 ~MD(0) · ~J(t)〉) were
fitted using fit functions of the form

f(t) ≈
∑

j

Aj ·e
−t/τj +

∑

k

Akcos(ωkt+δk) ·e
−t/τk , (51)

 0

 5
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 15
EMIM+BF4

-

 0
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 15

R
e[

Σ
0(

ω
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[Σ

0(
ω

)]
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 0

 1

 2

 3

Frequency ω / THz

FIG. 1. Dielectric relaxation functions (cf. Eq. 39) generated
from MD simulation data, real (left column) and imaginary
parts (right column).

where f(t) denotes the respective time correlation func-
tion. In order to achieve a more reliable value for the
longest time constant of 〈 ~J(0) · ~J(t)〉,3 the relationship

d2

dt2
〈(∆ ~MJ(t))

2〉 = 2〈 ~J(0) · ~J(t)〉 (52)

described in Ref. 49 was practically applied. As
〈(∆ ~MJ(t))

2〉 could be calculated from the much longer
coordinate trajectory, 〈 ~J(0) · ~J(t)〉 gained by calcu-
lating the second derivative using the Savitzky-Golay
algorithm50 proved to be consistent with the directly cal-
culated correlation function (cf. Fig. S1 provided in the
Supplementary Material). This provided another source
for the above-mentioned longest time constant. Tables
S1, S2 and S3 in the Supplementary Material list all the
fit parameters used here.

B. Characterization of the solvation response function within
the reaction field continuum model

1. The time dependence

As we have already learned in Eq. 41, the static con-
ductivity σ0 is of central importance when applying the
reaction field continuum model (RFCM) to conducting
systems. Therefore, we study its properties first. The
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FIG. 2. Comparison of SΣ(t) (black, cf. Eq. 18), Sσ(t) (green,
cf. Eq. 46), Sσ0

(t) (blue, cf. Eq. 44), C(t) (dotted red, cf. Eq.
57) and experimental data7 (dotted light blue). While Sσ0

(t)
is a simple mono-exponential curve, Sσ(t) already shows the
typical differentiation into two distinct time domains. The
addition of rotational motion in SΣ(t), i.e. taking whole Σ(ω),
changes the curve only slightly. Comparison to Sexp(t) (cf.
Ref. 7) and C(t) shows, that the solvation response function
predicted by the RFCM decays too fast.

values calculated for the three systems studied here are
0.402 S/m, 0.279 S/m and 0.069 S/m for EMIM+BF−

4 ,
EMIM+TfO−and BMIM+BF−

4 , respectively. Sσ0
(t) is a

mono-exponential function (see Eq. 44 and Fig. 2). This,
however, does not reflect the typical two time regimes of
the solvation response function in ionic liquids.

The next logical step is the full frequency-dependent
conductivity σ(ω). In fact, this extension already gener-
ates two time regimes in the solvation response function,
as can be seen in Fig. 2 and Table I. When compared to
the mono-exponential function typical for the static con-
ductivity, Sσ(t) already has a shape that can be modeled
by the fit function Eq. 50. As the actual amplitudes
derived from the fit are almost equal, we are facing a
one-to-one mixture of an exponential and a KWW func-
tion.

With the above description, the essentials of transla-
tional motion are represented within the RFCM. In order
to include rotational motion, we replace 4πiσ(ω)/ω by
Σ(ω) and use Eq. 18. This changes S(t) quantitatively,
but not qualitatively, as can be seen in Fig. 2 and Table
I. The inclusion of ǫ(ω) − 1, i.e. the change from Sσ(t)

to SΣ(t), changes the fit parameters (cf. Eq. 50) only to
a minor degree, except for the change in β in the case of
EMIM+TfO−. This shows in a compact way the impor-
tance of ǫ(ω) for EMIM+TfO−, which is evident from its
spectrum in Fig. 1.

2. The mean relaxation time

 0

 1

 2
EMIM+BF4

-

 0

 1

 2

 3

Q
X
(ω

)

EMIM+TfO-

 0

 5

 10

10-5 10-4 10-3 10-2 10-1 100 101

Frequency ω / THz

BMIM+BF4
-

 0

 1

X(ω)=Σ(ω)
X(ω)=4πiσ(ω)/ω

X(ω)=4πiσ0/ω

 0

 1

R
X
(ω

)

10-5 10-4 10-3 10-2 10-1 100 101 102
 0

 1

Frequency ω / THz

FIG. 3. The left column shows the integrands QX(ω) with
X(ω) = {Σ(ω), 4πiσ(ω)/ω, 4πiσ0/ω} (cf. Eq. 53). The zero-
frequency limit corresponds to the time integral T (see Eq.
22). The right column shows the running integral RX(ω) of
the corresponding curves in the left column (see Eq. 54). The
last values of these integrals correspond to ∆UX(0) and are
the amplitudes in Eq. 21.

