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Understanding the Growth and 
Photoelectrochemical Properties of Mesocrystals and 
Single Crystals: A Case of Anatase TiO2 

Zhensheng Hong, *a Hong Dai, b Zhigao Huang a and Mingdeng Wei*c 

Anatase TiO2 mesocrystals and single crystals with dominant {101} facets were successfully synthesized 

without any additives using titanate nanowires as precursors under solvothermal and hydrothermal 

conditions, respectively. It’s proposed that the oriented self-assembly process to the formation of TiO2 

mesocrystals was controlled by the same thermodynamic principle with that of single crystals in this 

simple reaction system.  Furthermore, the TiO2 mesocrystals were applied in photoelectrochemical 

(PEC) water splitting and demonstrated much enhanced photocurrent, almost 191% and 274% 

compared with that of TiO2 single crystals and commercial P25, respectively. Electrochemical 

impedance measurements under illumination revealed that that the photocurrent increase was largely 

ascribed to the effective charge separation of electron-hole pairs and fast interfacial charge transfer.  

This could be attributed to the intrinsic characteristics of the mesostructured TiO2 composed of highly 

oriented nanocrystal subunits offering few grain boundaries, nanoporous nature and short transport 

distance. 

 

1. Introduction 

Recently, the conversion of solar energy to hydrogen via 
photoelectrochemical (PEC) route has received increasing 
research interests.1-3 Various active semiconductor 
nanomaterials, such as Si,4 TiO2,

5-8 Fe2O3 
9,10 and ZnO,11 have 

been adopted as photoanodes for this energy transformation. 
Among them, TiO2 is one of the most promising candidates for 
photoelectrochemical conversion because it is highly resistant 
to photocorrosion, widely available, cheap and nontoxic.7 
Generally, TiO2 nanoparticles were widely used as photoanode 
material for water splitting owing to the large surface area and 
short hole diffusion lengths.5, 7, 8  However, the PEC properties 
with TiO2 nanoparticles suffer from high charge recombination 
loss due to the electron trapping/scattering at grain boundaries 
(0.01 cm2 V-1S-1 for P25).12, 13  Nanostructured TiO2 with well- 
developed morphology have been proved to demonstrate 
enhanced PEC performance due to their fast charge transport 
and efficient contact between the electrode and electrolyte.14-19  
These include nanostructures composed of one-dimensional 
nanotubes / nanowires,14-16 three-dimensional hierarchical 
architectures 17, 18 and mesoporous structure.19  From these 
studies, it’s proved that high surface area, good light 
absorption, rapid charge transfer and effective charge 
separation of electron-hole pairs facilitate the efficient PEC 

conversion.  Most recent research revealed that the fast charge 
transport played a key role on the PEC performance.20  

However, a perfect nanostructure which simultaneously 
addresses all these features for efficient PEC conversion has yet 
to be achieved.  

Mesocrystals, a new class of ordered nanoparticle 
superstructures, were first found in biominerals and proposed 
by Cölfen and Antonietti in 2005.21 Such mesoscopically 
structured crystals are constructed from crystallographically 
oriented nanocrystals (1-100 nm), which are conceptually 
different from nanocrystal superlattices.22, 23 Mesocrystals are 
porous quasi-single crystals, providing the advantages inherited 
from single crystals and the large surface area, and thus making 
them more promising applications in catalysis, sensing and 
energy storage and conversion compared with single-crystalline 
or polycrystalline materials.21, 24, 25  It’s noteworthy that 
mesocrystals showed enhanced lithium-ion storage properties 
and excellent photocatalytic degradation of organic 
contaminants due to their high crystallinity, high porosity and 
oriented subunit alignment.26-30 However, the properties of 
mesocrystals for PEC cells were rarely reported. So far, many 
kinds of mesocrystals such as minerals.31, 32 organic molecules 
33 and metal oxides 24, 25 have been reported. Generally, it’s 
demonstrated the formation of mesocrystals is from a so-called 
‘‘non-classical crystallization’’, which involves the mesoscopic 
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Fig. 6.  Firstly, the precursors of titanate nanowires were 
gradually dissolved accompanying by in situ transformation to 
tiny anatase nanocrystals stabilized by HAC under 
solvothermal conditions.  The anatase mesocrystals were 
formed through the oriented self-assembly process of anatase 
nanocrystal subunits elongated along [001] direction.  
However, the titanate nanowires were first transformed to TiO2-
B under hydrothermal conditions.  The anatase single crystals 
were formed through the dissolution and recrystallization of 
TiO2-B nanorods. Nevertheless, anatase TiO2 mesocrystals and 
single crystals with dominant {101} facets and similar size 
were obtained at last.  It’s well documented that (101) is the 
most thermodynamically stable facet for anatase TiO2.

