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A finite-time thermodynamic model of ferroic refrigerators and generators, based on first order phase transformation, is

given. We use this model to evaluate a novel method of converting heat directly into electricity based on the martensitic

phase transformation accompanied by an abrupt change in magnetic ordering recently discovered [Srivastava et al., Adv.

Energy Mater., 2011, 1, 97]. In this paper, we study the efficiency and power output of this method. The formulas of efficiency

and power output in terms of material constants, design parameters, and working conditions are derived. The Clausius-

Clapeyron coefficient is shown to be important to the efficiency. The figure of merit, as a dimensionless parameter, of energy

conversion using the new method is introduced. It is shown that, as the figure of merit goes to infinity, the efficiency ap-

proaches the Carnot efficiency. Thermodynamic cycles of the new energy conversion method are optimized for a maximum

power output. The matching criteria between materials and working temperatures of such optimized cycles are derived.

Using these criteria, one can choose the most suitable materials at given working conditions, or decide the best working

conditions for available materials.

1 Introduction

Materials that can change their ferroic properties, such

as ferromagnetism, ferroelectricity and ferroelasticity, as

changing the temperature are often used to convert energy

between heat and other forms, e.g. magnetostatic, elec-

trostatic and elastostatic energy. The usage of this effect,

in the ferromagnetic regime, in refrigeration and electric-

ity generation was demonstrated by Warburg 1 and Tesla 2

(among others) already in 1800’s. Their works have latter

been named magnetocaloric effect and pyromagnetic gener-

ators, respectively. Later, the analogous concepts for ferro-

electricity, i.e. electrocaloric effect 3–5 and pyroelectric gener-

ators 6–8, emerged too. The thrust of ferroic energy conver-

sion for eco-friendly refrigeration applications was the dis-

covery of the so-called giant magneto- and electrocaloric ef-

fects 9,10. Also, a novel method of electricity generation us-

ing giant magnetocaloric materials has been demonstrated

by Srivastava et. al. 11. Examples of reviews on this class of

materials are Refs. 5,12–16. These giant ferroic-caloric ef-

fects originate in first order phase transformations, where

the ferroic properties and the entropy exhibit discontinuous

jumps 17,18. These first order phase transformations are gen-

erally martensitic (diffusionless, displacive) phase transfor-

mations, during which the intrinsic ferroic property having

a discontinuous jump is the ferroelastic strain. Inspired by

this fact, the concept of (giant) elastocaloric refrigerators 19

and ferroelastic (shape memory) generators 20 has also been

proposed and demonstrated.

In a nutshell, during a multiferroic martensitic phase

transformation, the material exchanges heat with the envi-

ronment through the entropy change, and exchanges mag-

netostatic, electrostatic or elastostatic energy through the

jumps of ferromagnetic, ferroelectric or ferroelastic prop-

erties. The interplay among these energy flows results in

applications of refrigeration and electricity generation. The

purpose of this paper is to develop a thermodynamic model

to evaluate the performance of these energy conversion

mechanisms, and the implication on materials develop-

ment and devices design for future improvements. Since the

thermodynamic analysis of heat engines and refrigerators

are almost completely analogous, we focus on the former

and assume that the extension to the latter is easy. In partic-

ular, we are going to study the efficiency and power output

of the new electricity generation method demonstrated by

Srivastava et al. 11.

Thermodynamic theories of ferroic-caloric materials aim

at predicting energy conversion performance using the data

from the two major classes of characterization techniques of

ferroic-caloric materials: direct and indirect measurements.

In a direct measurement, through precise calorimetry, the

materials response θ(F ) is measured, from which the quan-

tity ∆θ/∆F is obtained, where θ is the temperature and F is

the thermodynamic conjugate variable (driving force) of the

ferroic property, denoted X in this paper. For example, F

is the magnetic inductance if X is the magnetization. Since
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precise measurement of heat absorption and release is dif-

ficult in practice, an easier indirect method has also been

widely used. This method measures the material response

as a function X (F,θ). The underlying thermodynamic ar-

gument is the Maxwell relation ∂X (F,θ)/∂θ = ∂S(F,θ)/∂F ,

where S is the entropy. Due to this consideration of experi-

mental simplicity, this work, following our previous paper 21,

is based on the thermodynamic function X (F,θ) and the re-

sulting Gibbs free energy G(F,θ) which can be fitted 21 by in-

direct measurement data.

Since most of the existing thermodynamic models 6,7,21,22

of ferroic-caloric energy conversion are quasi-static in na-

ture, they cannot predict the power output. An consider-

ation of rate-dependence of the thermodynamic processes

of the system is necessary. The simplest rather acceptably

accurate finite-time thermodynamics is the endoreversible

thermodynamics proposed by Curzon and Ahlborn 23 (see

also Ref. 24–28). The terminology “endoreversibility”, as

proposed by Rubin 26, means that the irreversibility only

comes from the heat exchange between the working ma-

terial and heat reservoirs, while the working material in-

ternally still performs reversible processes. The losses due

to the finite rate of processes are located only in the inter-

action between the reversible subsystem and its environ-

ment. Van den Broeck et al. 29 proved that the efficiency for-

mula derived by Curzon and Ahlborn 23 (the C-A efficiency)

