PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

2	Mechanisms of Enhanced Sulfur Tolerance on			
3	Samarium (Sm)-doped Cerium Oxide (CeO ₂) from			
4	First Principles			
5				
6				
7 8	Dong-Hee Lim ^{1), 2)} , Hee Su Kim ¹⁾ , Sung Pil Yoon ¹⁾ , Jonghee Han ¹⁾ , Chang Won Yoon ¹⁾ , Sun Hee Choi ¹⁾			
9	Suk Woo Nam ¹⁾ , and Hyung Chul Ham ^{1),} *			
10				
11	¹⁾ Fuel Cell Research Center, Korea Institute of Science and Technology (KIST),			
12	Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea			
13	²⁾ Department of Environmental Engineering, Chungbuk National University			
14	52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk 361-763, Republic of Korea			
15				
16				
17	*Corresponding Author: Hyung Chul Ham			
18	Email: hchahm@kist.re.kr			
19	Phone: +82-2-958-5889, Fax: +82-2-958-5199			
20				
21				

2

ABSTRACT

The role of samarium (Sm) 4f states and Sm-perturbed O 2p states in determining the sulfur 3 tolerance of Sm-doped CeO₂ was elucidated by using the density functional theory (DFT)+U 4 calculation. We find that the sulfur tolerance of Sm-doped CeO₂ is closely related to the modification of 5 O 2p states by the strong interaction between Sm 4f and O 2p states. In particular, the availability of 6 unoccupied O 2p states near the Fermi level is responsible for enhancing the sulfur tolerance of Sm-7 8 doped CeO₂ compared to the pure CeO₂ by increasing the activity of surface lattice oxygen toward sulfur adsorbate, by weakening the interaction between Sm-O, and by increasing the migration 9 10 tendency of subsurface oxygen ion toward the surface.

- 11
- 12
- 13

TABLE OF CONTENTS

14

15 Keywords: Sulfur poisoning, solid oxide fuel cell, Samarium, CeO₂, f electron

16

17

2 Introduction

One of the main challenges in the development of anodes for solid oxide fuel cells (SOFCs) is the prevention of sulfur poisoning of Ni-based anodes because sulfur can block the active sites of the Ni anode and deteriorate the electrochemical performance of SOFCs.^{1, 2} Recently, modifications of Nibased anodes with ceria (CeO₂)-based materials has shown promise in reducing sulfur poisoning owing to the affinity of CeO₂ for sulfide at high temperature.³⁻⁶ By coating ceria onto conventional nickel/yttria-stabilized zirconia (Ni/YSZ), improved SOFC cell performance was obtained^{7, 8} because of the sulfur adsorption by ceria.

Furthermore, samarium (Sm) doping of CeO₂ may lead to enhanced sulfur tolerance and cell 10 11 performance. Sm-doped ceria (SDC)-coated Ni/YSZ may serve as a more effective sulfur adsorbent than ceria, and has resulted in stable cell performance in the presence of 500 ppm of H₂S over 800 h.^{9,10} 12 Approximately 25 to 50% improvement of the cell performance has been achieved with SDC-coated 13 14 Ni/YSZ than with ceria-coated Ni/YSZ and conventional Ni/YSZ owing to the enhanced sulfur adsorbing capability of Sm and enlarged triple-phase boundary (electrode-electrolyte-gas phase) areas 15 that reduce electrode polarization in the former.^{9, 11, 12} The underlying mechanism governing the sulfur 16 17 tolerance of Sm-doped CeO₂-based materials still remains unclear.

Physical Chemistry Chemical Physics Accepted Manuscript

Recently, the origin of sulfur poisoning on Ni-based anode materials has been investigated using 18 density functional theory (DFT). Zeng et al.¹³ found that the smaller ionic radius of cation dopant X^{3+} 19 results in the higher sulfur tolerance on Ni/XSZ (X₂O₃ stabilized zirconia), which is attributed to the fact 20 that the dopant size directly influences the Ni-XSZ interaction and in turn affects the Ni-S interaction. 21 Malyi et al.¹⁴ revealed that the hybridization of Ni 3d and S 3p states serves an important role in the 22 Ni-S interaction on Ni surfaces. Lu et al.¹⁵ investigated the interaction of atomic sulfur with the ceria 23 surfaces and found that sulfur tends to be in the $CeO_2(111)$ after replacing oxygen, but on the $CeO_2(110)$ 24 surface as SO_2^{2-} . Mayernick et al.¹⁶ examined H₂S adsorption and dissociation on Lanthanum (La)- and 25

^{Dhysical Chemistry Chemical Physics Accepted Manuscript}

Terbium (Tb)-doped CeO₂(111) by using DFT+U and ab initio thermodynamics, and indicated that substoichiometric oxygen vacancies play an important role in sulfur adsorption process occurring via H₂S adsorption and dissociation where a strong endergonic molecular adsorption of H₂S is the rate limiting step.

