PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Competition between weak hydrogen bonds: C-H···Cl is preferred to C-H···F in CH2ClF-H2CO, as revealed by rotational spectroscopy

Gang Feng^a , Qian Gou^a , Luca Evangelisti^a , Montserrat Vallejo-López^b, Alberto Lesarri,^b Emilio J. Cocinero,^c Walther Caminati^a *

⁵*Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX First published on the web Xth XXXXXXXXX 20XX* **DOI: 10.1039/b000000x**

We measured the pulsed jet Fourier transform microwave spectrum of the 1:1 adduct of CH₂ClF with formaldehyde. Formaldehyde is linked to CH₂ClF through a C-H···Cl rather than a C-H···F

¹⁰weak hydrogen bond, with a H···Cl "bond length" of 2.918 Å. Two additional equivalent C-H···O contacts, with a H \cdot ··O distance of 2.821 Å, characterize the complex. Tunnelling splittings due to the internal rotation of the formaldehyde moiety have been observed, which allowed estimating the barrier to the internal rotation of formaldehyde to be $125(10)$ cm⁻¹. The ³⁵Cl quadrupole coupling constants have been determined to be $\chi_{aa} = 31.131(7) \text{ MHz}$ and $\chi_{bb} \chi_{cc} = -105.82(1) \text{ MHz}$.

¹⁵**Introduction**

Rotational spectroscopy investigations of the adducts of water with a variety of organic molecules (ethers, esters, amines, diazines, carboxylic acids, etc.) provided information on "classical" hydrogen bonds (HBs), such as O–H···O, O–H···N, O–

 $_{20}$ H···S, and N-H···O.¹ The corresponding interaction energies are in the range $15-25$ kJmol⁻¹. Weaker HBs of the type O–H \cdots F and O– $H \cdot \cdot \cdot Cl$ (8-10 kJmol⁻¹) link water to halogenated alkanes. It has been found that O–H···Cl is preferred to O–H···F in the complex $CH_2ClF-H_2O_z²$ but the contrary was found for the molecular 25 system $1,1$ -Cl,F-ethane-H₂O.³

Conversely, rotational studies of molecular complexes formed by freons and other various types of organic molecules, or their oligomers, have shown that the constituent units are primarily held together through weak hydrogen bonds (WHB)

- 30 like C–H…O,⁴ C–H…N,⁵ C–H… π ⁶ and C–H…X (X=F, Cl),^{7,8} whose interaction energies have been estimated to be a few $kJmol⁻¹$. In these cases, small molecular changes can affect the structure dramatically, reflecting the delicate balance of intermolecular forces and the role of HB cooperativity.
- 35 We have additionally observed that in complexes of freons with water, like $CH_2F_2-H_2O^9$, water can be substituted by formaldehyde (H₂CO), which forms C–H \cdots F and C–H \cdots O=C WHBs with CH_2F_2 .¹⁰ Moreover, H_2CO has the same symmetry of water, and displays, in the complex with $CH₂F₂$ the same internal
- 40 dynamics effects of water, the internal rotation around its C_2 axis. It thus appears interesting to investigate the complex of H₂CO with CH₂ClF, in order to see which of the two halogen atoms, F or Cl, is the best proton acceptor for the C-H formaldehyde group. Herein, we report the results of the
- ⁴⁵investigation of the rotational spectra of several isotopologues of the complex of $CH₂ClF-H₂CO$.

Experimental Section

Commercial samples of CH₂ClF and paraformaldehyde were obtained from Aldrich and used without further purification. The

⁵⁰rotational spectra in the 6-18.5 GHz frequency region were measured on a COBRA-type¹¹ pulsed supersonic-jet Fouriertransform microwave (\overrightarrow{FTMW}) spectrometer,¹² described elsewhere.¹³

A gas mixture of 2% CH₂ClF in Helium at a total pressure of ⁵⁵0.3 MPa was streamed over paraformaldehyde which has been earlier heated to 350 K, and expanded through the solenoid valve (General Valve, Series 9, nozzle diameter 0.5 mm) into the Fabry-Pérot-type cavity. Due to the coaxial arrangement of the molecular beam expansion and the resonator axes, each rotational ⁶⁰transition displays an enhanced Doppler splitting. The rest frequency was calculated as the arithmetic mean of the frequencies of the two Doppler components. The estimated accuracy of the frequency measurements is better than 3 kHz, resolution is better than 7 kHz.