The qualitative description of the time dependence of
S(t) given above is now accompanied by a quantification
in terms of the mean relaxation time τ (cf. Eqs. 21,
22 and 34). Thus, for the calculation of τ one needs
the time integral of ∆U(t), which corresponds to the
zero-frequency limit in Eq. 23, as well as the amplitude
∆U(0), given by the integral in the frequency domain
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(see Eq. 34). The respective integrand

QX(ω) =
1

ω

X(ω)

X(ω) + 1 + ǫc
2

(53)

and its running integral

RX(ω) =

∫ ω

0

QX(ω′)dω′ (54)

are shown in Fig. 3 for the three cases X(ω) =
{Σ(ω), 4πiσ(ω)/ω, 4πiσ0/ω}. The integrands in the left
column of Fig. 3 are different, but their zero-frequency
limit, i.e. the time integral T, is the same. This con-
firms numerically the analytical results found in Secs.
II B and II C. The running integrals RX(ω) are shown
on the right side of Fig. 3. Their asymptotic limits give
the amplitudes ∆UX(0). In accordance with Sec. II C,
∆Uσ0

(0) and ∆Uσ(0) both are unity and ∆UΣ(0) can be
calculated from Eq. 37, which can be rewritten as

1

∆UΣ(0)
=
ǫc + 2ǫ∞
ǫc + 2

= (55)

=1 +
2(ǫ∞ − 1)

ǫc + 2
. (56)

In a system consisting of non-polarizable molecules, i.e.
ǫ∞ = 1, the amplitude also becomes 1/∆UΣ(0) = 1.
Consequently, at all three levels of complexity the mean
relaxation time becomes the very same. In the present
case, though, the simulations were performed with a po-
larizable force field characterized by the following opti-
cal dielectric constants ǫ∞: 1.749 (EMIM+BF−

4 ), 1.906
(EMIM+TfO−) and 1.742 (BMIM+BF−

4 ). This leads to
amplitudes lower than 1 (see Fig. 3) and thus enhances
the mean relaxation times by about 40-50% . Inspect-
ing Eq. 56 shows that only the asymptotic value of ǫ(ω)
enters the amplitude. Thus, the complete spectrum ǫ(ω)
is diminished by the dielectric conductivity 4πiσ(ω)/ω,
when considering the mean relaxation time.

The mean relaxation times of Sσ0
(t) and Sσ(t) are

identical, as both, the time integral T as well as the am-
plitudes are equal (see Fig. 3). In other words, the static
conductivity describes Sσ(t) exactly on the average, but
not in detail.

3. Comparison to simulated and experimental solvation
response functions

So far, our considerations of the solvation response
function were limited to the framework of the reaction
field continuum theory. Now, we contrast these results
with experiment7 and simulation. In the latter case, we
do not refer to the non-equilibrium simulation, but we
have calculated10 the solvation response function from
equilibrium molecular dynamics (MD) simulation data
as the time correlation function

C(t) =
〈δ∆U(0)δ∆U(t)〉

〈δ∆U(0)2〉
, (57)

where δ∆U(t) describes the fluctuations of the solvation
energy difference between the two electronic states of the
solute. The results are shown in Fig. 2 in comparison to
the triple of continuum-based functions and experimen-
tal data.7 The pair of the directly calculated functions
C(t) (see Eq. 57) and those computed indirectly via in-
serting simulated dielectric spectra into the reaction field
continuum model behaves much like their experimental
analogues (cf. Fig. 9 of Ref. 7): The simple contin-
uum model gives a solvation response function with the
characteristic separation into two time regimes. The fast-
decaying sub-picosecond regime of the solvation response
is modeled rather well for EMIM+BF−