In this study, we investigated the role of Sm in determining the sulfur tolerance of Sm-doped 5 CeO_2 (Sm_xCe_{1-x}O₂) using spin-polarized DFT+U calculations. We examined the oxidation of H₂S on 6 $Sm_xCe_{1-x}O_2$ and stoichiometric CeO₂ by calculating the reaction energetics and energy barriers of 7 various reaction pathways. H₂S oxidation proceeds via H₂S decomposition (H₂S^{*} \rightarrow HS^{*} + H^{*} \rightarrow S^{*} + 8 $H^* + H^*$) and SO₂ formation (S^{*} + O^{*} + O^{*} \rightarrow SO^{*} + O^{*} \rightarrow SO₂^{*}) (asterisk (*) denotes adsorbed species 9 10 hereafter) as shown in Supporting Information, Figure S1. We also present the electronic properties of 11 Sm-doped CeO_2 and stoichiometric CeO_2 to elucidate the origin of sulfur tolerance in CeO_2 -based materials. 12

13

1

2

3

4

14 Computational Methodology

Spin-polarized DFT+U calculations were performed using the Vienna ab-initio Simulation 15 Package (VASP)¹⁷ within with the generalized gradient approximation (GGA-PBE¹⁸). The projector 16 17 augmented wave (PAW) method with a planewave basis set was employed to describe the interaction between core and valence electrons^{19, 20}. A plane-wave expansion with a kinetic energy cutoff of 400 eV 18 was employed with a Gaussian smearing with a width of 0.2 eV. The integration of the Brillouin zone 19 was conducted using a $4 \times 4 \times 1$ Monkhorst-Pack grid²¹ for the 2×2 CeO₂(111) slab model, where three 20 21 Ce atom layers and six O atom layers are present as shown in Figure 1A (this nine layer slab model is be close to converged with respect to slab thickness and has been used in previous studies²²⁻²⁴). 22

The Sm-doped CeO₂ was modeled by introducing a Sm-doping atom to substitute Ce atoms in the CeO₂ (111) slab. Here a Sm dopant was located on the top surface, rather than on the subsurface since Sm dopant tends to segregate on the CeO₂ surface, rather than migrate into the bulk^{25, 26}.

The geometries were optimized until the forces were reduced below 0.05 eV/Å. A Hubbard-U
term, U = 5 eV, was added to properly describe the localized nature of the 4*f* electrons of Ce.^{27, 28}
Furthermore, the climbing image-nudged elastic band (CI-NEB)²⁹ method was employed to calculate
the activation energy for H₂S decomposition and SO₂ formation along the examined pathway.

The charge difference density (Δn(r)) plots were obtained by subtracting the charge densities of
the separated adsorbate and the CeO₂ (or Sm-doped CeO₂) surface from the charge density of the
adsorbate-surface system as follows:

$$\Delta n(\mathbf{r}) = n_{surf+adsorbate}(\mathbf{r}) - [n_{surf}(\mathbf{r}) + n_{adsorbate}(\mathbf{r})]$$
(1)

8

9 where $n_{surf+adsorbate}(\mathbf{r})$, $n_{surf}(\mathbf{r})$, and $n_{adsorbate}(\mathbf{r})$ are the electron charge distributions of the surface with 10 adsorbed species, isolated surface, and isolated adsorbate, respectively. The source of the isolated 11 adsorbate and surface structures used for the charge difference density calculations have been directly 12 obtained from the optimized structures of the bound systems, rather than the optimized free adsorbate 13 and surface systems.

14 The oxygen vacancy formation energy per oxygen atom (E_{form}) is calculated as:

15

 $E_{form} = \left(E_{vac} - E_{perfect} + n(\frac{1}{2}E_{O_2})\right) / n$

16

where E_{vac} and $E_{perfect}$ are the total energies of oxygen vacant and perfect surface, respectively. *n* is the number of oxygen vacancy and E_{O2} is the total energy of oxygen molecule.

19 The adsorption energy (E_{ads}) of an adsorbate is defined as $E_{ads} = E_{substrate+adsorbate} - E_{substrate} - 20$ 20 $E_{adsorbate}$, where $E_{substrate+adsorbate}$, $E_{substrate}$, and $E_{adsorbate}$ are the total energies of a substrate and adsorbate 21 (e.g., CeO₂ with adsorbed sulfur), a substrate (e.g., CeO₂), and a gas phase adsorbate (e.g., sulfur). A

(2)

negative adsorption energy indicates that adsorption is exothermic (stable) with respect to the free gas phase adsorbate.

