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The derivative discontinuity is a key concept in electronic structure theory in general and density
functional theory in particular. The electronic energy of a quantum system exhibits derivative
discontinuities with respect to different degrees of freedom that are a consequence of the integer
nature of electrons. The classical understanding refers to the derivative discontinuity of the total
energy as a function of the total number of electrons (N), but it can also manifest at constant
N. Examples are shown in models including several Hydrogen systems with varying numbers of
electrons or nuclear charge (Z), as well as the 1-dimensional Hubbard model (IDHM). Two sides of
the problem are investigated: first, the failure of currently used approximate exchange-correlation
functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic
structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate
functionals, including hybrids, miss the derivative discontinuity, leading to basic errors that can be
seen in many ways: from the complete failure to give the total energy of Hs and H; , to the missing
gap in Mott insulators such as stretched Hs and the thermodynamic limit of the 1IDHM, or a
qualitatively incorrect density in the HZ molecule with two electrons and incorrect electron transfer
processes. Description of the exact particle behavior of electrons is emphasized, which is key to
many important physical processes in real systems, especially those involving electron transfer, and

offers a challenge for the development of new exchange-correlation functionals.

I. INTRODUCTION

The total energy of a system of electrons moving in an
external potential, vext(r), in density functional theory
(DFT) is given by

Elo] = Tulo] + / (Ve (F)dr + Jp] + Eucl] (1)

with explicit expressions for the non-interacting kinetic
energy,

1
Tolp] =D (] - §v2|¢i>a (2)
and Coulomb energy

Jlp] = // e d dr’. (3)

All the unknown complexity and many-body physics are
in the remaining term, the exchange-correlation func-

tional, Ezc[ ]. The orbitals used to construct the den-
sity, p(r) = X, |#:(r)|?, are solutions of the Kohn-Sham
equatlon

(—%VQ + Voxs () + 07 (1) + Uzc(r)> ¢i(r) = €igi(r) (4)
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f |5(rr2\dr
and the exchange-correlation potentlal is given by the
functional derivative of the exchange-correlation energy,
Vge(r) = %. This is exact Kohn-Sham DFT. With
the exact functional, the solution of the Kohn-Sham
equation (Eq. 4) to minimise the total energy (Eq. 1)
yields the exact energy and density of the Schrodinger
equation. However, the exact form of E,.[p] is unknown
and it is necessary to use density functional approxima-
tions (DFA). DFAs have both an approximate energy ex-
pression, EPFA and approximate Kohn-Sham potential,
vPFA (1), giving rise to approximate density, pPF(r), and
eigenvalues, {ePTA}.

where the Coulomb potential is v(

A. Density functional approximations

There are many different functional forms, starting
with semilocal functionals that range from the local den-
sity approximation (LDA) [1-3] to the generalized gra-
dient approximation (GGA) [4-8] and meta-GGA func-
tionals [9-12]. There are also many functionals that mix
in Hartree-Fock exact exchange in some manner, such
as hybrid functionals with a varying degree of constant
admixture of exact exchange, from B3LYP (20% HF) to
PBEO (25%) to M06-2X (58%) and M06-HF (100%) [13—
19]. In the last decade many functionals have emerged
that examine the idea of range-separation pioneered by
Andreas Savin, with functionals that include all the long-
range part of HF exchange (LC-BLYP, LC-wPBE) to
CAMB3LYP and wB97xd [20-23] to mixing in only the
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Figure 1: Calculated errors in thermochemical heats of
formation (red dots), reaction barrier heights (blue
dots), and also the errors of stretched HJ (black circle)
and stretched Hy (black dots) for a wide variety of
functionals.

short range part of Hartree-Fock [24, 25]. All these func-
tionals use only the occupied orbitals and fit in a general
sense to the first four rungs of Jacob’s Ladder of den-
sity functional approximations [26]. On the fifth rung
there have been some ideas that use the unoccupied or-
bitals and eigenvalues in functionals such as B2PLYP
[27], which mix in some MP2-like terms or the random
phase approximation (RPA), for example direct RPA
(dRPA) [28, 29] which uses the Coulomb only response
in the adiabatic fluctuation dissipation theorem.

Fig. 1 presents a similar figure to Fig. 8 of Ref. [30] to
illustrate the performance of a large range of functionals
for a set of thermochemical data (the heats of formation
of the G3 set [31]) and a set of reaction barrier heights
[32, 33]. For each of the functionals the calculated error
of an energetic quantity for every individual molecules is
represented by a single dot, in Fig. 1 each red dot is the
error in the heat of formation of a molecule in the G3 set
and each blue dot is one of the errors in a reaction bar-
rier height. The results for dRPA for thermochemistry
are only for the G2 set [34] and and the barriers are the
DHB24 set [35] and the results for these are taken from
the paper and supplementary information of Ref. [36] all
other calculations are post-B3LYP[30]. This allows one
to see the performance of many different functionals in a
global manner. In addition to the usual thermochemistry
and barriers for each individual functional we also plot
the errors for the two simplest molecules in the whole of
chemistry infinitely stretched H3 and infinitely stretched
H,. Individually these molecules are known to be dif-
ficult for functionals to describe with stretched HJ [37]
epitomising self-interaction error [38, 39] and stretched