agrees with, without approximation, the theory of linear ir-

reversible thermodynamics, universally up to the quadratic

order in the deviation from equilibrium 30. In this paper,

we adopt the assumption of endoreversibility to establish a

finite-rate thermodynamic model that is capable of predict-

ing the power output of the new energy conversion method

(Sect. 2 and 2.3). Analytic formulas of rate-dependent ef-

ficiency and power output will be derived. A natural ap-

plication of endoreversible thermodynamics is the predic-

tion of cycles with maximum power output 31,32. We study

ferroic-caloric energy conversion cycles working at maxi-

mum power output (Sect. 2.3), with two possible heat trans-

fer mechanisms: i) convective heat exchange modeled by

the Newton’s law of cooling, like what Curzon and Ahlborn 23

did, and ii) radiative heating modeled by a constant heat-

ing power supply. By applying the results to the example of

ferromagnetic-ferroelastic materials (Sect. 3), we are able to

identify the essential parameters influencing the efficiency

and power output, such as the coefficient in the Clausius-

Clapeyron relation and the figure of merit. The dependence

of the figure of merit on the shape of the specimen is ex-

plored in Sect. 3.3.

A further question naturally arises here: which material

has the correct properties to perform the optimized (maxi-

mum power output) cycle predicted for given working con-

ditions? The key to the answer is the constitutive properties,

such as heat capacity 33, of the working material. By relat-

ing these parameters to the study on cycles working at max-

imum power, we obtain the matching criteria between the

devices (material properties + design parameters) and work-

ing temperatures for the best performance. Using these cri-

teria, one can choose the most suitable materials/devices

for the target working conditions, as well as decide the best

working conditions for the candidate materials/devices on

hand. These criteria are discussed in Sect. 3.4.

Before entering the main content of the paper, we want to

make a remark about hysteresis of first order (martensitic)

phase transformations in ferroic-caloric materials. Hystere-

sis is a loss of energy due to irreversible processes during

phase transformation cycles. It reduces the energy con-

version efficiency 34 and causes the functional degradation

of materials 35. Such a loss cannot be avoided by any de-

vice design strategy. An effective way of minimizing hys-

teresis relies on systematic material development. By tun-

ing the compositions of the alloy, the lattice parameters

can be made to satisfy the geometrical compatibility con-

dition λ2 = 1 36,37, where λ2 is the middle eigenvalue of

the transformation stretch matrix. The idea is that when

λ2 = 1, the stress field at the austenite/martensite interface

caused by lattice misfit is eliminated. 38,39 Experiments, e.g.

Ref. 35,40,41, have confirmed that this strategy leads to low

hysteresis, highly stable martensitic materials. The mate-

rial used as an example in this paper, the Ni45Co5Mn40Sn10

alloy, has λ2 = 1.0032 and a hysteresis as low as 6 ◦C 17.

Even in materials not satisfying λ2 = 1 by its intrinsic lat-

tice parameters, if the twin wall energy is low, they can form

self-organized (adaptive) nanoscale twin laminate whose

macroscopically average lattice satisfies λ2 = 1. 42 This has

been confirmed in both ferroelectric 43 and ferromagnetic 44

martensites. Therefore, in the rest part of this paper, we ne-

glect the thermal hysteresis in phase transformations, which

is in fact also consistent with the assumption of endore-

versibility mentioned above.

2 Thermodynamics of Phase Transformation

The thermodynamics of fully non-equilibrium processes is

still a difficult problem nowadays. Often, various assump-

tions are adopted to study finite-rate processes so that anal-

ysis analogues to that used in equilibrium thermodynam-

ics, e.g. Gibbs’ theory 45, can be used. In this paper, we val-

idate Gibbs’ picture of first order phase transformation by

adopting the assumption of endoreversibility 23,28. Hence,

we are able to model finite-rate – but not far away from

equilibrium – processes for energy conversion using phase-

changing multiferroic materials.
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2.1 Clausius-Clapeyron relation and thermodynamic cy-

cles

Let the ferroic property of a material is represented by an

internal variable X . Examples of X include magnetization

and electric polarization. Its thermodynamic working con-

jugate force is denoted F , i.e. the thermodynamic force cor-

responding to X . Examples of F include magnetic or elec-

tric field along the direction of magnetization or electric po-

larization. Thus, in the cases considered in the current pa-

per, X and F are both non-negative, as they are assigned

the same positive direction. One can also think them as the

magnitudes of X and F along a common direction. Choos-

ing the material as our thermodynamic system, the Gibbs

free energy is then defined by the following two Maxwell re-

lations:
∂G(F,θ)

∂F
=−X ,

∂G(F,θ)

∂θ
=−S, (1)

where θ and S are temperature and entropy of the material

respectively. According to Gibb’s theory, a first order phase

transformation occurs at the transformation temperature T

that satisfies

Gm(F,T (F )) =Ga(F,T (F )), (2)

where the subscripts “m” and “a” denote the low and high

temperature phases respectively, since we have martensitic

phase transformation as the model in mind. Note that, as

indicated by Eqn. (2), the transformation temperature de-

pends on the thermodynamic force. In general, we need the

explicit forms of Gm and Ga in order to solve this equation

for T (F ), which is called the Clausius-Clapeyron relation. Its

physical interpretation is the effect of the thermodynamic

force on transformation temperature. An example of such a

relation in the thermal-magnetic phase-transforming alloy

NiCoMnSn was given in Ref. 21.