3

4 **Results and Discussion**

The modified electronic properties of Sm-doped CeO₂ were examined by analyzing the charge 5 6 density difference caused by the replacement of Ce by Sm (See Figure 1). Because of the higher electron density of Sm ([Xe]4f⁶6s²) than that of Ce ([Xe]4f¹5d¹6s²), strong charge accumulation is 7 observed at the location of Sm (up to 3.60 $e/Å^3$) in the charge density difference plot. Importantly, the 8 electron charge of the neighboring lattice oxygen atoms of Sm becomes depleted because of the 9 replacement of Ce⁴⁺ by Sm³⁺, resulting in a relatively weak interaction of lattice oxygen with the Sm-10 11 doped CeO₂ surface. The weaker Ce–O interaction on Sm-doped CeO₂ is supported by the oxygen vacancy formation energy as shown in Table 1. Less energy is required to create one or two oxygen 12 vacancies in Sm-doped CeO₂ compared to that required for stoichiometric CeO₂. This observation may 13 14 imply that the lattice oxygen with depleted electron charge helps promote sulfur oxidation by lowering the activation energy for SO₂ formation ($S^* \rightarrow SO_2^*$). In the ensuing discussion, we demonstrate the 15 enhanced SO₂ formation by analyzing the reaction pathways and estimating the activation energies 16 using the CI-NEB²⁹ method. 17

18

Figure 1. (A) Side view of the 2×2 CeO₂ structure consisting of three Ce and four O layers. (B) Charge density difference ($\Delta n(\mathbf{r})$ in units of $e/Å^3$) of Sm-doped CeO₂ upon Sm replacement defined by $[n(\mathbf{r})_{\text{Sm-doped CeO_2}} - n(\mathbf{r})_{\text{CeO_2}}]$, where $n(\mathbf{r})_{\text{Sm-doped CeO_2}}$ and $n(\mathbf{r})_{\text{CeO_2}}$ are the charge densities of Sm-doped CeO₂ and stoichiometric CeO₂ surfaces. Ce_{sm} indicates the Ce atom replaced by Sm in (B).

6

Table 1. Oxygen vacancy formation energies depending on the number of oxygen vacancies.
Superscripts *a*, *b*, *c*, *d*, and *e* indicate oxygen vacancy locations of (O1), (O2), (O1, O2), (O1, O4), and

9	(01, 03)	, respectively,	as depicted	in Figure 1B.
---	----------	-----------------	-------------	---------------

	One vacancy	Two vacancies
	(eV/O atom)	(eV/O atom)
CeO ₂	3.33 ^{<i>a</i>}	3.01 ^{<i>c</i>,<i>d</i>}
Sm-doped CeO ₂	$1.79^a, 1.97^b$	$2.65^c, 2.32^e$

¹⁰

Prior to detailed examination of the reaction pathways and corresponding activation energy, an
 overall reaction pathway from H₂S adsorption to SO₂ desorption was examined as shown in the

Physical Chemistry Chemical Physics Accepted Manuscript

Supporting Information, Figure S2, indicating that the H_2S decomposition reaction is exothermic whereas the SO₂ desorption reaction is endothermic. The reaction limiting step of the sulfur removal mechanism may lie in the last step of SO₂ desorption. In-depth understanding of the effect of Sm on the reaction pathways can be achieved by comparing the activation energies required for each reaction step on both surfaces.

Figure 2 shows the lowest-energy reaction pathways of H₂S decomposition on stoichiometric 6 CeO₂ and Sm-doped CeO₂, demonstrating that Sm doping promotes H₂S decomposition by lowering the 7 8 activation energy required for each step. Sm doping significantly lowers the activation energy barrier of the $HS^* + H^* \rightarrow S^* + H^* + H^*$ step from 0.64 to 0.12 eV, and furthermore, turns an endothermic reaction 9 into an exothermic one at the last step of H₂S decomposition. The H₂S molecule binds weakly on the top 10 11 site of Ce or Sm where the sulfur is bound on Ce or Sm with respective adsorption energies of -0.21and -0.22 eV for stoichiometric CeO₂ and Sm-doped CeO₂, which agrees with previous DFT^{30, 31} and 12 experimental³² studies. Notably, the adsorption configuration of $S^* + H^* + H^*$ on CeO₂, where sulfur is 13 located at the top site of Ce, is ~0.15–0.19 eV more stable than those in which sulfur is located on the 14 bridge or hollow sites of Ce (Supporting Information, Figure S3); the most stable configuration of S^* + 15 $H^* + H^*$ is where sulfur interacts directly with lattice oxygen (Figure 2A). Marrocchelli and Yildiz³⁰ also 16 showed that the $HS^* + H^* \rightarrow S^* + H^* + H^*$ reaction on stoichiometric CeO₂(111) is exothermic when 17 atomic sulfur is bound to the lattice oxygen, and an energy barrier of 0.69 eV is present between the two 18 steps, which may be attributed to an intermediate step where sulfur is bound to the top site of Ce as 19 shown here. 20

The CeO₂ and Sm-doped CeO₂ surfaces differ notably in terms of the stabilization of atomic sulfur and hydrogen on each surface; Sm doping considerably enhances the stability of the S^{*} + H^{*} + H^{*} step. This result agrees well with the empirical observation that Sm doping enhances the sulfuradsorbent properties of CeO₂ in recent SOFC studies employing a Ce_{0.8}Sm_{0.2}O₂-coated Ni/YSZ anode.⁹, ¹⁰ In the presence of 100 ppm of H₂S, the polarization resistance of the Ce_{0.8}Sm_{0.2}O₂-coated Ni/YSZ

anode (40%) increased to a lesser extent than that of the CeO₂-coated Ni/YSZ anode (90%);⁹ this
demonstrates that Sm enhances the capture of sulfur by CeO₂, where it is stored as Ce₂O₂S.⁹ The current
DFT results also demonstrate that Sm-doped CeO₂ can better decompose the H₂S molecule into atomic
sulfur compared to stoichiometric CeO₂, which may lead to a higher storage of Ce₂O₂S on Sm-doped
CeO₂ than on stoichiometric CeO₂.