2

H, the problem of static correlation[40]. The errors for
these two molecules, as one can see in Fig. 1, are very
large but importantly connected. One can see that in
changing functionals it is only possible to improve one
error but with a corresponding failure on the other, the
two seem connected. No functional is able to describe
correctly these two simple molecules. It is this connection
between different systems that epitomises the challenge
of making one functional that can act discontinuously for
different particle numbers, which is a markedly different
challenge to the usual atomization energies of the G3 set
or barrier heights.

While there has been much improvement in the predic-
tion of thermochemistry and reaction barriers over many
years, using many different ideas in functionals, there is
no functional that can reproduce the energy of these two
simple systems.This can be viewed in two ways: one, is
that the challenges of chemistry are not so related to the
electronic structure of stretched Hy/ H; which has lead
to the concept that DFT (and more specifically DFAs)
works well as long as one does not stretch bonds. It
is hoped hope that these errors do not cause a problem
in the systems under study. However, the other view is
that if current approximations are not able to correctly
describe these two simple systems, then it should not be
expected that for an unknown chemical they will give
the correct answer. The key is not to just focus on the
system, but on the behavior of the electrons themselves.
The errors in stretched Hy/HJ show a fundamental fail-
ure to correctly describe the electrons in those molecules
and, as such, the description of similar electronic struc-
ture in many other systems will also fail. If these errors
are not corrected, the inconsistencies of functionals will
continue to dominate over the true behavior of electrons.

B. Newer ideas in functionals

There are several groups working on new ideas in DFT,
which is greatly needed to address the qualitative prob-
lems that can be seen in simple model systems. For
example, Gori-Giorgi and coworkers are looking at the
strictly-interacting A — oo limit of the adiabatic connec-
tion for ideas based on strictly correlated electrons (SCE)
[41-43]. The concept of SCE can deal with problem of
stretched Hs. Other notions beyond DFT, such as par-
tition DFT, have been developed to attempt to tackle
some of these problems [44]. Burke and coworkers have
also looked at exact Kohn-Sham calculations in 1D us-
ing the exact functional by doing a DMRG calculation
via a density perspective [45]. The particle-particle RPA
(ppRPA) has been developed for electronic structure the-
ory by van Aggelen, Yang and Yang [46], showing a rela-
tion with ladder coupled-cluster [47, 48]. Becke also has
used real space ideas to address non-dynamical correla-
tion and delocalization error using inverse hole models
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[49, 50]. There are schemes to combat this issue beyond
DFT, from combining multiconfigurational methods with
DFT [51-53] to embedding methods in quantum chem-
istry [54-57] as well as ideas in density-matrix functional
theory. Hopefully, the culmination of these theories will
provide new functionals to be able to apply to a large
spectrum of chemistry and physics without the draw-
backs of many of the currently used functionals.

C. Challenge for DFAs

In this paper we highlight the difficult question of the
derivative discontinuity of the exchange-correlation func-
tional. The issue of describing the energies of stretched
H;r and stretched Hy with the same functional epitomises
this challenge in a clear manner, but there are many
other ways to the view the problem. This is a much
larger issue than just that of stretching molecules, it is
to correctly describe the energy of the electrons in all sit-
uations. An improved functional should be able to accu-
rately describe the general behaviour of electrons, espe-
cially in interesting physical processes where competing
effects act equally. This is the key problem to tackle, so
that DFT calculations can describe the important chemi-
cal reactions and responses to electric and magnetic fields
that are needed for the correct understanding of the be-
haviour of electrons in enzyme catalysis, Li-ion batteries,
solar cells and many other technological applications.

II. DERIVATIVE DISCONTINUITY OF THE
ENERGY VERSUS NUMBER OF ELECTRONS

The famous paper from Perdew, Parr, Levy and Bal-
duz Jr in 1982 [58] showed that the energy for a system
with fractional electron number is given by a straight line
connecting integer electron numbers

E(N+6) = (1—0)E(N)+6E(N+1)  (5)
pn+s(r) = (1=08)pn(r) + dpna(T). (6)

The energy and density are piecewise linear with straight
lines connecting the integer points. This means that,
at the integers, both the energy and density show (or
can show) derivative discontinuities. In most situations
there is a large discontinuity in the density on changing
electron number. This is especially true in closed shell
molecules where the density difference between last elec-
tron added (given by py—pn—1) is very spatially different
from where the next electron is added (pny+1 — pn)- Or,
in other words, when the frontier orbitals are spatially
(and energetically) different.