A useful tool of analyzing the performance of an energy

conversion system is the temperature-entropy (T − S) dia-

gram, which depends on the constitutive properties of the

working material. Fig. 1(a) illustrates the typical constitu-

tive properties of a solid-solid phase-transforming material.

The fact that forward transformation offsets from the back-

ward one is due to hysteresis. Tas (resp. Tms) and Taf (resp.

Tmf) are called the austenite (resp. martensite) start and

finish temperatures. They could be slightly different from

the transformation temperature T determined by the Gibbs’

theory.

During a full (endoreversible) thermodynamic cycle, all

the state variables of the system, such as internal en-

ergy (temperature) and entropy, return to their initial val-

ues. Thus, its trajectory on the temperature-entropy plane

forms a loop. Suppose during a cycle the system (material)

changes its internal energy while doing work and absorb-

ing heat at the rate of Q, the first law of thermodynamics

gives the efficiency of converting heat into work output, as

defined by Carnot 46, and the average power output of one

full cycle as

η=
∫

C

Q d t

/∫

C

(Q +|Q|)/2d t , P =−
1

|C |

∫

C

Qd t , (3)

where C ⊂ [0,∞) is the time interval of a cycle.

Although the most efficient energy conversion cycles are

Carnot cycles, Rankine cycles and Ericsson cycles are in

practice more easier to perform 21, especially for phase-

transforming work agents. A Rankine cycle consists of two

constant force (isobaric) processes and two adiabatic pro-

cesses, as illustrated by the “red-black-blue-black" loop in

Fig. 1(b). Denote the two constant forces F+ and F− cor-

responding to heating and cooling processes, respectively.

In the rest of this chapter, subscripts + or − indicates the

variables associated with the isobaric heating or cooling re-

spectively. As shown in Fig. 1(b), a Rankine cycle is initiated

at the state (F+,Ts+) with Ts+ = Tas(F+). Then the specimen

is heated to the temperature Tf+, while F+ is fixed. Tf+ is

determined so that the system has the same entropy of its

third state (F−,Ts-), where Ts- = Tms(F−), so that we can adi-

abatically move the system to the latter state. The final pro-

cess is an isobarically cooling at F− to the temperature Tf-,

where Tf- is determined in the same fashion of determining

Tf+. An Ericsson cycle is obtained by replacing the adiabatic

processes (black branches in Fig. 1(b)) with the isothermal

and isobaric processes (green branches in Fig. 1(b)). Exam-

ples of such a Rankine cycle and an Ericsson cycle in the real

material Ni44Co6Mn40Sn10 were given in Ref. 21.

2.2 Ideal phase transformation systems

It is helpful to parameterize the Rankine cycle so that an-

alytic formulas of efficiency and power output can be de-

rived. For our purpose, we want the formulas capture the

main features of performance caused by phase transforma-

tions. These formulas can be used to guide material devel-

opment and device design. For this purpose, we introduce

the model of ideal phase transformation systems. This model

is based on the following four assumptions.

1. The entropy difference, ∆S = Sa(F,θ)−Sm(F,θ), is a con-

stant.

This assumption is true if both phases have the same

heat capacity at any temperature and under any ther-

modynamic force. Since we mainly consider solid-solid

phase transformation, this assumption is mild. Geo-

metrically, it means that, in the T −S diagram, the iso-

baric curves corresponding to each single phase (dot-

ted and dashed lines in Fig. 1(a)) are parallel to each

other. Under this assumption, the Clausius-Clapeyron
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higher than the plateaus whose heights correspond to

single phase heat capacities. Geometrically, the isobars

of single phases in T −S diagram become vertical lines

(see Fig. 1(c)).

This assumption, as seen in the forthcoming sections,

greatly simplifies the algebra, enables closed-form for-

mulas of efficiency and power output, and more im-

portantly reveals pivotal dimensionless parameters in

these complex multiphysics energy conversion sys-

tems. Nevertheless, we will discuss in Sect. 2.4 the cor-

rections of efficiency and power output when this as-

sumption is relaxed.

Based on these assumptions, both Rankin cycles and Er-

icsson cycles are equivalent to Carnot cycles (Fig. 1(d)).

A Carnot cycle originally has three degrees of freedom:

two temperatures and one entropy difference. Here, it re-

duces to two because of the constrains introduced by the

Clausius-Clapeyron relation (6). A convenient choice would

be (T+,T−) or (F+,F−). The efficiency defined by (3)1 be-

comes

η= 1−
T−
T+

=
C (F̄−− F̄+)

1−C F̄+
. (7)

Since 0 6 T̄− 6 T̄+, the Clausius-Clapeyron relation (6) re-

quires

C F̄+ 6C F̄− 6 1. (8)

This is trivial when C 6 0, but becomes a constrain on F̄±
when C > 0, that is, F̄+ 6 F̄− 6 1/C . Notice that the sign of C

is a material property.

Let the time of heating, cooling, and adiabatic processes

be t+, t−, t0 respectively. The power output defined by (3)2

is

P =∆X (F−−F+)/(t++ t−+ t0). (9)

Since only the values of T± enter into the efficiency (7), the

adiabatic switching between two thermodynamic forces is

irrelevant to the efficiency. It is also of little interest to the

power output: it only affects the denominator in (9), and

the effect is uncoupled to any other parameter. Common

treatments of t0 is either assuming that it is proportional to

t++ t−, as Curzon and Ahlborn 23 did, or simply neglecting

it, as we shall do in this paper. We still cannot compute the

power output until the heat transfer model is given, which

will be discussed in Sect. 2.3.