6

8 Figure 2. The lowest-energy reaction pathways (A) and relative energy diagrams (B) of H_2S 9 decomposition on stoichiometric CeO₂ (dashed lines) and Sm-doped CeO₂ (solid lines). *a* and *b* indicate 10 the location of Sm depending on Sm-doped CeO₂ (a) and (b), respectively. Empty rectangles represent 11 transition states (TS) in eV. The absence of TS between two steps indicates the absence of an energy

Physical Chemistry Chemical Physics Accepted Manuscript

barrier. Case(I) and Case(II) represent the S* + H* + H* configurations where sulfur is located on the top
of Ce and lattice oxygen, respectively.

3

The enhanced decomposition of H₂S on Sm-doped CeO₂ may be attributed to the modified 4 electronic structure of Sm-doped CeO₂ due to Sm doping. Figure 3A shows a comparison of the total 5 density of states (DOS) between stoichiometric CeO₂ and Sm-doped CeO₂. For the stoichiometric CeO₂ 6 case, we find that a gap is present between the top of the O 2p valence band and the bottom of the 7 unoccupied Ce 4f conduction band, which agrees well with previous DFT studies.^{27, 33, 34} On the other 8 hand, for the Sm-doped CeO₂ case, our calculation predicts that a new gap state between the O 2*p*-Ce 4*f* 9 gap is formed near the Fermi level. This new gap state is related to Sm 4f and Sm-perturbed O 2p states, 10 which may be responsible for the significantly increased stability of sulfur radicals and in turn enhanced 11 H₂S decomposition on Sm-doped CeO₂ compared to that on stoichiometric CeO₂. 12

To unravel the relative role of Sm 4f and Sm-perturbed O 2p states in determining the surface 13 reactivity toward the sulfur species, we calculated the sulfur adsorption energy at various surface sites 14 and projected density of state (PDOS) onto Sm 4f and O 2p states. First, our calculation shows the slight 15 enhancement of the sulfur adsorption energy (E_{ad}) at the Sm top site $[E_{ad} = -0.88 \text{eV}]$ on Sm-doped 16 CeO₂, compared to the Ce top site on stoichiometric CeO₂ [$E_{ad} = -0.70$ eV]. On the other hand, we find a 17 significant improvement of the sulfur adsorption energy at the O top site on Sm-doped CeO₂ by 0.82eV 18 in comparison with stoichiometric CeO_2 case, indicating that the surface O site is the critical factor to 19 boost the sulfur stability in Sm-doped CeO₂ (Supporting Information, Table S1). Figure 4 shows the 20 charge difference density upon sulfur adsorption on lattice oxygen in Sm-doped CeO₂ and 21 stoichiometric CeO₂ cases. We find the larger electronic charge accumulation in the bonding region 22 between S 2p an O 2p orbital in Sm-doped CeO₂ than that in stoichiometric CeO₂ cases, suggesting the 23 formation of much stronger covalent bond in Sm-doped CeO₂. 24

1

Figure 3. (A) Total density of states (TDOS) of stoichiometric CeO_2 (dashed lines) and Sm-doped CeO_2 (solid lines). (B) Projected density of states (PDOS) of surface oxygen 2p state (four O atoms) of stoichiometric CeO_2 and Sm-doped CeO_2 . (C) PDOS of Sm 4*d* and 4*f* states. Spin-up and -down are indicated by positive and negative values, respectively. The Fermi energy is referenced at 0 eV.

Physical Chemistry Chemical Physics Accepted Manuscript

Figure 4. Charge difference density (Δn(r) in units of e/Å³) of stoichiometric CeO₂ and Sm-doped CeO₂
 upon sulfur adsorption on lattice oxygen. Two arrows indicate strong charge depletion upon sulfur
 adsorption.