We will focus on understanding manifestations of the
derivative discontinuity in the total energy of integer sys-
tems. However, much of the understanding of the DD is

often related to the exact Kohn-Sham potential, which
was shown by Levy and Perdew [59] to undergo a jump
by a constant when passing through the integer. This
constant, C, is the derivative discontinuity, as ¢ — 0

vpe “(r) = vp(r)
oNFe(r) = ol (r) + C.

This can be confusing to understand. For example, for a
functional such as LDA, what does it matter if the po-
tential is shifted by a constant? If that shifted potential
is put in to the Kohn-Sham equations Eq. 4, it will give
rise to identical orbitals and density, however the eigen-
values are shifted by a constant. If those orbitals and
density are put in to the energy expression Eq. 1 an
identical energy will be obtained. This means that there
is a discontinuous change only in our eigenvalues, not in
the total energy. This question is part of the challenge
of understanding the importance of exact conditions in
DFT, in this case the relation between the derivative dis-
continuity and the energy expression in relation to the
potential. This whole discussion is fraught with prob-
lems, but in this paper we will cement our understand-
ing by finding molecules (or model systems) where these
questions become clarified. In this work we will elabo-
rate on the implications of the derivative discontinuity
for the energies of systems with integer number of elec-
trons, where there is no need to invoke eigenvalues, frac-
tional numbers of electrons or ensemble densities. Nev-
ertheless, it should be noted that orbital energies are of
course useful for many purposes [60-64], and ensemble
densities with fractional electron numbers have devloped
many constraints on the exact exchange-correlation func-
tional that are essential to approximate it accurately as
well as provoking many stimulating ideas [65-68].

A. Hydrogen atom and flat plane condition

Consider the energy of a hydrogen atom, going from
H* to H™, but with a possibly fractional number of elec-
trons, N = no +ng, 0 < N < 2 and also n, < 1 and
ng < 1. This is a very simple system to help under-
stand fractional numbers of electrons. The behavior of
the exact energy is given by the the flat plane condition,
which is a very stringent test of approximate functionals
[69]. Especially important is the understanding of the be-
haviour at N = 1, where two planes intersect giving an
energy derivative discontinuity, and to consider adding
and subtracting fractional numbers of electrons. More
complicated surfaces were also investigated in the work
of Gal and Geerlings [70].

DFAs really struggle to describe the flat plane and
they completely fail to recover the discontinuous be-
haviour seen in the exact behaviour of the energy at
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Figure 2: The total energy for different number of
electrons of an Hg cube separated by 1000 A (sketched
in inset (a)), with one basis function per Hydrogen,
calculated by FCI with up to 8« and 84 electrons.

N = 1. It is this failure that is connected to (or the
root of) all the subsequent failures that we see. For the
no = ng line, approximate functionals massively fail, as
they need to know that on going from F[0.4a,0.45] —
E[0.5,0.58] — E[0.6c,0.68] they have passed through
one electron. Compare this with the edge of the flat
plane, E[0.8«,08] — E[1.0c,,08]—E[1.0a,0.25], where
there is a change of the orbital being occupied (from «
to B) on passing through the integer. It is clear from
the energy expressions of Eq. 1 that without a change
of orbitals, the only term that can give the discontinu-
ity is the exchange-correlation term. This is where the
failure of current functionals and the challenge for fu-
ture functionals lie. There is also a large discontinuity in
the density with electron addition fi = py- — pg very
spatially different from electron removal f_ = pg — pg+.

1. Hydrogen atom with 1 basis function

To simplify the argument, it is useful to consider the
calculation of the Hydrogen atom just using a single basis
function. The main reason to do this is that now the den-
sity is constrained by the basis function to be completely
determined up to a factor such that it is no longer dis-
continuous on passing through N =1, with py- = 2ppg.
A secondary point is that the discontinuity in the energy
is in this case greatly enhanced if the basis function is
chosen as 7)(r) = %e‘r (note the discontinuity could be
reduced slightly if the basis function is chosen to be give
the correct density at N = 2, i.e. n(r) < /pg-(r)). Ad-
ditionally, the use of one basis function provides a direct
connection to the Hubbard model where there is also one
basis function per site. One of the features of the flat
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Figure 3: Energy of closed shell Hg with a minimal
basis set with 0, 2, 4, 6, 8, 10, 12, 14 and 16 electrons.
Methods such as RHF, dRPA, BLYP and B3LYP
completely miss any discontinuous behaviour in the
total energy and the exchange-correlation part, as
shown in the inset.

plane condition is that it considers fractional numbers of
electrons, which can lead to conceptual confusion as well
as technical challenges in extending methods to fractional
numbers of electrons|71, 72|. However, the flat plane con-
dition was developed to explain the root cause in func-
tionals of a general problem that affects real systems and
hence can be equally seen in integer systems.