2.3 Heat Transfer and Power Output

We study rate-dependent cycles by specifying the heat

transfer methods for heating and cooling branches, in ad-

dition to prescribing the time evolution of the heat reservoir

(environment, ambient), τ(t ). In this paper, we focus on two

heat transfer modes of a Rankine cycle: both heating and

cooling are convective, and cooling is convective and con-

tinuous, while heating is radiative and periodic.

2.3.1 Convective heating and coolingIn the first mode

of heat transfer, the temperature of heat reservoir is set to be

a constant τ+ (reps. τ−) during the heating (reps. cooling),

shown as the process 12 (resp. 34) in Fig. 1(d). Thus, the

heating rate as a function of time is given by

Q I (t ) =
{

Q I
+ :=αh+(τ+−θ+), t ∈C+;

Q I
− :=αh−(τ−−θ−), t ∈C−.

(10)

C± denote the time intervals of heating and cooling

branches of a cycle, respectively. h± > 0 is the heat trans-

fer coefficient with unit of W/m2K, and α is the ratio of the

surface for heat exchange to the volume of specimen. Here,

we adopt the ideal system assumptions given in Sec. 2, so

the temperature of the specimen during heating or cooling

is constant too and equal to the transformation tempera-

tures under the given thermodynamic forces, i.e. θ+ = T+
and θ− = T−. Their relations to the thermodynamic forces

F+ and F− are also given in Eqn. (6). Clearly, we have the

constrain τ− 6 θ− 6 θ+ 6 τ+. The total heat absorbed or

emitted during heating and cooling are the corresponding

latent heat ℓ±, respectively. According to the conservation

of entropy, as a consequence of endoreversibility (also As-

sumption. 1), we have

ℓ+/θ+ = ℓ−/θ− = ℓ/T0 =∆S. (11)

Fixing τ+ and τ−, the power output can be maximized

over θ+ and θ−, and the maximizer is given by (see also Ref.

23),

θ± =
1+

p
h′τ′

1+
p

h′
p
τ±τ+, (12)

where τ′ = τ−/τ+ and h′ = h−/h+. Thus, in order to make a

Carnot cycle working at maximum power output, the ther-

modynamic force should be set as F̄± = (1−θ̄±)/C . The max-

imum power output and corresponding efficiency and fre-

quency are

P
I
max =αh+τ+ (1−

p
τ′)2

/

(1+
p

h′)2, (13a)

ηI
max = 1−

p
τ′, (13b)

f I
max = (αh−T0/ℓ)/(1+

p
h′τ′). (13c)

This maximizer is universal to all endoreversible ther-

modynamic cycles under the working condition τ±. For

our phase-transformation system, the only requirement is

that if the Clausius-Clapeyron coefficient C is positive (resp.

negative), then θ+ (resp. θ−) must be greater (resp. less) than

the reference transformation temperature, T0.
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2.3.2 Radiative heating and convective coolingIn the

second heat transfer mode, the heat reservoir is kept at

the temperature of τ all the time, while a radiative heat-

ing with the power of q , with the unit of W/m2, is applied

during only the heating processes of cycles. Modeling ra-

diative heating by a constant power is a simplification of

the Stefan-Boltzmann law, given the temperature of the ra-

diation source is much higher than any possible tempera-

ture the material could experience in a cycle, such as solar-

thermal or heating lamps. Then, the heating rate is given by

the following piecewise constant function of time.

Q I I (t ) =
{

Q I I
+ :=αq +αh(τ−θ+), t ∈C+;

Q I I
− :=αh(τ−θ−), t ∈C−.

(14)

where h is the heat transfer coefficient of the continuous

convective cooling. Note that the positiveness of Q I I
+ and

negativeness of Q I I
− yield τ< θ− < θ+.

Following the same arguments used in the preceding sub-

section, we maximize the power output over θ± and get

{

θ+ = τ(1+q ′+
√

1+q ′)/2,

θ− = τ(1+
√

1+q ′)/2,
(15)

where q ′ = q/hτ. Note that for any q ′ > 0, the aforemen-

tioned constrain θ+ < q/h +τ is satisfied, and therefore we

are assured that Q I I
+ > 0. The maximum power output and

corresponding efficiency are

P
I I
max =αhτ

[

q ′+2(1−
√

1+q ′)
]/

4, (16a)

ηI I
max = q ′

/[

1+q ′+
√

1+q ′
]

, (16b)

f I I
max = (αhT0/ℓ)

[

q ′+2(1−
√

1+q ′)
]

/2q ′. (16c)

An interesting observation is that in Eqn. (16), the effi-

ciency approaches 1/2 as q ′ → 0, while in the previous re-

sult, i.e. Eqn. (13), it goes to 1 as τ′ → 0. Both limiting cases

correspond to a 0 K convective cooling.

Although both Eqns. (13) and (16) have no explicit de-

pendence on material constants, not every material, along

with an appropriate device, can perform the cycles de-

scribed by the solutions (12) and (15). Finding materials (or

devices) having the particular constitutive properties that

match exactly the requirements of a cycle working at maxi-

mum power output is crucial for the optimization of the per-

formance of energy conversion.