4

The dramatic enhancement of the surface activity at the lattice O site is related to the formation 5 6 of unoccupied O 2p states caused by the strong mixing between Sm 4f and O 2p states. According to our DFT+U calculation on the PDOS of Sm 4f and O 2p states (Figure 3B and 3C), a significant overlap 7 between Sm 4f and O 2p states are observed in the $-1.7 \text{ eV} \le E - E_f \le 1.0 \text{ eV}$, suggesting a strong 8 hybridization of Sm 4f-O 2p states in Sm-doped CeO₂. Notice no overlap between Ce 4f-O 2p states in 9 stoichiometric CeO₂. Correspondingly, the PDOS of occupied O 2p states in Sm-doped CeO₂ noticeably 10 shifts toward the Fermi level compared to the stoichiometric CeO₂ case. In particular, the onset of low 11 binding energy tail shifts above the Fermi level, which results in the formation of unoccupied O 2p 12 states in the 0 eV $\leq E - E_f \leq 1.0$ eV. The different oxidation state of dopants and Bader charge analysis 13 also support the creation of empty unoccupied O 2p states. Our DFT+U calculation shows that the 14 oxidation state of Sm dopant is about +3 in Sm-doped CeO₂, which is lower than that of Ce atom (Ce⁴⁺) 15 (Note that the magnetization of Sm 4f states in Sm-doped CeO₂ is ~ 4.9e. Together with the fact that 16 there is no electron in Sm 6s state, this indicates that the oxidation state of Sm is close to +3 in Sm-17 doped CeO₂). As a result, the electronic charge of O^{2-} perturbed by Sm 4f states is substantially 18 decreased by 0.060*e* (from Bader charge analysis) compared to the O^{2-} case in stoichiometric CeO₂, 19 leading to the formation of empty O 2*p* states. 20

Moreover, the unoccupied O 2p states above the Fermi level may weaken the binding energy between Sm and the lattice oxygen due to reduced electron density of oxygen, promoting the formation of oxygen vacancies (see comparison of oxygen vacancy formation energies in Table 1). A similar phenomenon has been reported for copper adsorbed-CeO₂(111) where the formation of oxygen

- 1 vacancies was promoted by formation of unoccupied states near the Fermi level upon copper
- 2 adsorption.²⁷
- 3

4

Figure 5. (A) PDOS of surface oxygen 2p (four O atoms) and dopant (Ce, Pr, Pm, Sm, and Eu) 4f (one dopant atom) states where spin-up and -down states are summed. The Fermi energy is referenced at 0 eV. (B) Sulfur adsorption energies on top sites of dopants (rhombus), top sites of surface lattice oxygen (square), and bridge sites of dopant-oxygen (circles). *x*-axis represents the portion of unoccupied lattice oxygen 2p states below 1 eV in PDOS. Sulfur on the top of dopants is restrained in *x* and *y* directions.

To better understand the importance of unoccupied O 2*p* states in determining the activity of surface lattice oxygen, the Sm atom in Sm-doped CeO₂ was replaced with three 4*f* shell dopants (i.e., praseodymium (Pr) ([Xe]4f³6s²), promethium (Pm) ([Xe]4f⁵6s²), and europium (Eu) ([Xe]4f⁷6s²)), and the sulfur adsorption and the electronic properties of Pr-, Pm-, and Eu-doped CeO₂ were examined.

From the PDOS of O 2*p* states and dopant 4*f* states (See Figure 5A), we find that the number of unoccupied O 2*p* states strongly depends on the degree of overlap between O 2*p* states and dopant 4*f* states. That is, as the number of 4*f* electrons of dopants (Ce = 2, Pr = 3, Pm = 5, Sm = 6, and Eu = 7) increase, the hybridization of Sm 4*f*-O 2*p* states becomes stronger, leading to the increase of the number of unoccupied O 2*p* states of 4*f* shell dopant-perturbed oxygen ion (Ce = 0, Pr = 1.47, Pm = 3.04, Sm = 3.85, and Eu = 5.34 % in terms of the percentage of unoccupied O 2*p* state). TDOS and PDOS of Pr-, Pm-, Sm-, and Eu-doped CeO₂ are compared in Supporting Information, Figure S4.

In Figure 5B, the sulfur adsorption energy is displayed as a function of the number of 12 unoccupied O 2p states. We find the improvement of sulfur adsorption energy at the O-associated 13 14 surface sites (dopant-oxygen bridge sites) as the number of unoccupied O 2p states increases [Ce (-2.58) < Pr(-2.81) < Pm(-3.08) < Sm(-3.26) < Eu(-3.67 eV)]. This trend is inversely proportional 15 to the oxygen vacancy formation energy depending on the 4*f* shell dopants (Ce (3.33) > Pr (2.96) > Pm16 (2.11) > Sm(1.79) > Eu(1.17 eV), which is attributed to the increased depletion of electron density 17 from oxygen as the shift of O 2p states above the Fermi level. This demonstrates that the availability of 18 unoccupied O 2p states plays a key role in enhancing the stability of sulfur and in turn H₂S 19 decomposition on the surface. 20

Figure 6 represents the lowest-energy reaction pathways of gas phase SO_2 production from adsorbed sulfur on stoichiometric CeO₂ and Sm-doped CeO₂. In this reaction scheme, adsorbed sulfur uses surface lattice oxygen to form SO^* and SO_2^* according to the following hypothesis, where adsorbed sulfur (S^{*}) is electrochemically oxidized by lattice oxygen that is replenished from oxygen ion flux from a cathode.³⁵⁻³⁸

$$S^* + 2O_{\text{SDC}} \rightarrow * + SO_{2(\text{gas})} + 2V\ddot{o} + 4e^-$$
(1)