⁶⁵**Theoretical calculations**

In order to estimate the shapes and relative energies of the plausible conformations of CH_2ClF-H_2CO , we performed geometry optimizations at the MP2/6-311++ $G(d,p)$ level of theory with Gaussian 03 program.¹⁴ Several stationary points 70 were found, but frequency calculations proved only three of them to be real minima.

Table 1: MP2/6-311++ $G(d,p)$ spectroscopic parameters of the plausible conformers of CH₂ClF-H₂CO.

*^a*Relative energies without and with zero point vibrational corrections. ⁷⁵Absolute energies are -712.752216 and -712.692134 *E*h, respectively. *b*Absolute energy = -712.749651 E_h .

Their shapes, relative energies, rotational and quadrupole coupling constants, and dipole moment components are reported in Table 1. In conformer I, one C-H hydrogen of H_2CO is in contact with both the fluorine and chlorine atoms of CH_2ClF ,

- ⁵while the oxygen atom interacts with the C-H hydrogen atoms of CH2ClF. Conformer II displays a C–H…Cl interaction and two C– H …O=C interactions, whereas conformer III displays a C–H…F interaction and two C–H…O=C interactions.
- In order to remove the well known basis set superposition 10 error (BSSE), we calculated counterpoise corrections¹⁵ to the $MP2/6-311++G(d,p)$ energies. After including these corrections, the three conformers appear almost iso-energetic, with a maximum energy difference of ~10 cm⁻¹. However, the global minimum switched to conformer II. The theoretical structures of 15 conformer I and III are given as ESI[†], while the structure of conformer II will be discussed in one of the next sections. We
- also calculated the zero point dissociation energies without and with BSSE corrections $(E_{B0}$ and $E_{B0, BSSE}$ in Table 1). Finally, we calculated the relative energies of the three conformers at the ²⁰ CCSD//MP2/6-311++G(d,p) level (Δ E_{CC}), also given in Table 1.

Rotational spectra

Following the *ab initio* indications, the first search for rotational transitions was focused on the *µ*^a -*R*-type bands of conformer II. We easily identified the $K_a = 0$, 1 transitions of the $J = 3 \leftarrow 2$

- ²⁵band. Each transition appeared as a multiplet, due to the nuclear quadrupole coupling of 35 Cl nucleus and to the splitting into two tunnelling states (labelled as $v = 0$ and 1) caused by the internal rotation of H_2CO . Figure 1 shows the tunnelling splitting and the quadrupole hyperfine structure of the $3_{1,3} \leftarrow 2_{1,2}$ transition (in
- ³⁰addition, component lines appear as a doublet due to the above mentioned instrumental Doppler effect). One should note that the intensities of the $v = 0$ component lines are about one third of those of the $v = 1$ state, which is in accord with the fact that the exchange of the two protons (which are $I = 1/2$ fermions) requires
- ³⁵a total anti-symmetric wave-function and a 3:1 ratio between symmetric and antisymmetric spin functions.

Fig. 1. Recorded $3_{13} \leftarrow 2_{12}$ transition of the observed conformer of $CH₂ClF-H₂CO$ showing the ³⁵Cl hyperfine structure and the tunnelling ⁴⁰splitting due to the internal rotation of formaldehyde. In addition, each component line displays the instrumental Doppler doubling.

Then, many more μ_a -type transitions and several μ_b -type transitions were measured. The lines were used to determine the spectroscopic constants collected in the left columns of Table 2. 45 The fits were performed with Pickett's SPFIT program¹⁶

according to the following Hamiltonian:

$$
H = HR(0) + HR(1) + HCD + HQ
$$
 (1)

 $H_R(0)$ and $H_R(1)$ represent the rigid rotational parts of the Hamiltonian for the $v = 0$ and the $v = 1$ states. The centrifugal ⁵⁰ distortion part H_{CD} was analyzed using *S* reduction and *I*^T representation.¹⁷ H_Q takes into account the interaction of the overall rotation with the 35 Cl nuclear spin.¹⁸

Table 2: Experimental spectroscopic parameters of CH₂ClF-H₂CO.