4 and BMIM+BF−

4 ,
but not for EMIM+TfO−, while the long-time regime is
decaying much too fast in all three liquids. The striking
similarity of curves derived from either the experimental
or computational spectra demonstrates that deviations
are almost independent of the source of the dielectric
spectrum, but rather show up the limitations of the re-
action field continuum model. Table I lists the fit pa-
rameters used to describe the various solvation response
functions calculated from the continuum model in com-
parison to the linear response time correlation function
used in Ref. 10 and experimental data.7

4. Retarding relaxation within the framework of RFCM

Both in simulation and experiment7,32, RFCM cor-
rectly models the dualistic shape of the solvation response
function in a qualitative way. However, at the quantita-
tive level clear deficiencies of the model theory are visi-
ble. In particular, in the long-time regime the solvation
response function decays too fast. Eqs. 33 and 45 offer a
possibility for retardation. The time integral TX repre-
sents the area under the curve ∆UX(t) and is thus pro-
portional to the mean relaxation time. For a monotonic
time function, any enhancement of its integral automati-
cally elevates the whole curve. Therefore, the parameters
ǫc and σ0 entering TX are a direct route to manipulate
S(t) both in its shape and its integral properties. At the
experimental side an effective conductivity σeff

0 = σ0

2.4

was determined for a series of ionic liquids.6,32 In order
to be consistent with these findings, we use the same scal-
ing factor here. The results are shown in Fig. 4 (green
curves). A further deficiency of the RFCM is the fact
that structural and electrostatic properties of the solute
do not enter at all, if ǫc = 1, meaning that the solute
is not polarizable. An increase in ǫc corresponds to en-
hancing the polarizability of the solute. Assembling the
molecular polarizability of C153 from its atomic polariz-
abilities according to Ref. 51 and converting it to ǫc via
the Clausius-Mosotti equation we get a tentative value
of ǫc = 3. Therefore, Fig. 4 shows curves for the triple
ǫc = 1, 2, 3. The value ǫc = 2 was included, because it
was used in experimental studies.6–9,32

As can be seen in Fig. 4, both, a higher ǫc as well as
using σeff

0 instead of σ0 leads to an elevation of S(t).
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TABLE I. A list of all fit parameters used to describe the different variants of SX(t), Sexp(t) and C(t). The value of ǫc describes

the polarizability of C153 within the RFCM (see Eq. 9). σeff
0

= σ0/2.4 denotes an effective, empirically determined6,9,32 static
conductivity. Graphical representations of the functions listed here can be found in Figs. 2, 4 and 6.

ǫc σ0/σ
eff
0

a τ1 / ps τ2 / ps β τX / ps

EMIM
+
BF

−

4 Sσ0
(t) 1 σ0 1.0 2.63 - - 2.63

Sσ(t) 1 σ0 0.55 0.138 3.41 0.58 2.63
SΣ(t) 1 σ0 0.42 0.189 4.27 0.58 4.08
SΣ(t) 2 σ0 0.37 0.209 4.95 0.60 4.95
SΣ(t) 3 σ0 0.33 0.225 5.69 0.61 5.83

SΣ(t) 1 σeff
0

0.45 0.206 9.88 0.54 9.75

SΣ(t) 2 σeff
0

0.40 0.232 11.8 0.55 11.8

SΣ(t) 3 σeff
0

0.37 0.256 13.8 0.57 13.9
C(t)10 - - 0.45 0.238 217 0.40 397
Sexp(t)

7 - - 0.55 0.269 87.2 0.52 73.3
Sell(t) 1 σ0 0.46 0.177 3.94 0.58 3.58
Sa
ell(t) 1 σ0 0.46 0.176 3.93 0.58 3.58

Sb
ell(t) 1 σ0 0.43 0.186 4.19 0.58 3.95

Sc
ell(t) 1 σ0 0.36 0.212 5.08 0.60 5.11

EMIM
+
TfO

− Sσ0
(t) 1 σ0 1.0 3.79 - - 3.79

Sσ(t) 1 σ0 0.50 0.147 4.53 0.58 3.79
SΣ(t) 1 σ0 0.48 0.169 5.81 0.50 6.18
SΣ(t) 2 σ0 0.43 0.187 6.59 0.51 7.44
SΣ(t) 3 σ0 0.39 0.201 7.48 0.52 8.70

SΣ(t) 1 σeff
0

0.55 0.193 15.7 0.48 14.7

SΣ(t) 2 σeff
0

0.51 0.223 18.7 0.50 17.7

SΣ(t) 3 σeff
0

0.48 0.252 21.8 0.51 20.7
C(t)10 - - 0.32 0.285 227 0.37 646
Sexp(t)