3

Here, O_{SDC} , *, and $V\ddot{o}$ represent a lattice oxygen, the SDC surface, and an oxygen vacancy in SDC, respectively. Although the H₂S reactions on ceria involve the formation of H₂O_(gas) and H_{2(gas)}, a DFT calculation model based on Eq. (1) may provide enough insight into the role of Sm in determining the sulfur tolerance of SDC given that the resistance to sulfur poisoning is mainly attributed to the SO₂ desorption reaction.³⁵⁻³⁷

9 Our calculation predicts that Sm doping enhances the adsorbed SO₂ formation by lowering the 10 activation energy for the SO^{*} \rightarrow SO₂^{*} + *Vö* step from 0.90 to 0.62 or 0.50, depending on the location of 11 Sm (Figure 6B). The lowered energy barriers are related to the significant reduction of oxygen vacancy 12 formation energy due to the weakened interaction between lattice oxygen and Sm dopant by the 13 substantial existence of unoccupied O 2*p* states. Note that the oxygen vacancy formation energy is 14 reduced by 1.54 (or 1.36) eV on Sm-doped CeO₂ compared to pure ceria as shown in Table 1.

15 The energy for the desorption of SO₂ on stoichiometric $CeO_2(111)$ is 2.05 eV, which agrees with the results of a previous DFT study in which the desorption energy was calculated at 1.96 eV. However, 16 Sm doping lowers the desorption energy of SO₂ to 2.00 and 1.69 eV. The relatively more stabilized 17 18 oxygen vacant Sm-doped CeO₂ surface compared to the oxygen vacant CeO₂ surface also contributes to enhancing sulfur removal by promoting SO₂ desorption. Notably, the significantly lowered SO₂ 19 desorption energy of 1.69 eV on Sm-doped CeO₂ is due to the fact that the subsurface oxygen ion near 20 21 Sm tends to migrate onto the surface during the SO₂ desorption. The calculated distances of migrated subsurface oxygen ions toward the surface in stoichiometric CeO₂ and Sm-doped CeO₂ are 0.35 and 22 1.07 Å, respectively (See Supporting Information, Figure S5), which implies that Sm doping may 23 promote the migration process of oxygen ion formed at the subsurface toward the surface during the 24

SO₂ desorption, resulting in the further stabilization of oxygen vacant Sm-doped CeO₂ surface compared to stoichiometric CeO₂ and in turn the improvement of SO₂^{*} desorption energetics. This is also confirmed by higher exothermicity by 0.18 eV on Sm-doped CeO₂ than on stoichiometric CeO₂ for the complete migration process of oxygen ion from subsurface to surface.

5

6

Figure 6. The lowest-energy reaction pathways (A) and energy diagrams (B) for SO₂ formation on
stoichiometric CeO₂ (dashed lines) and Sm-doped CeO₂ (solid lines). *a* and *b* indicate the location of
Sm depending on Sm-doped CeO₂ (A) and (B), respectively. Empty rectangles represent transition
states (TS) in eV. The absence of TS between two steps indicates the absence of an energy barrier.

11

12 Conclusions

13 In summary, we find that the strong interaction between Sm 4f and O 2p states on Sm-doped 14 CeO₂ increases the availability of unoccupied O 2p states near the Fermi level. The increased

unoccupied O 2p states in turn enhance the sulfur tolerance of Sm-doped CeO₂ compared to the pure ceria by boosting the stability of sulfur species in H₂S decomposition owing to the increased activity of surface lattice oxygen toward sulfur adsorption, by reducing the oxygen vacancy formation energy in SO₂ production due to the weakened interaction between Sm and O, and by further stabilizing the oxygen vacant surface in SO₂ desorption process attributed to the increased migration tendency of subsurface oxygen ion toward the surface. This work also hints on the importance of properly engineering the activity of oxygen ion in CeO₂-based materials by adding dopant.

8

9 Supporting Information

Schematic diagrams of H₂S decomposition and SO₂ formation pathways, adsorption energies of H₂S,
HS, and S species, additional adsorption configurations of S^{*} + H^{*} + H^{*} on CeO₂(111), TDOS and
PDOS of Pr-, Pm-, Sm-, and Eu-doped CeO₂, and configurations of diffused subsurface oxygen atoms.
This materials is available free of charge via the Internet at http://pubs.acs.org.

14

15 Corresponding Author

16 *E-mail: hchahm@kist.re.kr. Phone: +82-2-958-5889, Fax: +82-2-958-5199

17

18 Acknowledgement

The current work was financially supported by the Global Research Laboratory (GRL) Program funded by the Ministry of Education, Science and Technology of Korea, and also supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (2012R1A6A3A04040490). The computational resources were supported by the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C3-017).

