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We study the conformation and reorientation dynamics of the 

inhibitory neurotransmitter γ-aminobutyric acid (GABA) at 

neutral and acidic conditions using a combination of broad-

band dielectric relaxation spectroscopy and polarization-

resolved femtosecond mid-infrared pump-probe spectrosco-

py. We find that both zwitterionic and cationic GABA adopt 

nearly linear conformations in aqueous solution, meaning 

that the two charged functional groups of the GABA zwitteri-

on are hydrated separately. 

 

 γ-Aminobutyric acid (COOH(CH2)3NH2, abbreviated 

GABA) is considered to be the major inhibitory neurotransmit-

ter in the mammalian central nervous system.1, 2 A deficiency of 

GABA therefore leads to a number of neurological disorders 

such as anxiety, insomnia, and depression as well as diseases 

like Parkinsonism and epilepsy.3, 4 The molecule performs its 

biological function by binding to three classes of neurorecep-

tors; GABAA, GABAB and GABAC, distributed throughout the 

mammalian brain. Unfortunately, GABA does not penetrate the 

blood-brain barrier and thus cannot be administrated as a tran-

quilizing drug.5 Novel compounds which are able to bind to 

GABAoid receptors and mimic functions of GABA are there-

fore continuously being developed.6 

 To design a suitable GABA analogue, a thorough under-

standing of the conformation of the molecule in physiological 

solution is needed. While neutral in the gas phase7 the molecule 

predominantly forms zwitterions in both the crystalline phase8 

and in neutral aqueous solutions (see Scheme 1a).9, 10 H1 NMR 

and Raman spectroscopy studies have shown that a large num-

ber of possible GABA rotamers are equally populated in 

water;9 a consequence of the molecule’s flexible aliphatic 

backbone. Curiously though, no consensus has been reached 

concerning the nature of the molecule’s dominant hydration 

patterns. More specifically, there is still substantial disagree-

ment in the literature as to the importance of folded GABA 

conformations with an internal hydrogen bond between the 

NH3
+ and COO– group (see Scheme 1b).11-13 From Hartree-

Fock calculations, where the solvent was implicitly described 

using a continuum Onsager reaction field approach, Odai et al. 

concluded that extended forms of zwitterionic GABA are the 

only stable in aqueous solution.11 Crittenden et al. further stud-

ied the hydration of GABA within the density functional theory 

(DFT) framework, using either polarizable continuum models 

or by an explicit description of the hydration in small clusters.12 

They found that folded conformers are dominantly present at 

low hydration levels, while unfolded conformations become 

more prominent with increasing number of added water mole-

cules. Hence, they concluded that unfolded species dominate in 

the aqueous phase. In stark contrast, Song and Kang found in 

another DFT study that as much as 94% of the GABA mole-

cules adopts a folded conformation in water forming intramo-

lecular H-bonds between the COO– and NH3
+ functional 

groups.13 

 

 

 
 

Scheme 1) Molecular structures of a) extended zwitterionic 

GABA, b) folded and internally bonded zwitterionic GABA and 

c) zwitterionic L-proline. 

 

 

 In this work we use two complementary experimental tech-

niques, namely broadband dielectric relaxation spectroscopy 

(DRS) and polarization resolved femtosecond infrared spec-

troscopy (fs-IR) to probe the conformation and hydration dy-

namics of GABA in both neutral and acidic solutions. Aqueous 

zwitterionic L-proline is studied as a reference case, due to its 

structural similarity with folded GABA conformers (compare 

Scheme 1b and c). DRS probes the dipolar reorientation of all 

polar species (given that a sufficient frequency range is cov-

ered) in terms of the sample’s complex permittivity ε��ν� �
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ε′�ν� � iε′′�ν�.14 Our broadband measurement (10 MHz – 90 

GHz) allows us to single out the dielectric relaxation modes of 

both the solutes and the water solvent. Fs-IR is an excellent tool 

to study the reorientation dynamics of water molecules.15-18 

With this technique we measure the reorientation dynamics of 

an anisotropically excited subset of OD groups of HDO mole-

cules in isotopically diluted water. 

 By simultaneously fitting the permittivity spectra and the fs-

IR anisotropy dynamics, we can separate the contributions of 

water molecules showing bulk-like reorientation behavior and 

of water molecules that are slowed down in their reorientation 

due to interactions with the solute. With this information we 

can accurately determine the dipole moment and reorientation 

time of the solute from the DR data. Since the dipole moment 

of a zwitterionic molecule strongly depends on the distance 

between the charged groups, we can relate the dipole moment 

directly to the conformation of the solute in aqueous solution. 

