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The use of effective fluid-surface potentials, in which the full position-dependent potential is replaced by a potential that depends
only on the distance from the surface of the solid, is a common practice as a route to reduce the complexity of evaluating adsorp-
tion of fluids on substrates. Conceptually this is equivalent to replacing the detailed description of the discrete molecular nature of
the solid by a coarse-grained description in which the solid is represented by a continuous (structureless) surface. These effective
fluid-surface potentials are essential in the development of theories for surface adsorption, and they provide a means to reduce the
computational cost associated with molecular simulation of the system. The main purpose of the present contribution is to em-
phasise the necessity of using an adequate averaging procedure to obtain effective fluid-surface potentials. A simple unweighted
average of the configurational energy is commonly employed resulting in effective potentials that are temperature independent.
We describe here a procedure to develop free-energy-averaged effective fluid-surface potentials retaining the important temper-
ature dependence of the coarse-grained interaction between the particle and the surface. Although the approach is general in
nature, we assess the merits of free-energy-averaged potentials for the adsorption of methane on graphene and graphite, making
appropriate comparisons with the description obtained with the traditional temperature-independent potentials. Additionally, we
develop effective fluid-surface potentials for crystalline faces of monolayer and multilayer homogeneous and heterogeneous fcc
lattices based on the Lennard-Jones (12-6) pair potential, and compute the corresponding adsorption isotherms of Lennard-Jones
fluids on these surfaces using Grand Canonical Monte Carlo (GCMC) simulations. The adequacy of two different options to
obtain effective fluid-surface potentials (a free-energy-based versus a simple unweighted average) is critically compared. It is
shown here that the higher the heterogeneity of the surface the less adequate simple unweighted averages are to describe the
adsorption behaviour in comparison to free-energy averages.

1 Introduction

The first successful attempts to develop a theory of surface
adsorption date back almost a century, with the contributions
of Polanyi1,2 and Langmuir3. In contrast to the approach of
Langmuir, who explained adsorption based on a chemical for-
malism, Polanyi supported the description of adsorption as a
physical process, in which the adsorption can be explained in
terms of an adsorption potential defined as the work done in
bringing a molecule from the gas phase to a point near the
adsorbent4. Polanyi’s picture of adsorption established an im-
portant basis for modern theories5–7. In spite of its rigorous
molecular foundation, the modern application of adsorption
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theories has a marked empirical nature. Significant inadequa-
cies can be found revisiting approaches that describe surface
adsorption and a reflection of this is the general difficulty en-
countered in reproducing the experimental temperature depen-
dence of adsorption data, requiring the use of temperature-
dependent energetic adsorption parameters to describe differ-
ent adsorption isotherms (see refs. 8–16 for some recent ex-
amples). Some of these flaws can be traced to a poor under-
standing of the effect of temperature in fluid-surface poten-
tials; here we are referring to effective potentials whereby the
interaction of a fluid molecule with an explicit surface is ex-
pressed using a coarse-grained or homogeneous wall repre-
sentation of a solid.

There has been a considerable amount of work published on
the subject of the explicit dependence of average interaction
energies with temperature. The “potential of the average
force” considered by Onsager17, along with the work of Rush-
brooke18 on temperature dependent effective interactions are
worth a particular mention in this context. The importance of
using an average free-energy as the correct approach to de-
scribe effective potentials that are based on integrating out
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variables that are not of interest, such as angles in the case
of polar interactions, is now well established (see, for exam-
ple, refs.19–26). Effective potentials of this type can be devel-
oped by ensuring that the partition function of the integrated
representation is equal to that of the explicit system: the ef-
fective potential determined in this way will be equivalent to
a free energy, and as a consequence are often referred to as
free-energy-averaged potentials.