	35 Cl		37 _{Cl}	
	$_{0}$		0	
A/MHz		$5984.591(2)^a$ $5982.678(2)$		5818.926(4) 5817.196(4)
B/MHz		1598.0839(4) 1597.4318(4) 1593.4878(3) 1592.8376(3)		
C/MHz		1272.0274(4) 1271.9895(4) 1261.4602(2) 1261.4242(2)		
$\Delta_c/u\text{\AA}^2$	-3.38	-3.53	-3.37	-3.52
χ _{aa} /MHz	31.131(7)		24.56(3)	
$(\chi_{\rm bb}\text{-}\chi_{\rm cc})/\mathrm{MHz}$	$-105.82(1)$		$-83.55(4)$	
D_1/kHz	1.595(2)		$[1.595]$ ^b	
$D_{\rm IK}/\rm kHz$	17.78(4)		[17.78]	
d_1/kHz	$-0.329(3)$		$[-0.329]$	
d_2/kHz	$-0.086(2)$		$[-0.086]$	
σ^c/kHz	3.0		4.2	
N^d	150		70	

a Error in parentheses in units of the last digit. *^b* Values in brackets fixed to those of 55 parent species. ^c RMS error of the fit. ^{*d*} Number of lines in the fit.

The spectrum of the 37 Cl isotopologue was also measured and fitted similarly. The results are reported in the right columns of Table 2. The search for rotational transitions of other conformers was unsuccessful. All measured transition lines are ⁶⁰given in the ESI

Conformation and structure

By comparing the observed rotational and quadrupole coupling constants to the theoretical values of Table 1, it appears straightforward to assign the observed spectrum to conformer II.

- As additional argument the substitution coordinates of the Cl atom,¹⁹ $a = \pm 0.684(2)$ and $b = \pm 1.110(1)$ Å, respectively, are in a good agreement with the *ab initio* values of conformer II $(a = -1)$ 0.668 and $b=$ +1.117 Å, respectively), confirming the conformational assignment.
- Finally, the value of the inertia defect Δ_c (-3.38 for the ground state, see Table 2), is in agreement with the two out of plane methylenic hydrogens of $CH₂ClF$ in conformer II.

Table 3: r_0 and r_e (MP2/6-311++G(d,p)) geometries of CH₂ClF-H₂CO.

Bond length/Å		Valence angle/ ^o		Dihedral angel/ ^o	
C12C1	1.770				
F3C1	1.370	F3C1Cl2	109.7		
H4C1	1.086	H4C1F3	109.0	H4C1F3Cl2	118.7
H5C1	1.086	H5C1F3	109.0	H5C1F3H4	122.6
O6Cl2	$3.554(8)^a$	O6Cl2C1	61.9(2)	O6Cl2C1F3	180.0
C ₇ O ₆	1.215	C706Cl2	83(1)	C7O6Cl2C1	180.0
H8C7	1.104	H8C7O6	121.6	H8C7O6C1	0.0
H9C7	1.104	H9C7O6	121.6	H9C7O6H8	180.0
Derived structural parameters					
$r_1/\text{\AA}$		2.918		α ^o	120.8
$r_2/\text{\AA}$	2.821			β /°	96.6
$R/\text{\AA}$		3.700		ν ^o	96.7

^aThe parameters in bold have been adjusted to reproduce the experimental ⁷⁵values of the rotational constants, uncertainties (in parentheses) are given

Physical Chemistry Chemical Physics Accepted Manuscript

in units of the last digit. Their ab initio values are: 3.021 Å, 88.4 ° and 120.4°, respectively.

From the six available experimental rotational constants, we calculated a partial r_0 structure, varying the intermolecular 5 distances and angles while keeping the geometry of the CH₂ClF and H2CO monomers fixed to the *ab initio* values in the complex. The distance between the oxygen atom of H_2CO and the chlorine atom of CH₂ClF, the angles \angle O^{...}ClC and \angle CO^{...}Cl are required to be corrected in order to reduce the discrepancies between

- ¹⁰experimental and calculated rotational constants. The corrected structure parameters are reported in Table 3 together with the r_e values. The atom numbering and principal axis system are given in Figure 2.
- The structural hydrogen bond parameters derived from 15 partial r_0 structure are reported at the bottom of Table 3 (R is the distance between the centres of mass of the two constituent molecules).