2.4 Corrections of finite heat capacity

Finally, we consider the corrections due to Assumption 4.

In Fig. 1(d), the cycle 1234 is the Rankine/Ericsson cycle for

an ideal phase transformation system, while the cycle 12′3′4

and 123′4′ are respectively the relatively more realistic (with-

out Assumption 4) Rankine cycle and Ericsson cycle.

First, let us compare the two Rankine cycles: 1234 and

12′3′4. From Fig. 1(d), we see that the assumption of zero

heat capacities does not affect either the efficiency formula

(7) or the average power output formula (9). Because, both

non-ideal (12′3′4) and ideal (1234) cycles correspond to the

same F±, therefore the same θ±, which are θ± = T±. Hence

the efficiency is not affected. Power output is also unaf-

fected because θ± are the only internal parameters on which

the heat transfer depends (Sect. 2.3). However, there are

two minor corrections due to Assumption 4. One is that

the frequency computed by the ideal system model, i.e. f =
1/(t+ + t−), is actually underestimated. Because the non-

ideal cycle 12′3′4 has the same power as the ideal cycle 1234,

as discussed above, but a smaller net work output, as shown

by the areas enclosed by the loops in Fig. 1(d). The other cor-

rection is that it puts an bound on the difference between F+
and F−, or equivalently θ+ and θ−, because when the differ-

ence is too large, the cycle shrinks to a single vertical line ,

or even a loop with a “negative area”.

Let the heat capacity be a constant c, and the entropy of

low temperature phase at the reference transformation tem-

perature be zero, the entropy of state 1, 2, and 2′ are respec-

tively










S1 = c ln
(

1−C F̄+
)

,

S2 = c ln
(

1−C F̄+
)

+ℓ/T0,

S2′ = S3′ = c ln
(

1−C F̄−
)

+ℓ/T0.

(17)

The ratio of real frequency to ideal frequency is the same as

that of the area enclosed by 1234 to 12′3′4, which is in terms

of entropy differences

S2 −S1

S′
2 −S1

=
1

1+ c̄ ln
[

(1−C F̄−)/(1−C F̄+)
] , (18)

where the heat capacity is normalized by [c] = ℓ/T0. The

limiting case is that S1 is equal to S3′ . The inequality S1 6 S3′

leads to a constrain on F+ and F−,

(1−C F̄−)
/

(1−C F̄+) > e−1/c̄ . (19)

It further leads to an upper bound of the efficiency:

η6 1−exp(−1/c̄). (20)

By comparing (18) with (19), we see that the second correc-

tion can also be interpreted as a consequence of the finite-

ness of frequencies in real situations.

Second, let us compare the two Ericsson cycles: 1234 and

123′4′. Compared to the ideal cycle 1234, the realistic cy-

cle 123′4′ absorbs more heat from the hot reservoir (the area

under the curve 4′1), and also release more heat to the cold

reservoir (the area under the curve 23′). These two parts of

6 | 1–15

Page 6 of 15Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



heat exchange are, with positiveness indicating heat absorp-

tion,

H4′1 = c(T+−T−) = c̄∆T̄ℓ, (21)

H23′ = c(T−−T+) =−c̄∆T̄ℓ. (22)

Thus, the efficiency, different from Eqn. (7), is now

ηE =
ℓ+−ℓ−

ℓ++ c̄∆T̄ℓ
= ηC

T̄+

T̄++ c̄
. (23)

where the subscripts E and C denote the realistic Ericsson

and the ideal — Carnot = Ericsson = Rankine — cycles, re-

spectively. From the correction (23), we see that to make a

practical Ericsson cycle closer to the ideal Carnot cycle, we

need to increase the dimensionless transformation temper-

ature upon heating T̄+ or to decrease the dimensionless heat

capacity c̄ = cT0/ℓ.

Since H4′1 in (21) and H23′ in (22) have the same value,

the total work output remains no change in the correction.

We only need to consider the modification on cycling speed.

In the case of convective heating and convective cooling, the

time required for the four sub-processes of the cycle 123′4′

are respectively

t4′1 =
c

αh+
ln

τ+−θ−
τ+−θ+

, t12 =
ℓ+

αh+(τ+−θ+)
,

t23′ =
c

αh−
ln

θ+−τ−
θ−−τ−

, t3′4′ =
ℓ−

αh−(θ−−τ+)
.

(24)

In the case of radiative heating and convective cooling, t23′

and t3′4′ are the same as (24), while t4′1 and t12 become

t4′1 =
c

αh
ln

(q ′+1)τ−θ−
(q ′+1)τ−θ+

, t12 =
ℓ+

αh
[

(q ′+1)τ−θ+
] . (25)

In either case of heat transfer mode, the power output is cor-

rected according to

PE =PC
t12 + t3′4′

t4′1 + t12 + t23′ + t3′4′
. (26)

Because the net heat absorption is the same in both prac-

tical and ideal cycles, the correction of frequency is exactly

the same as power output.

3 Thermomagnetic Phase Transformation

3.1 Material consideration: thermomagnetic energy

conversion

The alloy Ni44Co6Mn40Sn10, as well as its nearby compo-

sitions, undergoes a first order martensitic phase transfor-

mation from an antiferromagnetic martensite to a ferro-

magnetic austenite phase upon heating 17,47. During the

transformation, its magnetization increases about ∆M =
106 A/m. The latent heat and transformation temperature

at zero-field measured by differential scanning calorimetry

(DSC) are respectively about ℓ = 108 J/m3 and T0 = 400 K.