Let us consider a cube of 8 Hydrogen atoms (each with
one basis function). For this system FCI calculations can
be easily carried out with different numbers of electrons
and spins as in Fig. 2, where we have used a very large
(1000 A) distance along the edge of the cube just for
simplicity. The density at each H atom is constrained
by the basis set so an increase in energy happens when
more than one electron per site is added; this is exactly
the same as in the Hubbard model, where the on-site re-
pulsion U causes an increase in energy past half-filling.
Of course if the basis set allowed, these electrons would
be unbound from the molecule (or as in a real H atom
they would be much more diffuse to slightly lower in en-
ergy). These issues could be circumvented by changing
the nucleus to be a He atom so that the attraction to
the nucleus makes it much more favourable in energy.
The real challenge for functionals it is to give the line
of discontinuity crossing 8 electrons (one electron per H
atom).

Let us just consider a single line in the flat plane with
N, = Ng, i.e. only closed shell systems. For this line
calculations with any functional can be easily carried out
as the density and orbitals are known. Fig. 3 shows the
performance of HF, dRPA, PBE, B3LYP and FCI. First,
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(a) Energy of the two site Hubbard model with different
numbers of electrons calculated with FCI, HF, MP2 and dRPA.
N =1 is like a stretched H2+ molecule and N = 2 is like a
stretched Ho and we can see how the errors of methods such as
HF, dRPA and MP2 lead to an incorrect gap at N = 2.

Figure 4

the FCI energy with 16 electrons (i.e. two electrons per
site) is the same as HF, as the basis set does not allow
for any electron correlation. As DFT functionals such as
PBE and B3LYP treat correlation in a completely dif-
ferent manner, they have a slightly lower energy at 16
electrons. We could have considered just exchange func-
tionals but have left in the correlation part so that one
can see the relatively small effect of dynamic correlation
functionals.

Overall, all the approximate methods completely fail
to reproduce any discontinuous behaviour of the total
energy, and have a smooth behaviour in contrast to the
correct answer of FCI. For less than one electron per site
the energy decreases by —0.5F) per electron, and for
more than one electron per site the energy increases by
0.13E}, per electron. This Hg molecule clearly illustrates
the same physics as fractional electron numbers in one
single H atom and also the same error of functionals, the
missing derivative discontinuity. This example illustrates
the important point that the missing derivative disconti-
nuity in functionals can manifest itself as an error in the
energy of integer systems.

B. The 1-dimensional Hubbard model

The Hubbard model [73] has a very simple Hamilto-
nian; for a set of sites, 7, with creation operators (c;r)
and annihilation operators (¢;) and the number operator
Nig = cj-acw, it contains only hopping terms to nearest
neighbour sites and an on site repulsion when occupied

by two electrons. It is specified by two parameters ¢ and
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(b) Energy of a 50 site 1-d periodic Hubbard model with
between 0 and 100 electrons calculated with HF, MP2 and
dRPA compared with the exact Bethe-Ansatz result. In
contrast to the exact Bethe-Ansatz result the DFA methods
completely fail to give any sort of discontinuous behaviour at
half-filling (50 electrons).

H= —tZ(c}LcH_l + h.c.) + UZnianw.

The physics depends only on the ratio U/t so we will fix
t = 1 and vary U. It is a much studied system in strongly
correlated condensed matter physics as it is a very sim-
ple model which describes interacting electrons in narrow
energy bands, and which has been applied to problems
as diverse as superconductivity, band magnetism, and the
metal-insulator transition. The interplay between the de-
localized hopping, ¢, and the localised repulsion, U, can
lead to interesting balance in physical behaviours. Here
we will examine the 1-dimensional Hubbard model (1D-
HM) to highlight the connection with Hydrogen atoms
and derivative discontinuities, especially that seen at half
filling. For the 1D-HM the exact answer is known in the
thermodynamic limit using the Bethe-Ansatz, for exam-
ple, the gap of the 1D-HM is given by [74]

= ()
EBA —_448 / S 5 ol S |
0 )y 2t expUz2)] "

where J; is the first order Bessel function.

The Hubbard model is symmetric around half fill-
ing (except that above half-filling an electron-interaction
term is included) i.e. for a system with 2N sites and
doping fraction of M/N

E[N — M] = E[N + M| + MU. (7)

This leads to a clear picture of the derivative discontinu-
ity that exists in the Hubbard model at half-filling, and
raises the question of how to include this physics in a
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functional. This is exactly the same as the question of
how to get a gap at the whole line in the flat plane condi-
tion of the Hydrogen atom. The key of how to generally
put this in a functional is distinct from how to predict the
gap of the Hubbard model, where of course the knowledge
of the system and the property in Eq. (7) can be more
specifically used to get the gap. For example, Capelle and
coworkers [75-77] have several specific functionals (BA-
LDA (LSOC, FVC)) and different parameterizations that
are able to give the gap of the Hubbard model.