Fig. 2. LEFT: Shape, principal axis system, atom numbering and hydrogen bond structural parameters of the observed complex. RIGHT: 20 shape of the transition state for the internal rotation of $H₂CO$ and parameters relevant to the flexible model calculations.

Internal dynamics

The observed doubling of the rotational transitions allowed estimating the barrier to internal rotation of H_2CO by using $_{25}$ Meyer's one dimensional flexible model.²⁰ The following potential energy function has been chosen:

$$
V(\tau) = V_2[1-\cos(2\tau)]\tag{2}
$$

where V_2 is the barrier to the internal motion and τ is the internal rotation coordinate. $\tau = 0^{\circ}$ represents the equilibrium value with ³⁰formaldehyde lying in the Cl-C-F plane and *τ* =90° corresponds to the transition state of the internal motion. The structure relaxations of the parameters R , θ and ϕ have been taken into account according to:

$$
R(\tau) = R_0 + 1/2 \Delta R [1 - \cos (2\tau)]
$$

$$
\theta(\tau) = \theta_0 + 1/2 \Delta \theta [1 - \cos (2\tau)]
$$

$$
\phi(\tau) = \phi_0 + 1/2 \Delta \phi [1 - \cos (2\tau)]
$$
 (3)

where R_0 , θ_0 and ϕ_0 are the values of O…Cl distance, the angle C-Cl…O and the angle Cl…O=C at the minimum ($\tau = 0^{\circ}$). ΔR , $\Delta \theta$, and $\Delta \phi$ are their changes upon a 90° rotation of H₂CO around its

 C_2 axis (see Figure 2). Since the experimental data are not sufficient to fit all of these parameters, the values of ∆*R,* and ∆*θ* have been fixed to the values obtained by the *ab initio* calculations ($\Delta R = -0.098$ Å and $\Delta \theta = -2.3^{\circ}$, respectively).

We used the differences between the planar moments of 45 inertia (ΔM_{gg}) of the *v* = 0 and *v* = 1 tunnelling states to determine the V_2 barrier and $\Delta \phi$. The planar moments of inertia, defined as

 $M_{gg} = \sum_i m_i g_i^2$ (*g* = *a*, *b* or *c*) are easily obtained from the rotational constants through $M_{aa} = h/(16\pi^2) \cdot (-1/A + 1/B + 1/C)$, etc. The flexible model results are reported in Table 4. The obtained ⁵⁰barrier to internal rotation of H2CO is quite closed to that *ab initio* value ($V_2 = 120$ cm⁻¹).

Table 4: Flexible model results and potential energy parameters for the internal rotation of H_2CO in CH_2ClF-H_2CO .

	Exptl.	Calc.		
$\Delta M_{\rm as}/\rm{u\AA^2}$	$+0.057$	$+0.055$		
$\Delta M_{\rm bb}/\rm u\AA^2$	-0.045	-0.041		
$\Delta M_c / \mu A^2$	$+0.072$	$+0.076$		
ΔE_{0+0} /GHz		5.4		
Determined parameter: $\Delta \phi = 12.2(5)^\circ$, $V_2 = 125(10)$ cm ^{-1 a}				

^aUncertainties (in parentheses) are given in units of the last digit.

⁵⁵**Dissociation Energy**

Assuming the stretching between the two centres of mass of the two subunits (the motion which leads to dissociation) to be isolated from the remaining vibrations, it is possible to roughly evaluate the dissociation energy with pseudo-diatomic approximation.

The stretching force constant (k_s) can be estimated by using the following equation: 21

$$
k_{\rm s} = 16\pi^4(\mu\,R)^2[4B^4 + 4C^4 - (B - C)^2(B + C)^2]/(h\,D_{\rm J})\tag{4}
$$

where μ is the pseudo-diatomic reduced mass, D_J is the ϵ centrifugal distortion constant. The value of k_s was calculated to be 8.57 Nm^{-1} , which corresponds to a harmonic stretching frequency of 84 cm^{-1} .