Free-energy averages are frequently employed to describe
fluid-fluid interactions. A seminal example is the orientation-
independent or angle-averaged free energy of the dipolar in-
teractions which lead to the well known Keesom interac-
tion26,27 through an expansion and truncation of the expres-
sion of the free-energy. It is interesting to note that the work
of Keesom dates back to 1921, prior to the more rigorous
statistical mechanical analysis of Rushbrooke18. The use of
orientation-independent fluid-fluid potentials is possibly the
most extended application of free-energy-averaged potentials,
as an approach to link the free energy of the explicit system
to that of a system with fewer degrees of freedom. This type
of averaging is commonly employed to obtain the reference-
system potential in the so-called Reference Average Mayer-
Function (RAM) perturbation theory28, as well as in other per-
turbation theories22,29,30. The reader is referred to the excel-
lent reviews given in refs 31–34. In the work of Zwanzig35,
which is recognised as one of the first attempts to develop a
perturbation theory for dense fluids34, the free-energy aver-
age is expressed as a high-temperature expansion. The de-
velopment of a perturbative free energy as a high-temperature
series had previously been shown by Peierls36,37 in a study
devoted to the theory of diamagnetism, where much of the
basis of modern perturbation theory is set32. Further applica-
tions of perturbation theory to polar fluids are found, where
angle-averages about a non-polar reference system are again
employed, wherein the effects of polarisability as well as per-
manent dipoles29,38–40 and higher multipoles23,41,42 are in-
cluded as a perturbation. This body of work contributed to
the establishment of the general features of coarse-grained av-
erages of the free energy and their temperature dependence in
the form of a high-temperature series expansion. Free-energy
average potentials are also widely used to describe the effec-
tive interactions in colloidal, polymeric and biomolecular sys-
tems43–46.

In spite of the state of maturity in the application of free-
energy averages within the field of bulk fluid interactions, to
our knowledge its extension to effective potentials for fluid-
surface interactions is generally overlooked. Effective fluid-
surface potentials are typically obtained through a simple
sum of the pair interactionui j of the fluid particle i with
each wall atomj, i.e., the particle-wall energyU = ∑ j ui j

is averaged over a number of configurations (see for exam-
ple refs. 26,47,48). This effective potential, which we de-

note as the unweighted average〈U〉, is thereby determined as
〈U〉= 1

Ncnf
∑Ncnf

k=1U , overNcnf configurations. This type of clas-
sical approach of obtaining effective fluid-surface potentials of
a given adsorbate moleculei with a wall has largely ignored
the temperature dependence of the resulting average poten-
tial. In practice the explicit structure of the wall is ignored
in the theoretical development and the sum is replaced by an
integration. The result of integrating an intermolecular inter-
action which is proportional to an inverse power of the dis-
tancer as1/rn for the average interaction between a molecule
and a macroscopic solid of dimensionalityd results in an in-
teraction potential which varies as1/rn−d. This dependence
was already known to Newton49 in 1686 when he solved the
problem of determining the attractive force with which a cor-
puscle is attracted by an infinite plane in two dimensions. At
the beginning of the 19th century, numerous authors4 focused
on deriving expressions for the interactions of a gas molecule
with a solid surface from more explicit molecular consider-
ations, attributed to polar and/or electrostatic effects. Lon-
don50 was the first4 to recognise and incorporate the impor-
tance of the attractive dispersion interactions in 1930. Con-
sidering a dispersion potential between a gas molecule and an
atom or molecule in the adsorbent given by a power law of
the −C/r6, London50 assumed that the distances between the
adsorbent atoms were small compared with the distances be-
tween the gas molecule and the adsorbent atoms, obtaining an
average particle-surface interaction of−MπC/6r3 by integrating
over an infinite surface, withM being the number of adsor-
bent molecules per unit volume. For the (12-6) Lennard-Jones
(LJ) intermolecular interaction, the result of integrating over
a single-layer LJ solid is a (10-4) potential, and over a mul-
tilayered solid is a (9-3) potential (an early reference to this
integrated potential is given by Hill51 in 1948). It was shown
by Steele that the latter potential does not provide an accurate
approximation for a multilayered solid52, leading him to de-
velop the now ubiquitous (10-4-3) potential48,52,53. Both, the
(9-3) and the (10-4-3) potential, are widely used in the mod-
elling of adsorption for flat surfaces, and analogous potentials
have been developed for spherical, cylindrical and other pore
geometries54–58, and to account for polar interactions59. In
spite of their widespread use, these potentials are temperature
independent, and, as will be shown in our current contribution,
are often not appropriate to describe adsorption at moderate
and low temperatures.