We consider finite Hubbard rings (chains with periodic
boundary conditions) where exact results can be com-
puted using FCI. The size of the chain can be increased
and the large number of site limit corresponds to the
thermodynamic limit. The two site Hubbard model has
a very clear connection to infinitely stretched Hydrogen
molecule, with one electron this corresponds to H;‘ and
with two electrons to Hy. Fig. 4 shows the total energy
for two different Hubbard models, both with ¢ = 1 and
a large values of U = 10. The two site model is exam-
ined in Fig 4a. The performance of methods is exactly as
expected from calculations on stretched Hy /Hy; HF and
MP2 are good for one electron but fail for two electrons
(HF is too high due to static correlation error and MP2
diverges to —co as U is increased). dRPA performs bet-
ter for two electrons at the cost of a massive error for one
electron [78]. Here, dRPA would still give a gap at half-
filling (N = 2). However, as shown for the 50 site model
in Fig. 4b, the real problem arises in approaching the
thermodynamic limit, where methods such as HF, dRPA
or even MP2, smooth out and all semblance of a gap at
half-filling disappears. However, the exact Bethe-Ansatz
results give a very large gap. The complete failure of
functionals to give a derivative discontinuity means that
their results on the Hubbard model are completely phys-
ically incorrect as they miss one of the key behaviours of
true Hubbard electrons.

C. Fractional nuclei: HZ**}

A picture of the discontinuous behaviour of the elec-
trons is beautifully illustrated in the two electron exam-
ple of an Hs like molecule changing the nuclear charge
of one of the protons to be fractional, giving HZ{2¢} [79].
This encompasses a set of systems connected by a very
simple change to the one-electron potential. This is a
smooth and continuous change to the Hamiltonian, how-
ever, how does the electronic structure behave on these
small changes, does it also change smoothly? As demon-
strated in Fig. 5 the answer is, of course, that it depends.
In some cases, as illustrated in short bond distances of
HZ{2¢} | the electron also moves smoothly on this change.
However, at long distances, the electron moves discontin-
uously, being either on the H or the Z, it is not shared
between them.

6

HZ R=0.75A

RHF —— PBE

0 _— ) dRPA ——

0 0.5 1 15 2
Charge on Z/a.u

Figure 5: Occupation of Z atom, (nz), as the nuclear
charge on the Z atom is varied at four different bond
lengths comparing FCI and several different
approximate DFT functionals.

The true behaviour of electrons, as given by FCI cal-
culations, is simple to understand for HZ{2¢} at stretched
bond lengths. When Z = 0 there are two electrons on
the H atom (i.e. H™) and as Z increases an electron
moves from the H to the Z when the energy of putting
one electron on the Z atom gives a lower energy. This
occurs when the energy of one electron on the Z atom,
E= 7272, is lower than the negative of the electron affin-
ity of the H atom (EA(H)=-0.0277a.u.). This happens
at Z = 0.235. The atoms are too far apart to be bonded
and no fractional electron transfer happens, as can be un-
derstood from the PPLB straight line interpolation of the
true FCI energy of Eq. (5). Something similar happens
around Z = 1.67, where it becomes more energetically
favourable to have two electrons on the Z atom and none
on the H (at that point the electron affinity of the Z
atom crosses 0.5). This is simple and clear, it is just the
qualitative failure of functionals that is surprising.

Consider Z = 1, i.e. the Hy molecule, all functionals
get a qualitatively correct density due to the symmetry
of the problem. However, they respond completely in-
correctly to a small change in one of the atoms. DFAs
smoothly move electrons when in fact they should not
do so; no fractional charge is seen from FCI calculations.
This turns the well known static-correlation error in the
energy into a qualitative failure in the density. Approxi-
mate energy functionals are not able to describe the inte-
ger nature of electrons and they do not penalise correctly
the splitting up of an electron in these stretched cases.

The HZ{2¢} system is very interesting and has advan-
tages over very similar physics that can be seen in asym-
metric Hubbard models or Anderson models in that func-
tionals can be simply tested and their performance di-
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rectly analyzed in real space. The conclusion is that they
all fail for this problem. The reasons can be traced back
to the failure of functionals for the closed-shell line of the
flat plane (see Fig. 3). Along that line these functionals
have no clear knowledge that they have passed through
one electron and this translates into the problems seen
in the density for these systems. This example is very
illustrative but it is a slightly hard test as it requires
self-consistent determination of the density. For meth-
ods such as dRPA, which is usually evaluated with PBE
(sometimes HF) orbitals, it requires a self-consistent cal-
culation [80] to highlight a problem in the density rather
than energy, as carried out for Fig. 5 .