7 - - 0.45 0.233 277 0.49 317
Sell(t) 1 σ0 0.52 0.158 5.44 0.49 5.48
Sa
ell(t) 1 σ0 0.52 0.158 5.43 0.49 5.46

Sb
ell(t) 1 σ0 0.49 0.167 5.71 0.50 6.00

Sc
ell(t) 1 σ0 0.42 0.189 6.74 0.51 7.67

BMIM
+
BF

−

4 Sσ0
(t) 1 σ0 1.0 15.2 - - 15.2

Sσ(t) 1 σ0 0.58 0.161 27.6 0.68 15.2
SΣ(t) 1 σ0 0.53 0.196 38.5 0.70 23.2
SΣ(t) 2 σ0 0.48 0.222 43.7 0.72 28.2
SΣ(t) 3 σ0 0.44 0.245 48.9 0.73 33.2

SΣ(t) 1 σeff
0

0.56 0.233 99.7 0.71 52.6

SΣ(t) 2 σeff
0

0.52 0.275 113 0.73 63.5

SΣ(t) 3 σeff
0

0.49 0.319 127 0.76 74.0
C(t)10 - - 0.40 0.245 1260 0.31 6070
Sexp(t)

7 - - 0.38 0.266 202 0.52 233.7
Sell(t) 1 σ0 0.56 0.181 35.7 0.69 20.4
Sa
ell(t) 1 σ0 0.56 0.181 35.6 0.69 20.3

Sb
ell(t) 1 σ0 0.53 0.192 37.8 0.70 22.5

Sc
ell(t) 1 σ0 0.47 0.226 44.7 0.72 29.1

However, the influence of ǫc is focused on short and
medium times, while σeff

0 mainly affects the long-time
domain. Thus, simultaneously increasing ǫc and using
σeff
0 allows to manipulate S(t) on the whole time scale.

The best example is BMIM+BF−

4 , where σeff
0 combined

with ǫc = 3 gives reasonable agreement with experimen-
tal curves. A similarly good agreement is found in the
case of EMIM+BF−

4 , while for EMIM+TfO−the improve-
ment is largely confined to the initial region of S(t).

Table I lists the fit parameters and mean relaxation

times τX (last column) for SΣ(t) as a function of ǫc and
σ0. A stringent feature across the three liquids studied
here is that the variation in ǫc and/or σ0 primarily affects
τ2, while β and the amplitude a stays almost constant
and τ1 shows only modest change. Although numerically
evaluated the mean relaxation times τX exactly follow
Eq. 38. Approximately, τ2 also follows this relation.
However, this comes from the special values of param-
eters β and a. For the KWW part of the fit function
the contribution to the mean relaxation time is given by
〈τ〉 = ((1−a)/β)Γ(1/β)τ2. If β and a are close to 0.5, as
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FIG. 4. Variation of ǫc from 1 to 3 in combination with
σ0 (black curves) or σeff

0
= σ0/2.4 (green curves, for the

factor 2.4 cf. Refs. 6, 32 and 9) in comparison to results
from simulation10 (red dotted line) and experiment7 (blue
dotted line). Increasing ǫc lifts the curves mainly for short

and medium times, while using σeff
0

instead of σ0 slows down
the decay in the long-time domain.

is the case for EMIM+BF−

4 and EMIM+TfO−, τX ≈ τ2.

5. Linking the time behaviour of S(t) with the imaginary
part of the dielectric spectrum

Although usually substracted, the conductivity hyper-
bola 4πiσ0/ω is an essential feature of the imaginary
part of the dielectric spectrum of conducting systems.
Within the framework of RFCM, we have learned above
in Eq. 41 that the conductivity hyperbola has to be in-
cluded to avoid divergence of the time integral. As can
be seen in Fig. 5 this has dramatic consequences for
Im[Σ(ω)] = Σ′′(ω): In the low-frequency region of the
spectrum the intrinsic part Σ0(ω) is completely swamped
by the hyperbola, as its values exceed those of Σ0(ω) by
many orders of magnitude. The effect that the peaks
at low frequencies do not significantly contribute to the
RFCM can also be observed in Fig. 3, where the inte-
grands in the left column begin to differ only beyond a
certain frequency threshold and the zero-frequency limit
is determined only by the static conductivity (cf. Eqs.
29-33 and 45). In contrast, this is not the case in the
high-frequency region of the spectrum, which is the same