It is our purpose to explain in detail how effective free-energy-
averaged potentialsw are obtained through an equality in the
corresponding Boltzmann factors. In his work with surfaces
at low temperature, Abraham60 noted that a (10-4) potential
was a poor effective potential for the (100) structured surface.
He suggested that the probability that a single atom interacting
with a given wall is at a given position(x,y,z) is proportional
to exp(−U(x,y,z)/kBT), whereU(x,y,z) is the interaction energy
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at that position, and a “Boltzmann-weighted” effective inter-
actionw(z) based on a structureless integration of the potential
over a surface was proposed:60

exp
(
−βw(z)

)
=

1
au

∫

au

exp
[
−βU(x,y,z)

]
dxdy, (1)

where au is the area of the unit cell of the solid surface,
β = 1/kBT andkB is Boltzmann’s constant. As will be shown
later in our contribution, in the formal procedure of obtain-
ing free-energy-averaged potentials, the integration (or sum)
is not restricted to one unit cell of the solid but to the entire
volume (or area, in the case of a single surface monolayer)
within which fluid and solid particles interact.
It should be noted that these free-energy averages are different
to canonical (or confusingly named Boltzmann) averagesw′,
as discussed elsewhere18,20,61. The expression to obtain an
effective potential describing the interaction of a fluid particle
with a solid through a canonical average overN configurations
is given by

w′ =
∑N

k=1U exp(−βU)

∑N
k=1exp(−βU)

. (2)

This potential does not, however, ensure that the parti-
tion function, and thereby the free energy, of the effective
coarse-grained system is identical to that of the explicit sys-
tem. Canonical averages have also been suggested for angle-
averaged potentials to describe the interaction between guest
and host molecules in gas hydrates8,62, although, as com-
mented by Trout and coworkers8,62, the approach lacks of a
rigorous justification.
Here, we demonstrate that a free-energy-averaged potential is
essential to describe adsorption on the surface of very hetero-
geneous solids at low and moderate temperature in an appro-
priate manner. We will not assume structureless solids, cal-
culating the effective potentials by accounting for the pair in-
teractions of a fluid particle with every particle of the solid
arranged in a given ordered lattice.
Our manuscript is arranged as follows: The procedure em-
ployed to map the explicit with continuum descriptions of the
solid through the appropriate free energy averages is given in
the next section. For this a structureless solid is considered
first, and so the methodology will be based on integrations
over the solid. This allows one to establish a link between
the effective potentials obtained and those typically used such
as the (9-3) potential. The development of the effective free-
energy surface potentials is then explained in detail for solids
with a given structure. A comparison of the use of these free-
energy-averaged potentials with other effective potentials is
then made to assess their adequacy in describing surface ad-
sorption on different solid lattices based on Grand Canonical
Monte Carlo simulation results.

2 Methodology

2.1 Free energy mapping of explicit and continuum de-
scriptions of the fluid-solid interaction

Considering a single fluid particle interacting with a solid, an
expression for the effective free-energy-averaged potential can
be obtained by mapping a coarse-grained continuum-wall rep-
resentation of the system to the atomistic discrete description.
This mapping is done by equating the partition function for
both levels of resolution at a certain fluid-wall or, equivalently,
fluid-surface distance.
If we assume that the discrete solid consists ofM particles,
the canonical partition function of this system consisting of a
single fluid particle in the vicinity of the surface of such a solid
is given by

Q = Fs(T)Ff(T)
∫

dr f

∫
drM

s exp

(

−
U(rM

s , r f)
kBT

)

, (3)

whereFs(T) and Ff(T) are functions of temperature repre-
senting the kinetic degrees of freedom (corresponding to de
Broglie-like volumes) of the solid and fluid particles, respec-
tively, andU is the total intermolecular potential. We can de-
fine a new distance,r fs relative to the position of the fluid par-
ticle (see Figure 1):

r fs = rs− r f (4)

and integrate out the explicit dependence of the particle’s po-
sition so that

Q = Fs(T)Ff(T)Vf

∫
drM

fs exp

(

−
U(rM

fs )
kBT

)

, (5)

whereVf is the volume accessible to the fluid particle. If the
solid wall is at a distanceD from the fluid molecule we can

Fig. 1 Schematic of the relative positions between an adsorbed fluid
molecule and a given particle in the solid. The surface of the solid is
represented at a distancez= D.
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Fig. 2 Schematic of the relative positions between an adsorbed fluid
molecule and a continuum solid surface or wall which is represented
at a distancez= D.

express the partition function atD as follows

Q(D) =Fs(T)Ff(T)Vf

×
∫ +∞

−∞
dxM

fs

∫ +∞

−∞
dyM

fs

∫ +∞

D
dzM

fs exp

(

−
U(xM

fs ,yM
fs ,zM

fs )
kBT

)