The dissociation energy has been estimated by assuming a Lennard-Jones-type potential with the approximate formula: 22

$$
E_{\rm B} = 1/72 \ k_{\rm s} \ R^2 \tag{5}
$$

The value $E_B = 9.8 \text{ kJ mol}^{-1}$ has been obtained, intermediate with respect to the theoretical E_{B0} and $E_{B0,BSSE}$ values of Table 1 $(13.3 \text{ and } 6.4 \text{ kJmol}^{-1}, \text{ respectively.})$

The estimated dissociation energy is also quite similar to ⁷⁵those of other weakly bonded complexes, as shown in Table 5.

Table 5: Dissociation energies of several molecular complexes in which water or formaldehyde are linked to freons through weak hydrogen bonds.

Complex	Interaction	k/Nm^{-1}	E_R /kJmol ⁻¹	Ref.
$CH2F2-H2O$	$HO-H\cdots F$	7.7	7.5	[9]
CH ₂ FCl-H ₂ O	$HO-H\cdots Cl$	8.6	8.5	$\lceil 2 \rceil$
$CHF2Cl-H2O$	$HO-H \cdots Cl$	5.3	5.5	$\lceil 23 \rceil$
CH ₃ CHCIF-H ₂ O	$HO-H··F$	4.6	5.4	$\lceil 3 \rceil$
$CH2F2-H2CO$	$H(O)C-H\cdots F$	9.3	10.4	[10]
CH ₂ FCl-H ₂ CO	$H(O)C-H\cdots Cl$	8.6	9.8	This work

Conclusions

The rotational spectrum of the CH₂ClF-H₂CO complex allowed ⁸⁰us to decode the absolute minimum conformation and structure of the 1:1 adduct between CH_2ClF and H_2CO . Only the complex with a C-H···Cl linkage has been detected, similarly to the case of $CH₂ClF-H₂O$, in which the conformer formed via the O-H \cdot ··Cl interaction has been observed. In both the complexes of $CH₂ClF$ 85 (with water or formaldehyde), the chlorine atom of CH₂ClF

behaves as a better proton acceptor than fluorine, either from the O-H or the C-H donors.² In addition, again, as water in CH_2ClF - $H₂O$, $H₂CO$ in $CH₂CH₂CO$ undergoes a feasible internal rotation around its C_2 axis. The observed tunnelling splitting in

 5 CH₂ClF-H₂CO complex is a bit larger than that in CH₂ClF-H₂O, indicating a lower barrier $(125(10)$ cm⁻¹) to the internal rotation than that of water $(340(10)$ cm⁻¹).

The H^{\cdots}Cl and C=O \cdots H distances (r_1 = 2.918 Å and r_2 = 2.821 Å, respectively), are longer than those in CH_2ClF-H_2O

- 10 (r (Cl···H-O) = 2.655 Å and r (O···H-C) = 2.777 Å, respectively). All these data revealed that H_2CO is more flexible to rotate than $H₂O$ molecule in the complex with $CH₂ClF$ despite the fact that $H₂CO$ is heavier than $H₂O$.
- Since only one conformer has been observed in the pulsed 15 jet expansion, most probably the other conformations relax collisionally to the global minimum.²⁴ It is also likely that the two molecular subunits experience repeated formation and dissociation, which leads to a strong preference for the most stable conformer in the jet expansion.²

20

Acknowledgements

We gratefully acknowledge the financial support of the Italian MIUR (PRIN08, project KJX4SN_001) and the University of Bologna (RFO) for financial support. G.F. and Q.G. also thank the China Scholarships

²⁵Council (CSC) for scholarships. M.V.L., A.L and E.J.C. acknowledge financial support from the Spanish MICINN and MINECO (CTQ2011- 22923 and CTQ2012-39132-C02-02), the Basque Government (Consolidated Groups, IT520-10) and UPV/EHU (UFI11/23). M.V.L. and E.J.C. also acknowledge the MICINN for an FPI grant and a "Ramón y ³⁰Cajal" contract, respectively.