 0

 1

 2

 3

 4

 5

EMIM+BF4
-Σ0(ω)

Σ0(ω)+4πiσ0/ω

Σ0(ω)+4πiσ0
eff/ω

1/τ2 {σ0}

1/τ2 {σ0
eff}

 0

 1

 2

 3

 4

Im
[Σ

0(
ω

)]

EMIM+TfO-

 0

 1

 2

 3

 4

10-5 10-4 10-3 10-2 10-1 100 101 102

Frequency ω / THz

BMIM+BF4
-

FIG. 5. The imaginary part of Σ0(ω) by itself (black curve)
and after addition of the conductivity hyperbola using either
the unscaled σ0 (blue curve) or the scaled σe

0ff = σ0/2.4 (red
curve). The two curves including the static conductivity di-
verge quickly as ω becomes smaller. The fine structure of the
peaks at low frequencies (ω < 10−2 THz) is quickly dimin-
ished by the hyperbola, especially as this graph is plotted on
a semilog scale. The vertical dotted lines mark ω2 = 1/τ2,
when either using the unscaled conductivity σ0 (dashed blue
line) or the scaled σe

0ff (dashed red line).

for Σ0(ω) and Σ(ω). Here, the characteristic feature of
the spectra of all three systems is a peak at ≈ 4 THz. In
the time domain this corresponds to a relaxation time of
≈ 0.25 ps. This value is close to the τ1 values in Table
I, which shows only modest variation across systems and
model parameters.

As illustrated by Fig. 5 a threefold partitioning of
the frequency range is possible: Σ(ω) ≫ Σ0(ω), Σ(ω) ≈
Σ0(ω) and Σ(ω) = Σ0(ω), classified low, medium and
high in the following. In this medium region, the fine
structure of Σ0(ω) emerges to an extent depending on
the value of the static conductivity. Using σeff

0 instead
of σ0 shifts the medium region towards lower frequen-
cies. Consequently, characteristic features of Σ0(ω) be-
come noticeable in Σ(ω). This goes along with the retar-
dation of S(t) (cf. Fig. 4) , which can be focused on τ2,
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as we have learned above (cf. Table I). We emphasize
that τ2 and (the almost constant) β from the KWW part
of the fit function describe a stretched exponential rep-
resenting the superposition of many exponentials. The
corresponding frequency ω2 = 1/τ2 is given as a verti-
cal dotted bar in Fig. 5 for σ0 and σeff

0 with ǫc = 1.
In fact, ω2 marks the beginning of the high-frequency re-
gion, where the differences between Σ0(ω) and Σ(ω) have
disappeared. When using σeff

0 instead of σ0, ω2 shifts
downwards synchronously with the conductivity hyper-
bola.

Taking the arguments above together, one understands
why the RFCM produces reasonably good agreement in
the short-time regime, while decaying too fast for longer
times. In particular in the case of EMIM+TfO−, Σ(ω)
lacks spectral information of Σ0(ω) across a wide fre-
quency range, which cannot be repaired sufficiently by
rescaling σ0. As the latter is considerably lower for
BMIM+BF−

4 when compared to the other two systems, a
wider range of the spectrum is covered by Σ(ω). There-
fore, in this case RFCM agrees much better with simula-
tion and experiment.

C. Anisotropy in charge distribution and shape

All above considerations refer to dipolar solute en-
closed in a spherical cavity. Within the RFCM the dipole
moment and the radius of the sphere are, except for
ǫc, the only parameters describing the solute. As they
both enter as prefactors, they cancel out upon normal-
ization. In order to include more detailed features of
the solute, we modified RFCM in two ways. First, the
steric anisotropy of the solute was modeled by replacing
the spherical cavity with an ellipsoid,39,43 resulting in Eq.
49. The principal axes of the solute were aligned with the
coordinate system and a bounding box parallel to these
axes was erected. This gave the relative lengths of the
axes a, b and c of the ellipsoid. Subsequently, a, b and c
were rescaled so that the volume of the ellipsoid equals
the Voronoi volume of C153, yielding a=7.00 Å, b=4.66 Å
and c=2.85 Å. The corresponding ellipsoidal shape factor
integrals41 are Aa=0.18, Ab=0.30, Ac=0.52. The change
in dipole moment upon excitation ∆~µ of the solute was
projected onto the principal axes, giving the components
∆µa=-1.24 eÅ, ∆µb=0.12 eÅ, ∆µc=-0.02 eÅ. Since ∆µa