25

26 **References**

- 1 1. Matsuzaki, Y.; Yasuda, I., The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part
- I. Dependence on temperature, time, and impurity concentration. *Solid State Ionics* 2000, *132*, (3-4), 261-269.
 Zha, S. W.; Cheng, Z.; Liu, M. L., Sulfur poisoning and regeneration of Ni-based anodes in solid oxide
- Zha, S. W.; Cheng, Z.; Liu, M. L., Sultur poisoning and regeneration of Ni-based anodes in solid o
 fuel cells. *Journal of the Electrochemical Society* 2007, *154*, (2), B201-B206.
- 5 3. Li, Z. J.; Flytzani-Stephanopoulos, M., Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas 6 desulfurization. *Industrial & Engineering Chemistry Research* **1997**, *36*, (1), 187-196.
- Zeng, Y.; Zhang, S.; Groves, F. R.; Harrison, D. P., High temperature gas desulfurization with elemental sulfur production. *Chemical Engineering Science* 1999, *54*, (15-16), 3007-3017.
- 9 5. Wang, Z.; Flytzani-Stephanopoulos, M., Cerium oxide-based sorbents for regenerative hot reformate gas
 10 desulfurization. *Energy & Fuels* 2005, 19, (5), 2089-2097.
- Yi, K. B.; Podlaha, E. J.; Harrison, D. P., Ceria-zirconia high-temperature desulfurization sorbents.
 Industrial & Engineering Chemistry Research 2005, 44, (18), 7086-7091.
- 13 7. Kurokawa, H.; Sholklapper, T. Z.; Jacobson, C. P.; De Jonghe, L. C.; Visco, S. J., Ceria nanocoating for
- sulfur tolerant Ni-based anodes of solid oxide fuel cells. *Electrochemical and Solid State Letters* 2007, 10, (9),
 B135-B138.
- B. Devianto, H.; Yoon, S. P.; Nam, S. W.; Han, J.; Lim, T.-H., The effect of a ceria coating on the H2S
 tolerance of a molten carbonate fuel cell. *Journal of Power Sources* 2006, *159*, (2), 1147-1152.
- 18 9. Yun, J. W.; Yoon, S. P.; Park, S.; Kim, H. S.; Nam, S. W., Analysis of the regenerative H2S poisoning
- 19 mechanism in Ce0.8Sm0.2O2-coated Ni/YSZ anodes for intermediate temperature solid oxide fuel cells.
- 20 International Journal of Hydrogen Energy 2011, 36, (1), 787-796.
- 21 10. Yun, J. W.; Ham, H. C.; Kim, H. S.; Song, S. A.; Nam, S. W.; Yoon, S. P., Effects of the Sm0.2Ce0.8O2-
- delta Modification of a Ni-Based Anode on the H2S Tolerance for Intermediate Temperature Solid Oxide Fuel
 Cells. *Journal of the Electrochemical Society* 2013, *160*, (2), F153-F161.
- Yun, J. W.; Yoon, S. P.; Park, S.; Han, J.; Nam, S. W.; Lim, T.-H.; Kim, J.-S., Modifying the cathodes of
 intermediate-temperature solid oxide fuel cells with a Ce0.8Sm0.2O2 sol-gel coating. *International Journal of Hydrogen Energy* 2009, *34*, (22), 9213-9219.
- Yoon, S. P.; Han, J.; Nam, S. W.; Lim, T. H.; Hong, S. A., Improvement of anode performance by
 surface modification for solid oxide fuel cell running on hydrocarbon fuel. *Journal of Power Sources* 2004, *136*,
 (1), 30-36.
- 30 13. Zeng, Z.; Bjorketun, M. E.; Ebbesen, S.; Mogensen, M. B.; Rossmeisl, J., Origin of electrolyte-dopant
- dependent sulfur poisoning of SOFC anodes. *Physical Chemistry Chemical Physics* 2013, *15*, (18), 6769-6772.
 14. Malyi, O. I.; Chen, Z.; Kulish, V. V.; Bai, K.; Wu, P., Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces. *Applied Surface Science* 2013, *264*, 320-328.
- Lu, Z.; Kullgren, J.; Yang, Z.; Hermansson, K., Sulfidation of Ceria Surfaces from Sulfur and Sulfur
 Diffusion. *The Journal of Physical Chemistry C* 2012, *116*, (15), 8417-8425.
- Mayernick, A. D.; Li, R.; Dooley, K. M.; Janik, M. J., Energetics and Mechanism for H2S Adsorption by
 Ceria-Lanthanide Mixed Oxides: Implications for the Desulfurization of Biomass Gasifier Effluents. *The Journal of Physical Chemistry C* 2011, *115*, (49), 24178-24188.
- 39 17. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a
- 40 plane-wave basis set. *Phys Rev B* **1996,** *54*, (16), 11169-11186.
- 41 18. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Physical*42 *Review Letters* 1996, 77, (18), 3865-3868.
- 43 19. Blöchl, P. E., Projector augmented-wave method. *Phys Rev B* 1994, *50*, (24), 17953-17979.
- Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys Rev B* 1999, 59, (3), 1758-1775.
- 46 21. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Phys Rev B* 1976, *13*, (12),
 47 5188-5192.
- 48 22. Skorodumova, N. V.; Baudin, M.; Hermansson, K., Surface properties of CeO2 from first principles.
 49 *Phys Rev B* 2004, *69*, (7).
- 50 23. Fabris, S.; Vicario, G.; Balducci, G.; de Gironcoli, S.; Baroni, S., Electronic and atomistic structures of 51 clean and reduced ceria surfaces. *J Phys Chem B* **2005**, *109*, (48), 22860-22867.
- Chafi, Z.; Keghouche, N.; Minot, C., DFT study of Ni-CeO2 interaction: Adsorption and insertion. *Surf Sci* 2007, *601*, (11), 2323-2329.