Notes and references

- *a Department of Chemistry, University of Bologna, Via Selmi 2, I-40126, Bologna, Italy. Fax: (+390512099456).*
- *E-mail: walther.caminati@unibo.it*
- *b* ³⁵*Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, E-47011 Valladolid, Spain*

c Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, (UPV-EHU), Apartado 644, E-48940 Bilbao, Spain

- † Electronic Supplementary Information (ESI) available: Table of MP2/6-311++G (d, p) principal axes coordinates (Å) of CH_2FC1-H_2CO . Table of transitions of all the observed isotopomers. See DOI: 10.1039/b000000x/
- ⁴⁵‡ Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.
- ⁵⁰1 L. Evangelisti, W. Caminati, *Phys. Chem. Chem. Phys.*, 2010, **12**, 14433.
- 2 W. Caminati, S. Melandri, A. Maris, P. Ottaviani, *Angew. Chem. Int. Ed.*, 2006, **45**, 2438.
- 3 G. Feng, L. Evangelisti, L. B. Favero, J-U. Grabow, Z. Xia, W.
- ⁵⁵Caminati, *Phys. Chem. Chem. Phys.*, 2011, **13**, 14092.
- 115
- 4 See, for example, J. L. Alonso, S. Antolínez, S. Blanco, A. Lesarri, J. C. López, W. Caminati, *J. Am. Chem. Soc*., 2004, **126**, 3244, and Ref.s therein.
- 5 See, for example, L. Spada, Q. Gou, M. Vallejo-López, A. Lesarri, E. ⁶⁰J. Cocinero, W. Caminati, *Phys. Chem. Chem. Phys.*, 2014, **16**, 2149, and Ref.s therein.
- 6 J. C. López, J. L. Alonso, W. Caminati, *Angew. Chem. Int. Ed.*, 2006, **45**, 290.
- 7 See, for example, G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. ⁶⁵Prampolini, W. Caminati, *Chem. Commun*., 2014, **50**, 171, and Ref.s therein.
	- 8 See, for example, Q. Gou, L. Spada, M. Vallejo-López, Z. Kisiel, W. Caminati, *Chem.Asian J.*, 2014, **9**, 1032.
	- 9 W. Caminati, S. Melandri, I. Rossi, P. G. Favero, *J. Am. Chem. Soc*., ⁷⁰1999, **121**, 10098
- 10 Q. Gou, G. Feng, L. Evangelisti, M. Vallejo, A. Lesarri, E. J. Cocinero, W. Caminati, *Phys. Chem. Chem. Phys*., 2013, **15**, 6714,
- 11 J.-U. Grabow, W. Stahl, H. Dreizler, *Rev. Sci. Instrum.*, 1996, **67**, 4072.
- ⁷⁵12 T. J. Balle, W. H. Flygare, *Rev. Sci. Instrum.*, **1981**, *52*, 33.
- 13 W. Caminati, A. Millemaggi, J. L. Alonso, A. Lesarri, J. C. López, S. Mata, *Chem. Phys. Lett.*, 2004, **392**, 1.
- 14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.
- Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.
- 85 Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
- ⁹⁰Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh PA, 2003.
- 15 S. F. Boys, F. Bernardi. *Mol. Phys*., 1970, **19**, 553.
- 16 H. M. Pickett, *J. Mol. Spectrosc*., 1991, **148**,371.
- 17 J. K. G. Waston in Vibrational Spectra and Structure, Vol. 6 (Ed.: J.R. Durig), Elsevier, New York, 1977, p.1.
- ¹⁰⁰18 J. K. Bragg, *Phys. Rev.*, 1948, **74**, 533.
	- 19 J. Kraitchman, *Am. J. Phys.*, 1953, **21**, 17.
	- 20 R. Meyer, *J. Mol. Spectrosc.*, 1979, **76**, 266.
	- 21 D. J. Millen, *Can. J. Chem*., 1985, **63**, 1477.
- 22 S. E. Novick, S. J. Harris, K. C. Janda, W. Klemperer, *Can. J. Chem*., ¹⁰⁵1975, **53**, 2007.
- 23 B. J. Bills, L. F. Elmuti, A. J. Sanders, A. L. Steber, R. A. Peebles, S. A. Peebles, P. Groner, J. L. Neill, M. T. Muckle, B. H. Pate. *J. Mol. Spectrosc.* **2011**, *268*, 7.
- 24 R. S. Ruoff, T. D. Klots, T. Emilson and H. S. Gutowski, *J. Chem.* ¹¹⁰*Phys.*, 1990, **93**, 3142.
- 25 See for example, J. Thomas, F. X. Fumie, N. Nicole, Y. Xu, *Chem.- Eur. J.*, 2011, **1**7, 4582.

⁴⁰