With these three material constants, among other parame-

ters listed in Table 1, we can make some analytic predictions

based on the ideal system assumptions.

In this case, as shown by Song et al. 21 to be a good ap-

proximation of the full 3D continuum theory, X = M and

F = µ0H , where M is magnetization, H is the external mag-

netic field, and µ0 is the vacuum permeability. Given that

∆M > 0, the characteristic unit of F can be chosen as [F ] =
µ0∆M , so that F̄ = H/∆M := H̄ , i.e. [H ] = ∆M . Note that

such choice of [F ] is not unique. Other common choices

of [F ] include µ0Ms and H0 with Ms being the saturation

magnetization of austenite, and H0 is a reference magnetic

field strength, such as the background field generated by a

permanent magnet. We choose µ0∆M because the resulting

Clausius-Clapeyron coefficient is a pure material constant.

In fact, all the following analysis is valid for any choice of [F ].

If the material is modeled by an ideal system, the Clausius-

Clapeyron relation reads, according to Eqn. (6),

T̄ = 1−C H̄ , (27)

where the dimensionless Clausius-Clapeyron coefficient, in

this case, becomes C = µ0(∆M)2/ℓ. Note that this C is pos-

itive. The efficiency of an ideal Rankine cycle, as given by

Eqn. (7), is then

η=
C (H̄−− H̄+)

1−C H̄+
. (28)

Without loss of generality, we can write H̄± = H̄0 ±∆H̄ for

some H̄0 and ∆H̄ .

3.2 Device consideration: thermoelectric energy conver-

sion

A nearby alloy Ni45Co5Mn40Sn10 was demonstrated as a po-

tential candidate for direct energy conversion from heat to

electricity 11. In the demonstration (Fig. 2), as well as its gen-

eralized versions discussed below, an axisymmetric speci-

men of the alloy is placed in a uniform background field –

generated by a permanent magnet – and surround by a pick-

up coil. The coil is connected to a load that is modeled by

a resistor here. We drive the phase transformation by the

two heat transfer modes discussed in Sect. 2.3. During the

phase transformation, the change in magnetization gener-

ates a current in the pick-up coil due to Faraday’s law of in-

duction, and this coil further induces a back-field on its core

region.

We use the thermodynamics and heat transfer models de-

veloped above to analyze the performance of this kind of en-

ergy conversion devices. The thermomagnetic cycles of the
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where r̄ = (ro + ri)/2 is the average radius, w = 2r i/d is the

(inner) aspect ratio, and ŵ = 2(ro − ri)/d . For a single layer

solenoid, i .e. r̄ = ri = ro, Eqn. (35) leads to the asymptotic

formulas 50:

L ≈
{

πr w N 2/2, w ≪ 1;

r N 2, w ≫ 1.
(36)

The key observation on the asymptotic formulas is that for a

long coil (w ≪ 1), L depends linearly on w , while for a short

coil (w ≫ 1), it is independent of w and therefore suffers no

singularity as w →∞.

3.3 Efficiency and the figure of merit

To solve the Eqn. (34) for the current, we need a relation-

ship between Ṁ and I . This relationship is affected by mi-

cromagnetic phenomena and the kinetics of phase transfor-

mation. Given that little is known about the latter, even for

an ideal system, we make the following simple hypothesis

of stationary evolution, i .e., Ṁ is a constant. With these as-

sumptions either the heating or the cooling process yields

an explicit solution to (34) given by

I (t ) =−e−Rt/µ0L [I (0)−µ0(1−δ)N AṀ/R]

−µ0(1−δ)N AṀ/R,
(37)

where I (0) is the initial condition at the beginning of heating

or cooling. Given the inductance of the coil as in Eqn. (36),

when r is in the scale of cm, N is several hundred, and R is

1 Ohm, R/µ0L is then in the order of 103 − 104 Hz. When

the time scale of the phase transformation is much slower

than this time constant, i .e. the frequency satisfies f ≪
R/µ0L , the solution (37) is well approximated by its asymp-

tote, or say the upper bound in the sense of power output,

I = −µ0(1 − δ)N AṀ/R. Due to the equivalence of mag-

netic work and electricity, 21 in a full cycle, the average elec-

tric power output converted from heat is P = −
∫

C I 2R d t =
−−
∫

C 〈µ0Hb·Ṁ〉Ω d t . Here, the angled brackets denote volume

averages, and the dashed integral symbols denote time av-

erages. Now we have 〈µ0Hb · Ṁ〉Ω =−µ2
0(1−δ)2N 2 AṀ 2/Rh.

Let the stationary change of magnetization in heating and

cooling processes be Ṁ+ > 0 and Ṁ− < 0 respectively, the

thermodynamic forces to be used in the Clausius-Clapeyron

relation are therefore

µ0H̄± =µ0H̄0 −µ0Π
˙̄M±, (38)

where M̄ = M/∆M , and Π = µ0(1−δ)2N 2 A/RhH̄0. Hence,
˙̄M± have the dimension of time−1, and Π has that of time.