38 Hence, 
the TiO2 mesocrystals have common equilibrium shape with 
that of single crystals, suggesting that the growth of anatase 
mesocrystals was controlled by the same thermodynamic 
principle with single crystals in this simple reaction system and 
the mesocrystal is an intermediate of the single crystal.  This 
result may provide a way to fabricate and predict the 
morphology of mesocrystals using the conventional 
thermodynamic principle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig.  7  (a)  Linear  sweep  voltammograms  and  (b)  photoconversion  efficiency 

measured  from different  photoanodes:  (i)  P25,  (ii)  TiO2  single  crystals  and  (iii) 

TiO2 mesocrystals under light illumination. 

   
Recently, there has been a great deal of interests in using 

nanostructured TiO2 as photoanode materials for the conversion 

of solar energy to hydrogen.14-19  The anatase TiO2 mesocrystals 
synthesized in this study offer much larger surface area, shorter 
transport distance and highly oriented nanocrystal subunits, and 
thus would promise better photochemical properties.  Fig. 7a 
shows the typical current−voltage characteristics measured 
from different photoanodes in a potential window between −0.8 
and 0.6 V versus Ag/AgCl.  When the light was irradiated on 
the samples, the photocurrent density of all the photoanodes 
increased with the increasing applied potential. The 
photocurrent density of the commercial P25 (Degussa) was 
0.14 and 0.23 mA cm-2 at -0.5 and 0 V versus Ag/AgCl, 
respectively. Compared with TiO2 single crystals and 
mesocrystals, the photocurrent density of 0.17 (-0.5 V) and 0.33 
mA cm-2 (0 V) for the former, and 0.55 (-0.5 V) and 0.63 mA 
cm-2 (-0.5 V) for the later was obtained, respectively.  
Therefore, the TiO2 mesocrystals exhibits much enhanced 
photocurrent, almost 191% and 274% compared with that of 
TiO2 single crystals and commercial P25 at the applied 
potential at 0 V versus Ag/AgCl, respectively.  In order to 
quantitatively evaluate the efficiency of PEC hydrogen 
generation from different photoanodes, the photoconversion 
efficiency is calculated based on the equation: 2  

η = Imc (1.23 V‐ Vapp) / Jin 

where Vapp is the applied voltage versus reversible hydrogen 
electrode (RHE), Imc is the external current density at the 
measured potential, and Jin is the power density of the 
illumination (86 mW cm-2). The reversible hydrogen electrode 
(RHE) potential can be converted from the Ag/AgCl reference 
electrode via Nernst equation: 39  

ERHE = EAg/AgCl + 0.059 pH + E
0
Ag/AgCl 

where EAg/AgCl is the experimental potential against the 
Ag/AgCl reference electrode, and E0

Ag/AgCl is the standard 
potential of Ag/AgCl (0.2 V).  The results were shown in Fig. 
7b, the TiO2 mesocrystals achieved the highest efficiency of ∼
0.72% at a low bias of −0.50 V versus Ag/AgCl, while the TiO2 
single crystals achieved∼0.3% at −0.29 V and P25 achieved∼
0.3% at −0.31 V versus Ag/AgCl.  Thus, our results reveal that 
the TiO2 mesocrystals possess a significantly increased 
photocurrent, leading to much improved photoconversion 
efficiency. 
      To shed light on why the anatase TiO2 mesocrystals show 
much enhanced performance in PEC cells, the intrinsic 
properties of the different photoanode materials were further 
investigated. UV-vis absorption spectra of different samples are 
shown in Fig. 8.  For all the samples, a significant increase in 
the absorption at wavelengths shorter than 400 nm can be 
assigned to the intrinsic bandgap absorption of anatase TiO2 (∼
3.2 eV). P25 shows a best absorption of ultraviolet light, this 
may be due to the smallest size (~20 nm). Therefore, the 
absorption of ultraviolet light could not be the cause of 
improved PEC performance of TiO2 single crystals and 
mesocrystals under this measurement conditions.  BET surface 
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