 

 
 

Figure 1) Anisotropy decay (logarithmic vertical scale) of the 

bulk OD vibrational band of HDO in H2O solutions of zwitteri-

onic GABA at 1,2,3,4 and 6 m concentrations. For visual clari-

ty error bars are only showed for selected pump-probe delays. 

 

Figure 1 shows measured anisotropy decays (circular markers) 

of the OD stretch vibration (centered at 2500 cm–1) of HDO 

molecules for solutions of zwitterionic GABA in HDO:H2O, at 

concentrations ranging from 1 to 6 molal (m). For comparison, 

we also include the anisotropy decay of the OD stretch vibra-

tion of HDO molecules in neat HDO:H2O, showing a character-

istic mono-exponential decay with a time constant of 2.5
0.1 

ps.15 These curves were obtained according to the experimental 

and data analysis procedures described in detail in the Electron-

ic Supplementary Information (ESI). The anisotropy decay 

curves are proportional to the second Legendre polynomial of 

the microscopic orientational correlation function,19 thus 

providing direct information on the reorientation of the water 

molecules in the sample. As has been previously observed, the 

solvation of amphiphilic molecules causes a distinct slowdown 

of the reorientational dynamics of a sub-ensemble of water 

molecules.20, 21 Accordingly, the solid lines represents least-

square fits to a bi-exponential function, fitted in conjunction 

with the dielectric permittivity spectra shown in Fig. 2. DRS, in 

contrast to fs-IR, measures a collective relaxation time that is 

similar to the first Legendre polynomial of the orientational 

correlation function.22 Based on previous DR and fs-IR experi-

ments, we multiply the relaxation time constants obtained by fs-

IR by a factor of ~3.4 to enable a direct comparison of the wa-

ter reorientation dynamics measured with the two 

techniques23,19, 22, 24 The details of the combined fit model are 

given in the ESI (section ESI.4). From the combined fits to the 

fs-IR and DRS data we find that both the number of slowed-

down water molecules and the associated reorientational time 

constants increase with solute concentrations (see Fig. ESI.5). 

The reorientation time increases from ~20 to 35 ps when the 

GABA concentration is increased from 1 to 6 m. 

 The leftmost panels in Fig. 2 show complex permittivity 

spectra of aqueous solutions of 1-6 m zwitterionic GABA. 

Panel a) gives	ε′�ν�, the in-phase contribution to the polariza-

tion while the middle panel b) gives the corresponding out-of-

phase contribution ε′′�ν�. The colored markers give experi-

mental data points while the solid black lines represent least-

Figure 2) Complex permittivity spectra of zwitterionic GABA (left panel), zwitterionic L-proline (middle panel), both at 1-6 m 

concentrations, as well as cationic GABA (right panel) at 1-4 m concentrations. For the latter solutions a term	�/��2��, arising 

due to the ionic conductivity , has been subtracted for visual clarity. For comparison, permittivity spectra of pure water are 

shown together with all samples. The solid lines represent fits to the relaxation model described in the ESI. The decomposition of 

�′′��� into a solute mode, a slow water mode and a bulk water mode is shown in the bottom row panels for 1m solutions. 
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square fits to the fit model consisting of a sum of three Debye 

relaxation modes pertaining to the solute, slow water and bulk-

like water, respectively. In the bottom panel c) we show the 

decomposition of the fit to ε′′�ν� at 1 m GABA concentration, 

explicitly separating the contributions from the three separate 

relaxation modes, together with the total resulting fit. 

 As is directly evident from the raw data, and explicitly 

shown in the decomposition in panel c), the dissolution of 

GABA results in the appearance of a strong low-frequency 

mode (τ����= 110 ps at 1 m) that red-shifts with increasing 

concentration. This is indicative of a general slowdown of the 

solution dynamics. The addition of GABA to the solution leads 

to a strong increase of the dielectric response, e.g. 6 m GABA 

has a dielectric constant ε� (i.e. ε��� → 0�) of ~280, which is 

more than three times that of pure water (~80).25 Using the 

Cavell equation the dielectric molecule’s dipole moment, 

�����, can be computed from the dielectric strength S����;26 

the results are given as filled red circular markers in Fig. 3 (see 

ESI for details). The dipole moment show only a minor (nega-

tive) concentration dependence, in agreement with the findings 

of a recent systematic DRS study of aqueous zwitterionic ami-

no acids.27 From a linear fit (solid line) the dipole moment at 

infinite dilution can be estimated to �����
�→� � 25.8 
 0.3 De-

bye, a high value for such a small molecule.  
 In order to relate these results to the conformation of zwit-