The efficiency as given by Eqn. (28) is

η=
CΠ( ˙̄M+− ˙̄M−)

1−C H̄0 +CΠ
˙̄M+

. (39)

The power output is

P =−ℓCΠ
˙̄M+

˙̄M−, (40)

and the corresponding frequency is

f = ˙̄M+
˙̄M−

/(

˙̄M−− ˙̄M+
)

. (41)

If the heat transfer method is specified, we can compute
˙̄M± =Q±/ℓ±. Here, we discuss the two modes of heat trans-

fer introduced in Sect. 2.3. In the first mode, Q± are given

by Eqn. (10). Combining Eqns. (10),(11) and (27), under the

help of (38), we obtain a pair of equations for ˙̄M±. Solving

them for ˙̄M± leads to

˙̄M± = g (zz ′
±, τ̂±)(1−C H̄0)/2CΠ, (42)

where τ̂± = τ̄+/(1−C H̄0), z ′
− = h′ = h−/h+, z ′

+ = 1, and the

dimensionless function g (z,τ) is defined as

g (x, y) :=−x −1+
√

(x +1)2 +4x(y −1). (43)

Note that g is positive (resp. negative) and monotonically

increasing (resp. decreasing) in x when y > 1 (resp. y < 1),

and it is identically zero when y = 1. We name the dimen-

sionless parameter

z =
CΠαh+T0

(1−C H̄0)ℓ
(44)

the figure of merit of such an energy conversion device us-

ing the given material and the given heat transfer mode.

Tow time scales are involved in the figure of merit: the elec-

tromagnetic time scale Π and the heat transfer time scale

ℓ/αh+T0. Under these definitions, the efficiency (39) can be

rewritten as a function of τ̂±, z ′
± and z, i .e.

η=
g (zz ′

+, τ̂+)− g (zz ′
−, τ̂−)

2+ g (zz ′
+, τ̂+)

. (45)

Similarly, the power output (40) and the frequency (41) re-

duce to

P̂ :=P ℓ/(1−C H̄0)h̄+ =−g (zz ′
+, τ̂+)g (zz ′

−, τ̂−)/4z, (46)

f̂ :=
2CΠ f

(1−C H̄0)
=

−g (zz ′
+, τ̂+)g (zz ′

−, τ̂−)

g (zz ′
+, τ̂+)− g (zz ′

−, τ̂−)
. (47)

Recall that the thermodynamic force must be non-negative,

Eqn. (38) requires Π
˙̄M+ 6 H̄0, which introduces a constrain

on τ̂+, according to Eqn. (42),

g (zz ′
+, τ̂+) < 2C H̄0/(1−C H̄0). (48)
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part into Eqns. (46) and (47) gives







P = (αh+T0z) (1−C H̄0)h′ (τ̂+−1)(1− τ̂−) ,

f =
αh+T0

ℓ

h′ (τ̂+−1)(1− τ̂−)

(τ̂+−1)+h′ (1− τ̂−)
.

(59)

Excluding terms that are always in the order of 1, our task

reduces to fixing, or improving, αh+T0z while lowering

αh+T0/ℓ. For that, our strategy boils down to two steps: i)

decrease αh+T0/ℓ by any possible method; ii) if the power

output is unaffected or increased during the first step, we are

done. Otherwise, tune those parameters other than α, h+,

T0 or ℓ to raise the power back. Note that among those pa-

rameters, we are most likely to manipulate N and R. Some

examples of such a strategy are listed in Table 2.

From Table 2, we see that our simple strategy works, and

the following two interesting observations are found. First,

by comparing Case 1 with Case 2, we see that increasing

N and decreasing R have about the same effect on the im-

provement of performance. The latter is much easier, once

we realize that decreasing R is equivalent to distributing the

load to multiple units, until R is close to the resistance of the

coil in one unit. It also suggests that using a large number of

units simultaneously might be a way to increase z to the or-

der of 1. Second, although increasing the latent heat ℓ can

directly decreases the frequency, but it is evident from Case

4 and 5 that lowering ℓ is actually much more favorable from

the point of view of the power output. That is because the

increasing ℓ raises the Clausius-Clapeyron coefficient and,

subsequently, the figure of merit z. This might also give us

some clue of bringing z to the order of 1.

Fig. 7 and Table 2 are calculated using the model and

the parameters listed in Table 1. The only existing exper-

imental data to compare with is the demonstration done

by Srivastava et al. 11. The material properties and design

parameters for the demonstration are provided in Ref. 11.

The authors only reported electric signal during the heat-

ing half cycle. Using their data corresponding to the first or-

der phase transformation (the original data also has a part

related to a second order phase transformation) and as-

suming a symmetric cooling half cycle in terms of electric

signal, the efficiency is about 0.97 × 10−11 and the power

density is about 4.83× 10−8 mW/cm3. The figure of merit

can also be calculate based on values provided in Ref. 11:

z ≈ 6.9× 10−10. Using (45) and (46), the theory predicts an

efficiency of 2.53×10−10 and a power density of 2.49×10−7

mW/cm3 for an ideal phase transformation system. Unsur-

prisingly, the ideal theory overestimates the performance.