exceeds ∆µb by an order of magnitude and ∆µc by an-
other one, the dipolar energy is essentially given by the
prefactor ∆µ2

a

abc . The only difference to the spherical cavity
comes from Aa 6= 1

3 . As can be seen in Fig. 6 and Table
I, the deviations from the spherical model are marginal.
Table I rationalizes that the a-axis of the ellipsoid essen-
tially determines the time dependence as a whole. This
comes from the fact that the a-axis and ∆~µ are almost
collinear. Thus, the solute behaves as if it were spherical.

A second possibility to include anisotropic features of
C153 is the inclusion of higher multipole moments of the
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FIG. 6. Solvation response function using the model with an
ellipsoidal cavity. The black curve shows the response using a
spherical cavity. The total response with an ellipsoidal cavity
in blue, the contribution of principal component a in green,
the contribution of principal component b in orange and the
contribution of principal component c in red.

solute in the RFCM, see Eq. 3. We have included the
quadrupole moment, however changes were marginal as
well (data not shown).

V. CONCLUSION

The basis of our investigations are the simulated
spectra of three selected ionic liquids, EMIM+BF−

4 ,
EMIM+TfO−and BMIM+BF−

4 , differing in the relative
weighting of translation (dielectric conductivity) and ro-
tation (dielectric permittivity). As we used a polarizable
force field, the behaviour at optical frequencies could be
extrapolated. The simulated spectra were converted to
the solvation response function S(t) within the frame-
work of the reaction field continuum model. While ex-
periments cannot separate the contributions from trans-
lation and rotation, simulated spectra allow for a detailed
analysis in this regard.

Our findings can be summarized as follows. If one
would use the dielectric spectra in the usual way, i.e.
without the conductivity hyperbola, the formalism of the
RFCM diverges, which was shown in particular for the
mean relaxation time. Therefore, inclusion of the static
conductivity is essential. Taken alone, it would give a

Page 10 of 12Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



11

mono-exponential solvation response function. Proceed-
ing from the static to the frequency-dependent conduc-
tivity already gives a qualitatively correct shape of S(t).
Taking the whole Σ(ω), which also includes rotation, only
marginally changes the shape of the function. This shows
very clearly the dominant role of the conductivity, i.e. of
translational motion, a feature already encountered in
previous studies.6,7,10,32,34

In accordance with experimental studies,6–9,32 our sim-
ulations confirm that the RFCM predicts a too fast de-
cay of S(t) at longer times. We found that this can be
traced back to a fundamental property of the dielectric
bahaviour of conducting systems. In the low-frequency
region of the imaginary part of Σ(ω) the conductivity hy-
perbola 4πiσ0/ω suppresses the fine structure of all other
contributions represented by Σ0(ω). Generally, we used a
fit function comprised of a mono-exponential describing
the short-time regime and a KWW function representing
the long-time behaviour. The inverse 1/τ2 of the KWW
relaxation time marks the onset of the region of diver-
gence between Σ(ω) and Σ0(ω).

For non-polarizable systems, where ǫ∞ = 1, the mean
relaxation time of S(t) is the very same, irrespective of
the level of complexity, 4πiσ0/ω, 4πiσ(ω)/ω or Σ(ω). It
is exclusively determined by the inverse of σ0 as well as
by the value of the cavity dielectric constant ǫc. Adapting
these parameters, the resulting S(t) can be improved not
only in its integral properties, but also in its functional
shape. However, this remedy is only partially success-
ful and depends on the system under consideration. We
suggest that the extent of improvement depends on the
size of that portion of the imaginary part of Σ0(ω) that
is suppressed by the conductivity hyperbola. In fact, for
EMIM+TfO−the deviations are the lergest.

In the RFCM all parameters except for ǫc charac-
terizing the solute cancel out upon normalization. We
have tried to introduce more solute-specific features by
considering the anisotropy of the solute in shape and
charge distribution. The spherical cavity was replaced
by an ellipsoid and the dipole moment was augmented
by the quadrupole moment. However, within the RFCM
anisotropic features of the solute do not create substan-
tial changes in S(t).
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