terionic GABA we make an experimental comparison with a 

molecule whose shape is similar to GABA in its folded state, 

namely L-proline (Scheme 1c). Being one of the 21 protein 

encoding amino acids L-proline is also predominately a zwitter-

ion in neutral aqueous solutions. It is therefore expected that the 

dipole moment of folded GABA conformers and L-proline are 

similar (compare Schemes 1b and c). The dielectric data meas-

ured for zwitterionic L-proline at 1-6 m concentration are given 

in the center panels d-f) of Fig. 2. Our combined fit approach of 

the fs-IR and DR data again yield excellent results. The most 

striking difference between the data for zwitterionic GABA and 

L-proline is the far weaker dielectric response of the solute in 

the latter case, reflecting a pronounced difference in dipole 

moment between the two molecules in aqueous solution. From 

a fit of the extracted dipoles, given in Fig. 3, we find that 

�"#$%&'()*
�→� � 17.9 
 0.4 Debye, in good agreement with the 

value reported in Ref27. This value is significantly smaller than 

�����
�→� , which indicates of that the NH3

+ and COO– functional 

groups are much more separated in aqueous zwitterionic GABA 

than in L-proline. 

 

 
 

Figure 3) Extracted dipole moments for zwitterionic (red) and 

cationic (green) GABA, as well as zwitterionic L-proline (blue) 

from the fits to the data shown in Fig. 2.  

 

 Crittenden et al. calculated dipole moments of a number of 

low-energy conformations of aqueous zwitterionic GABA on 

the B3LYP/6-31+G* level of theory.12 The calculated values 

fall in two distinct classes; for conformations with intramolecu-

lar hydrogen-bonds between the NH3
+ and COO– groups they 

report values around 16.5 Debye. This value is close to what we 

observe for L-proline, and supports the conjecture that the di-

pole moment of GABA in a folded conformation is similar to 

that of L-proline. In contrast, for extended structures of GABA 

where the ionic groups are individually hydrated, the calculated 

values are around 25 Debye. This is in excellent agreement 

with the here determined experimental value �����
�→� � 25.8 


0.3 Debye. We thus find strong evidence that GABA in aque-

ous solution is predominantly present in the form of an unfold-

ed zwitterionic conformer. 

 In order to further investigate the charge state dependence 

of the GABA conformation we have performed analogous 

experiments on the cationic form (GABA+): Fig. 2 g-i) shows 

fitted permittivity spectra of solutions at 1-4 m concentration, 

acidified to pH = 1.8 using perchloric acid (details described in 

ESI). The net positive charge of GABA+ is localized on the 

ammonium group, which causes the ion to possess an apprecia-

ble dipole moment, reflected in the concentration dependent in-

growth of a low-frequency mode around 1 GHz. As seen in Fig. 

3, fits to the experimentally obtained dipole moment yields 

�����/
�→� � 12 
 1 Debye. Interestingly, this value is about half 

of that of the zwitterion, which indicates that GABA+  and 

zwitterionic GABA possess a similar unfolded conformation.  

Since the charges of zwitterionic GABA is located on the ter-

minal groups, nearly symmetrically with the respect to the 

rotational center of mass, the mere neutralization of the carbox-

ylate group (without any conformational change) will reduce 

the dipole moment by a factor of 2, as is indeed observed. 

 

 
 

Figure 4) Measured solute reorientation times of zwitterionic 

and cationic GABA, as well as zwitterionic L-proline as a func-

tion of solute molar fraction, 0123456 . 

 

 Finally, we will analyze the solute dipolar relaxation time 

pertaining to the three species here investigated; the data are 

given in Fig 4. Following the approach in Ref.27 we find that 

the data can be excellently fitted to the functional form 

log�τ:&';<*� � 	A > X:&';<* @ B, where X:&';<* is the solute 

molar fraction (fit parameters given in ESI table 1). We can 

thus extract the solute reorientation time at infinite dilution, 

τ:&';<*
� � exp�B�. This parameter can be related to the micro-

scopic properties of the rotating solutes using the modified 

Stokes-Einstein-Debye theory:22, 28 τ:&';<*
� � 3V*FFη/�k�T�, 

where V*FF is the effective volume occupied by the solute and η 

is the solution viscosity. At infinite dilution η is equal to that of 
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the solvent. Hence, an observed difference in τ:&';<*
�  between 

two solutes must therefore, within this theoretical framework, 

exclusively be due to a corresponding difference in the effec-

tive volumes of the two. 