III. THE DERIVATIVE DISCONTINUITY AS A
CHALLENGE FOR. v,.(r)?

Our main view is that the derivative discontinuity must
be understood as a challenge for the energy, E,.[p]. For
example, in the HZ2¢} problem, a functional that cor-
rectly gives the energy for the transfer of an electron
would also give a qualitatively correct electron density
and energy. For the set of HZ{2¢} systems, if the en-
ergy is wrong then the density will follow, giving rise to
a qualitatively incorrect transfer. An equivalent, but in
our view, confusing way to phrase this challenge is about
the Kohn-Sham potential. To illustrate this point take
the case Z = 1.5 for a stretched geometry as an example.
Let us ask the question what is the exact Kohn-Sham
potential that gives rise to integer number of electrons
on each atom. This is clear in the HZ{2¢} system, as we
have access to the exact Kohn-Sham potential, v,(r) and
Vze(r). This comes from a very simple rearrangement of
Eq. 4, substituting in the fact that the density is only
made of one orbital, ¢1(r) = /p(r)/2, giving rise to

_ Vi (Vp)?

velr) —er = e (8)
Vi (Vp)?

Uge(r) — €1 = 4 82 = Vext (1) —wu(r). (9)

In this case, the exact Kohn-Sham potential is directly
available from an exact density in a FCI calculation.
Many plots have been seen in the literature, in both
ground state and time-dependent analysis of the poten-
tial, for example [81-86]. The way to understand any
features of the potential is that they are present as a
consequence given a particular electron density, i.e. the
exact Kohn-Sham potential (Eq. 8) is just a restatement
of the density. This is shown in Fig. 6, where we just
evaluate Eq. 8 with an already minimised FCI density.
If the potential shows any bumps it is because it comes
from a density that gives rise to that structure, not the
other way around. Furthermore, what gives rises to such
a density is what is energetically favourable (for example,

ViC =15, RE10A —— 2

Figure 6: Kohn-Sham potential of HZ{2¢} for Z = 1.5
with a bond length of 10 A. The features of the
potential given by labels (1)-(5) are explained in the
text and the inset shows the number of electrons on the
Z atom for all HZ{2¢} systems.

to have one electron each end), so it is the energy that is
key.

Fig. 6 is produced by FCI calculation in a large
basis set, but it is completely understandable and the
same as that given by a density of the form p(r) =
nie~2" 4+ nye3(r=10) The divergences at the nuclei (la-

bels (1)) are because V2p goes as L. For an exponerzlt
2«

e~2°7 the potential at large r goes to vs(r)—e1 = a? =%,
so on the side of the H atom, e.g. label (2), it goes to
a value of +% and on the side of the Z = 1.5 atom it
goes to a value of —&—% at label (3). The bump in the mid-
dle at label (4) is where Vp goes to zero because of the
overlapping densities, and the second term on the RHS
of Eq. 8 disappears, so a value of roughly the average
of 12 and 1.5% is obtained. Finally, the change at label
(5) is because at long range the e~2" from the H atom
dominates over the e~3" behavior from the Z atom, and
from label (5) onwards the structure is a continuation
of the line approaching the bump at label (4). Under-
standing all these features in the potential is of course
relatively simple and known, and it should help to dispel
any mysterious nature of them.

We want to stress that the bump in the middle (at label
(4)) which has repeatedly been related to the derivative
discontinuity, is just because Vp goes to zero at some
point in between the atoms where the density is very
small, and this can even be thought of as a non-covalent
interaction (NCI)[87]. It is not related to any deeper
physics and in particular is nothing to do with stopping
electrons moving from one side to another. It should
also be noted that the one thing that is not determined
by this potential is the constants in front of the den-
sity (ny1 and ng), this always cancels out. As such, it
could be possible to have 0.8 electrons on the H atom
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and 1.2 electrons on the Z atom with an identical po-
tential (note that the Z atom density would not respond
to having more than 1 electron for the potential to re-
main unchanged). In general, these steps and bumps do
not stop the electrons moving, however, having a correct
energy functional does.

IV. UNRESTRICTED CALCULATIONS

Most of the problems we have highlighted to do with
the integer nature of electrons and the derivative disconti-
nuity are in fact well captured by unrestricted type meth-
ods. For example, the energies of infinitely stretched Hy
and infinitely stretched Hy are both given by UHF. As Ho
is stretched, there is at some bond distance a symmetry
breaking (at the Coulson-Fisher point) beyond which the
alpha and beta densities can be found each on one of the
atoms. Therefore, the spin density is incorrect but the
total density and energy are very good. Also for HZ{2¢}
UHF recovers a discontinuity, and even for the Hubbard
model UHF does very well, giving qualitatively correct
gaps for all values of U. Of course, there are other known
problems for UHF, such as stretching of Fy, for which
RHF gives a reasonable minimum in terms of geometry
but the minimum is actually above the dissociated atoms.
RHF also dissociates incorrectly due to static correlation
error and in this case the change to UHF does more than
just correct the infinite limit, it actually means that UHF
curve has no minimum [88] (the Coulson-Fisher point is
before the minimum in the RHF curve). For Fo one may
argue that a method such as UB3LYP gives a reasonable
representation of the stretching. Another similar exam-
ple is given by the stretching of O37[89)].