- 1 25. Guo, M.; Lu, J. Q.; Wu, Y. N.; Wang, Y. J.; Luo, M. F., UV and Visible Raman Studies of Oxygen
- 2 Vacancies in Rare-Earth-Doped Ceria. *Langmuir* **2011**, *27*, (7), 3872-3877.
- **3** 26. Ismail, A.; Giorgi, J. B.; Woo, T. K., On the Atomistic Interactions That Direct Ion Conductivity and
- Defect Segregation in the Bulk and Surface of Samarium-Doped Ceria: A Genetic Algorithm Study. *J Phys Chem* C 2012, *116*, (1), 704-713.
- 6 27. Yang, Z. X.; He, B. L.; Lu, Z. S.; Hermansson, K., Physisorbed, Chemisorbed, and Oxidized CO on
- 7 Highly Active Cu-CeO2(111). *Journal of Physical Chemistry C* **2010**, *114*, (10), 4486-4494.
- 8 28. Kim, H. Y.; Henkelman, G., CO Oxidation at the Interface between Doped CeO2 and Supported Au
 9 Nanoclusters. *Journal of Physical Chemistry Letters* 2012, *3*, (16), 2194-2199.
- Henkelman, G.; Uberuaga, B. P.; Jonsson, H., A climbing image nudged elastic band method for finding
 saddle points and minimum energy paths. *Journal of Chemical Physics* 2000, *113*, (22), 9901-9904.
- 12 30. Marrocchelli, D.; Yildiz, B., First-Principles Assessment of H2S and H2O Reaction Mechanisms and the
- Subsequent Hydrogen Absorption on the CeO2(111) Surface. *Journal of Physical Chemistry C* 2012, *116*, (3),
 2411-2424.
- 15 31. Chen, H.-T.; Choi, Y.; Liu, M.; Lin, M. C., A First-Principles Analysis for Sulfur Tolerance of
- 16 CeO₂ in Solid Oxide Fuel Cells. *Journal of Physical Chemistry C* **2007**, *111*, (29), 11117-11122.
- 17 32. Mullins, D. R.; McDonald, T. S., Adsorption and reaction of hydrogen sulfide on thin-film
- 18 cerium oxide. *Surface Science* **2007**, *601*, (21), 4931-4938.
- 19 33. Szabova, L.; Skala, T.; Matolinova, I.; Fabris, S.; Camellone, M. F.; Matolin, V., Copper-ceria
- 20 interaction: A combined photoemission and DFT study. *Applied Surface Science* **2013**, *267*, 12-16.
- 21 34. Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J., Oxygen vacancy clusters on ceria:
 22 Decisive role of cerium f electrons. 2009; Vol. 79, p 075433.
- Zha, S.; Cheng, Z.; Liu, M., Sulfur poisoning and regeneration of Ni-based anodes in solid oxide
 fuel cells. *Journal of the Electrochemical Society* 2007, 154, (2), B201-B206.
- 25 36. Cheng, Z.; Wang, J. H.; Choi, Y. M.; Yang, L.; Lin, M. C.; Liu, M. L., From Ni-YSZ to sulfur-tolerant 26 anode materials for SOECs: electrochemical behavior in situ characterization modeling and future perspectives
- anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives.
 Energy & Environmental Science 2011, *4*, (11), 4380-4409.
- 28 37. Cheng, Z.; Zha, S. W.; Liu, M. L., Influence of cell voltage and current on sulfur poisoning behavior of 29 solid oxide fuel cells. *Journal of Power Sources* **2007**, *172*, (2), 688-693.
- 30 38. Sasaki, K.; Susuki, K.; Iyoshi, A.; Uchimura, M.; Imamura, N.; Kusaba, H.; Teraoka, Y.; Fuchino, H.;
- 31 Tsujimoto, K.; Uchida, Y.; Jingo, N., H2S poisoning of solid oxide fuel cells. *Journal of the Electrochemical*
- 32 Society 2006, 153, (11), A2023-A2029.