 The reorientation times of GABA in its two charge state are 

nearly identical (τ����
� � 89 
 3 ps and τ����/

� � 84 
 3 ps) 

while the value for L-proline is substantially smaller; 

τ"#J%&'()*
� � 52 
 3 ps. The solute’s effective volume of rota-

tion can be related to the actual molecular volume V via 

V*FF � V ∙ f ∙ C.28 Here C gives the hydrodynamic boundary 

conditions (C:<(NO � 1 and C:'($ � 1 � f#P/Q representing the 

extreme values) whereas f is a shape parameter. For spheres 

f � 1, while the value increases nearly linearly with the aspect 

ratio of prolate spheroids.29 Since the molecular volume of 

GABA and L-proline are similar, the difference in τ� must 

primarily originate from a change in the product f ∙ C. The value 

of f ∙ C for L-proline has previously been determined to be 

~0.5.27 The value for GABA here obtained is ~0.9, which is 

significantly larger than what was found for most small amino 

acids (~0.6) whose geometry can be reasonably well estimated 

as spherical. Larger f ∙ C values, observed e.g. for lysine (~1) 

and argenine (~1.1), were interpreted by Rodríguez-Arteche et 

al.27 as originating from the increasing aspect ratio of these 

larger amino acids. The solute reorientation time constants are 

thus consistent with the observed solute dipole moments: zwit-

terionic GABA is extended in solution (lacking intramolecular 

bonding between the charged functional groups), and thus give 

rise to a considerably larger aspect ratio than zwitterionic L-

proline, which is folded.  

Conclusions 

 We have studied the dielectric response and molecular 

reorientation dynamics of aqueous solutions of zwitterionic and 

cationic GABA, and of zwitterionic L-proline. Both the meas-

ured dipole moment and the solute reorientation time constant 

show that both zwitterionic and cationic GABA adopt nearly 

linear, unfolded conformation in aqueous solution, meaning 

that the COO– and NH3
+ groups of the zwitterion are separately 

hydrated. This result is in excellent agreement with the theoret-

ical study by Crittenden et al.12 This work addresses a 

longstanding problem related to neural biochemistry, and 

demonstrates the advantages of combining fs-IR and DRS to 

detect the molecular conformation and reorientation dynamics 

of (bio)molecules and (bio)molecular ions in aqueous solution. 
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Experimental details 
 Aqueous solutions of GABA and L-proline were prepared at 

concentrations between 1 and 6 molal (m) by mixing deminer-

alized water with appropriate amounts of high-purity chemicals 

(Sigma-Aldrich, >99.9%), which were used without further 

purification. In the DRS measurements pure water (Milli-Q, 

≥18.2 MΩ cm) was used as a solvent whereas a mixture of 5% 

(w/w) D2O (Aldrich, >99.99% D-atoms) and 95% (w/w) H2O 

was used in the fs-IR experiments. Solutions of cationic 

GABA+ were additionally prepared by acidifying the solution 

to pH = 1.8 with perchloric acid, HClO4. With pKa = 4.23 and 

of GABA,30 this means that the cationic form was the over-

whelmingly dominant species (>99.6%). 

 We measured permittivity spectra of all samples at a tem-

perature of 22.5 ± 0.5 °C over the frequency range 10 MHz – 

90 GHz by means of a vector network analyzer (VNA, Rhode-

Schwartz model ZVA67).31 To cover such a broad frequency 

range three different types of sample cells were employed, 

based on either coaxial line reflectrometry or free-space micro-

wave propagation in a waveguide (see ESI for details). 

 The fs-IR experiments were performed using mid-infrared 

femtosecond laser pulses which were obtained in a number of 

conversion steps using the output of a Ti:Sapphire laser (Hurri-

cane, Spectra-Physics). The majority of the resulting 2500 cm-1 

pulses (4 µJ, 150 fs) was used to excite the OD stretch vibration 

in a fraction of the HDO molecules in isotopically dilute water 

to their first excited state. The transient absorption changes in 

the polarization plane both parallel and perpendicular to the 

polarization of the pump pulses were alternatingly probed with 

a weak (200 nJ) pulse, which was delayed relative to the pump 

pulse by an optical delay stage (see ESI for details). 

 

Electronic Supplementary Information (ESI) available: Additional infor-

mation on experimental details, analysis and modeling. See 

DOI: 10.1039/c000000x/ 
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A combined dielectric and mid-IR pump-probe spectroscopic study reveals 

zwitterionic GABA to exist in predominately extended conformations in liquid 

water. 
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