Another system that shows up a qualitative problem
of the UHF method is that of stretching of Hej. Here,
the problem is in symmetry breaking, as illustrated in
Fig. 7. Infinitely stretched He; with symmetry gives two
Hez* atoms. UHF would give two high an energy due to
its localization error (a concave behaviour of the energy
for fractional systems). However, this too high energy
is avoided by breaking the symmetry to give dissocia-
tion products of He and He™. This itself does not seem
wrong, but the examination of the dissociation curve in-
dicates that the symmetry breaking occurs at too short
bond lengths, leading to an incorrect smooth transfer of
electrons around 1.8 A. Also the UHF curve falls off far
too quickly compared to the FCI curve. This, of course,
is very similar to the symmetry breaking in the spin den-
sities seen in the UHF stretching of Ho, which is often
argued to be acceptable [90] as in Hy the total density
is not qualitatively wrong, whereas in the case of Heg+ it
is incorrect. For Hej, DFT methods such as UB3LYP
dissociate with half an electron on each atom but give a
completely wrong and much too low energy due to the
delocalisation error. Similar symmetry breaking by UHF

8

1F pw=—z=

(1) eueaeeesesm—") Symmetry Broken UHF —— |

Energy/Hartree

FCl ——
UHF with symmetry 7
_ Symmetry B‘roken UHF ——

1 15 2 25 3 35 4 45 5
R/Angstrom

Figure 7: Unrestricted Hartree-Fock stretching of He;
compared with FCI. Shown at the top is the difference
in charge between the two He atoms. FCI has
ACharge = 0 for all bond distances, however UHF
incorrectly breaks the symmetry at around 1.8A, with
an incorrect smooth transfer of half an electron from
one atom to the other.

can be seen in many systems, for example [91].

V. FRACTIONAL ELECTRON TRANSFER
COORDINATE

To understand in more detail the problem of the deriva-
tive discontinuity in HZ, let us consider the simplest case
of HZ stretched to large distance (like 1000ap). We now
examine the transfer of electrons from one end of the
molecule to another, in just one particular HZ system.
In a single basis function per atom calculation this is
very easy, as FCI gives just a trivial number of states.
Let us first look at the system with one electron, where
the FCI states are either one electron on the H, Uy with
energy Ey, or one electron on the Z, Uy with energy Ey.
Let us now consider a state that is a general coherent
sum of these, ¥, = v/a¥y + /(1 —a)¥z, 0 < a < 1.
As Uy and Uy are FCI wavefunctions (one is the ground
state the other is the first excited state), they are orthog-
onal and eigenfunctions of the many-body Hamiltonian,
so it is trivially obtained that E[V,] = aFy + (1 —a)Ey
and pa(r) = apu(r) + (1 — a)pz(r). This is very akin
to fractional numbers of electrons as given PPLB (Eq.
5), such that when « is varied the energy varies linearly
and the electron moves smoothly from the H to the Z. In
contrast to PPLB all possible values of electron transfer,
«, correspond to an integer system with one electron and
are represented by a wavefunction.

HZ with two electrons can be analyzed similarly. In
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Hartree-Fock ———
PBE ]

Hartree-Fock ———
PBE
FCl ——

Total Energy/Hartree
o
(o))
/

-0.5 -0.25 0 0.25 0.5
Electron Transfer Coordinate ()

(a) The HZ!'® system with Z = 1.2 for the wavefunctions

Wy = MW(O) +4/(% —a)¥q), with =1 <a <1 PBE

incorrectly gives a minimum at a = 0.24, which corresponds to a
qualitatively incorrect wavefunction with fractional charges on both
atoms.

Figure 8

this case, at the stretching limit, there are three singlet

-0.2
-0.4
-0.6
-0.8

Energy

-1.2

Number of electrons 1

" Electron transfer coordinate

(o)

Figure 9: The total energy of HZ with Z = 1.2 along the
coordinate of transferring electrons for 0 < N < 2. The
line in blue shows the energy at one electron and the
line in black at two electrons, the red lines correspond
to fractional number of electrons and are given by
PPLB. The left hand side of the picture is when all the
electron(s) are on the H atom and the right-hand side
when all the electron(s) are on the Z atom.

Total Energy/Hartree
o
o

_12 L L
-1 -0.5 0 0.5 1

Electron Transfer Coordinate (o)

(b) HZ{2¢} with Z = 1.2 along the electron transfer coordinate that

moves both electrons from the H atom at a = —1 to both electrons on

the Z atom at o = 1. For a > 0, ¥ = /(1 — a)¥ () ++/a¥(y), and

a<0%qy=+/(1—|a))¥q) + +/|a|¥(2). PBE and RHF both transfer

fractional numbers of electrons because of the incorrect shape of their

energy surfaces compared with the FCI energy surface for electron
transfer.

states with first order density matrices < 3 8 ), ( (1) ? )

00

02
to give these density matrices are eigenfunctions of the
Hamiltonian and orthogonal, so a linear combination of
them will give a linear combination of both density ma-
trices and energies. With more basis functions the idea is
similar but the analysis more complex as there are many
more possible states (one basis function excludes any ex-
cited states of the atoms).