Since the cycle performed in the demonstration is Ericsson-

like cycle with convective heating and cooling, the efficiency

and the power density can be corrected by (23) and (26),

where T̄+ ≈ 1.33 and c̄ ≈ 9.6. (Here we see that this al-

loy’s heat capacity is unfavorably large compared to the ideal

model.) After correction, the efficiency becomes approxi-

mately 3.04× 10−11. The power density is not expected to

change significantly by this correction because in the slow

transformation cycle (about 40 sec per cycle), θ̄− and θ̄+ are

very close to each other: t4′1 and t23′ are small compared

to t12 and t3′4′ . The remaining error could come from prac-

tical issues such as that the coil is not tightly winded, that

the heat transfer is not ideal, and that the average magneti-

zation jump is lower than the theoretical value which is the

maximum value, due to the formation of microstructure and

domain structure. To conduct a meaningful validation of

the model, more sophisticated and better performing pro-

totypes, i.e. having the efficiency and power output not as

extremely small as the previous demonstration, are neces-

sary.

Unfortunately, there are no such experimental data avail-

able at this time. To do such experiments, we need a mate-

rial with properties listed as the first three rows of Table 1,

such as an alloy in the family NiCoMnSn. Then one needs to

build a device with parameters listed as the next five rows in

Table 1, or modified according to Table 2. According to stan-

dard data for heat transfer coefficients 53, the values listed in

Table 1 can be achieved by forced and free convective heat

transfer with air. One thing to keep in mind is that the final

apparatus must have the ability to track heat and work in-

put and output accurately for the whole device, in order to

compare with the thermodynamic analysis.

The most difficult part of these measurements is likely

to be the measurement of the heat input and output of the

whole device, which may require a whole-device calorime-

ter. We note that if energy is consumed by a device to sup-

ply hot air, this contribution must be included in the work

consumed, and the effect is to lower the overall efficiency. A

simple but less accurate way to estimate the heat input is to

use the measured latent heat of the material, scaled to the

actual size. This may not be sufficiently accurate because (i)

the DSC rate will usually differ from the actual rate of heat

transfer, (ii) the DSC measurement is typically done with no

applied field, (iii) the “tails” in a heat flow vs. temperature

graph from DSC are difficult to estimate, (iv) the dissipation

due to twin boundary and magnetic domain wall boundary

motion may be different in a DSC machine than in the ac-

tual device. The power output can be directly monitored by

a voltage or current meter, as long as the internal and exter-

nal resistance are measured accurately.

4 Conclusions

This paper studies the efficiency and power output of en-

ergy conversion using first order phase transformation in

a multiferroic material. The efficiency of converting heat

into the associated ferroic property of the material, such
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step i step ii P [mW/cm3] f [Hz] z

original parameters in Table 1 31 18 3.1E-6

1 h→ 100 µm N → 2000 48 1.8 4.9E-4

2 h→ 100 µm R → 0.1 Ohm 30 1.8 3.1E-4

3

{

T0 → 300 K

h→ 50 µm
R → 0.1 Ohm 34 2.7 2.3E-4

4 ℓ→ 109 J/m3 R → 0.1 Ohm 3.1 1.8 3.1E-6

5

{

ℓ→ 107 J/m3

h→ 500 µm
R → 0.1 Ohm 546 3.6 0.032

6

{

ℓ→ 107 J/m3

h→ 100 µm
R → 0.1 Ohm 2864 18 0.034

Table 2 Examples of strategies to improve the energy conversion performance. The working temperatures are τ̂− = 0.75 and τ̂+ = 1.5.

as magnetization and electric polarization, is strongly af-

fected by the Clausius-Clapeyron coefficient which is a di-

mensionless parameter related to the change of the ferroic

property across and the latent heat absorbed/emitted dur-

ing the phase transformation. The average power output of

cyclic phase transformation is studied based on two modes

of heat exchange: i) alternating convective heating and cool-

ing, and ii) continuous convective cooling and periodic ra-

diative heating. Cycles optimized for the maximum power

output are found.

We study in-depth a particular design of energy con-

version devices using a material that undergoes antiferro-

magnetic to ferromagnetic phase transformation and the

Faraday induction. We identify a dimensionless parame-

ter called the figure of merit that influences significantly the

efficiency and power output of energy conversion devices.

The larger the figure of merit is, the higher the efficiency

is. This parameter consists of material constants and design

parameters, and is useful in material search and device de-

sign. Among other features, the dependence of the figure of

merit on the shape of the working specimen is explored in

detail. Two kinds of configurations are discussed. For one of

them, thin film is proven to be the best geometry, while for

the other, an optimized aspect ratio is found. In either case,

such a dependence is weak, i.e. we will not be able to im-

prove the performance too drastically by tuning the aspect

ratio of the specimen.

Then, we combine our studies on cycles working at max-

imum power output and the performance analysis of the

proposed energy conversion devices. We discussed the so-

called design-task matching problem. The idea is that un-

der a given working condition, i.e. the radiation power or

the temperatures of heat reservoirs, there are only some par-

ticular devices, characterized by their figures of merit, that

can perform the predicted maximum-power cycles. We call

them the most suitable devices for the given working con-

ditions. Similarly, we can define the best working condi-

tions for the available devices. The results of this matching

problem can be used to guide the choice of materials and

the optimization of devices for the new energy conversion

method.

Finally, by studying the performance based on the real

material Ni44Co6Mn40Sn10, we realize that major improve-

ments are required to make a device with the figure of merit

in the order of 1. This could be done by material develop-

ment or device design. On the side of material development,

lowering the latent heat can significantly improve the per-

formance, at least within the small z regime. On the side of

device design, distributing a single load to a large number of

small energy conversion units is another possible strategy to

increase the figure of merit a lot.
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