Consider the case of HZ with Z = 1.2 from FCI and
compare it with a functional such as PBE, as shown in
Fig. 8. First, for one electron (HZ{'*}), where Hartree-
Fock and FCI are equivalent, there is a straight line in-
terpolation between the energies of the two atoms. Of
course, a minimization of the FCI leads to one electron
wholly on one side or the other, in this case the Z atom,
as it is much lower in energy. The behavior of the energy
with a functional such as PBE is qualitatively incorrect
for one electron, as it does not have the correct linear
straight line interpolation, but instead the energy varies
smoothly (almost parabolically) with electron transfer.
This leads to an incorrect minimum at around 0.26 elec-
tron on the H atom and 0.74 electron on the Z atom.
The same result could be found with the compatible frac-
tional calculations on each atom and piecing them back
together, however, it is very good to see it in an integer
electron system with a corresponding wavefunction. To

and . The FCI wavefunctions that reduce down
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summarise, in Fig. 8, PBE gives a good energy for the
ground state ¥ = ¥(9 (and also for the first excited state
v = \Il(l)) but incorrectly gives a much lower energy for
a wavefunction ¥ = 1/0.74%() 4+ /0.260 1),

For the two electron system (HZ{2¢}), FCI has a min-
imum with one electron on each atom (¥ () and two
excited states, one with two electrons on the Z atom
(¥(1)) and the other with two electrons on the H atom
(¥(9)) . The straight line interpolations to be considered
are between the ground state and first excited state and
between the ground state and the second excited state.
These are the lowest energy ones, a higher energy would
be given by the interpolation between the first and second
excited states. For any of these wavefunctions, the HF
and PBE energies can be trivially evaluated from the den-
sity matrix, given that Ts[p] for any two electron system
is the von-Weizséicker expression TYW[p] = [ (vs’; ((:>))2dr.
It is observed in Fig 8that both HF and PBE qualita-
tively fail to describe the electron transfer in this system.
The energy on electron transfer is incorrectly smooth for
both methods and with minima at the wrong values, HF
at 0.33 electron on the H and 1.67 electron on the Z atom,
and PBE with 0.4 electron on the H and 1.6 electron on
the Z atom. In terms of the wavefunction, PBE is able
to give a good energy for the excited states ¥ = U(1) and
U but due to its static correlation error PBE is unable
to give a good energy for ¥ = ¥(® . This means that PBE
gives an incorrect minimum at ¥ = /0.4%( +/0.60.
In general, density functional approximations favour an
incorrect fractional charge transfer. Understanding all
the possible states of this one systems is perhaps a much
simpler challenge than understanding many different sys-
tem (i.e. changing the molecule by changing Z) and yet
captures the same physics.

VI. PERSPECTIVES FOR THE FUTURE

The key picture of the derivative discontinuity of the
total energy is shown by FCI calculations in Figs 2 and
3, where the density increases smoothly but the deriva-
tive of the energy is discontinuous on passing through
one electron per site. Therefore, there is an intrinsic
discontinuity in the exchange-correlation term that is a
consequence of the particle nature of electrons. Approx-
imate functionals in the literature completely miss this
behaviour and the failure in the total energies is clear
as, for example, in the qualitative breakdown to describe
the energies of stretched Hy and stretched H2+ . This error
can be transformed into an error in the density as shown
in the two electron example, HZ{?¢} (Fig. 5). This leads
to qualitative failures to describe charge transfer, with
an artificial bias to fractionally transfer electrons. Re-
markably, this is seen in systems with integer number
of electrons characterized by a wavefunction, in contrast
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to the delocalization error typical of fractionally charged
systems.

It is clear that the problems caused by missing the
derivative discontinuity are not just about stretching
molecules, but it is the same physics that occurs in tran-
sition metal complexes, chemical reactions, or especially
in electron transfer processes. Our hope is that the use
of simple chemical model systems gives a more complete
understanding of the nature of all types of electronic be-
haviour that occur in the intrincate nature of electronic
structure.

The bumps of the exchange-correlation potential at
the bond regions, where the density is very small, have
been shown to have no effect on how electrons move and,
therefore, do not capture the challenge of the derivative
discontinuity. This illustrates the point that when the
understanding appears quite paradoxical, it is just a clue
that a deeper comprehension of the problem is needed.

We have highlighted the importance of the derivative
discontinuity as a challenge for the energy functional
at an integer number of electrons. We hope that un-
derstanding the examples given in this work can help
highlight the avenue for development of new exchange-
correlation functionals that contain the physics of the
derivative discontinuity and represent the integer nature
of electrons. This is needed so that DF'T can play its role
in helping tackle many important technological applica-
tions by correctly describing the movements of electrons
in systems such as batteries and solar cells, chemical re-
actions in proteins, and transition metal compounds.
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