,

(6)

where the distance normal to the surface is represented by the
z axis. From the partition function, the Helmholtz free energy
A (or more strictly a Landau free energy, e.g., see ref. 63) can
be obtained as

A(D) = −kBT lnQ(D). (7)

If on the other hand we consider a coarse-grained system rep-
resented by a continuum wall again normal to thez direction
(see Figure 2), the partition function of this system is de-
scribed by

QCG = Ff(T)
∫

dr
∫

dzw exp

(

−
w(r ,zw)

kBT

)

, (8)

wherew is the coarse-grained fluid-surface potential of the
particle with the wall. If, as before, distances are expressed
relative to the fluid particle (Rw), the surface potential will
then only depend on the perpendicular distance to the plane
(Rw = Z)

QCG = Ff(T)Vf

∫
dZexp

(

−
w(Z)
kBT

)

. (9)

On considering an infinitely thin wall for a fluid-wall distance
of Z = D, the only position at whichw(Z) will take a value
different from zero will beZ = D. The sharp dependence with
Z can be then represented in terms of a delta function, so that

QCG(D) = Ff(T)Vf

∫ +∞

0
dZexp

(

−
w(Z)
kBT

)

δ (Z−D)

= Ff(T)Vf exp

(

−
w(D)
kBT

)

. (10)

The mapping between explicit and coarse-grained potentials
follows by equating the free energy, or equivalently, the parti-
tion function of both systems [Eqs. (6) and (10)]

QCG(D) = Q(D), (11)

whereby we have

exp

(

−
w(D)
kBT

)

=Fs(T)
∫ +∞

−∞
dxM

fs

∫ +∞

−∞
dyM

fs

∫ +∞

D
dzM

fs

×exp
(
−βU(xM

fs ,yM
fs ,zM

fs )
)
. (12)

To simplify the expression, the inverse temperature is ex-
pressed as1/(kBT) = β . One can continue by expanding the ex-
ponential (exp(x) = ∑∞

i=0
xi/i!) on the right-hand side of Equa-

tion (12) as follows

exp

(

−
w(D)
kBT

)

=Fs(T)
∫ +∞

−∞
dxM

fs

∫ +∞

−∞
dyM

fs

∫ +∞

D
dzM

fs

×
[
1−βU(rM

fs )+
β 2

2
U2(rM

fs )+O(U3)
]
.

(13)

Assuming pairwise additive potentials,

U =
M

∑
i=1

u(rfs,i ), (14)

we have

exp

(

−
w(D)
kBT

)

=Fs(T)

×

[

VM
s −β

∫ +∞

−∞
dxM

fs

∫ +∞

−∞
dyM

fs

∫ +∞

D
dzM

fs

M

∑
i=1

u(rfsi )

+
β 2

2

∫ +∞

−∞
dxM

fs

∫ +∞

−∞
dyM

fs

∫ +∞

D
dzM

fs

M

∑
i=1

M

∑
j=1

u(rfsi )u(rfs j )

+O(u3)

]

, (15)

whereVs is the volume occupied by the solid. The expression
can be further approximated by considering a solid of uniform
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densityρs = M/Vs, so that one can write

exp

(

−
w(D)
kBT

)

=Fs(T)

{

VM
s −βMVM−1

s

×
∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1u(rfs1)

+
β 2

2
MVM−1

s

×

[∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1u2(rfs1)

+
M−1

Vs

∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1

×
∫ +∞

−∞
dxfs2

∫ +∞

−∞
dyfs2

∫ +∞

D
dzfs2u(rfs1)u(rfs2)

]

+O(u3)

}

, (16)

or, by rearranging the expression,

exp

(

−
w(D)
kBT

)

= Fs(T)VM
s

×

{

1−βρs

∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1u(rfs1)

+
β 2

2
ρs

×

[∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1u2(rfs1)

+
M−1

Vs

∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1

×
∫ +∞

−∞
dxfs2

∫ +∞

−∞
dyfs2

∫ +∞

D
dzfs2u(rfs1)u(rfs2)

]

+O(u3)

}

. (17)

For convenience Equation (17) can be given in compact form
in terms of the average of the configurational energy and the
square of the energy as

exp

(

−
w(D)
kBT

)

= Fs(T)VM
s

[

1−β 〈U〉+
β 2

2
〈U2〉+O(U3)

]

,

(18)

where

〈U〉 = ρs

∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1u(rfs1), (19)

and

〈U2〉 =ρs

[∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1u(rfs1)

2

+
M−1

Vs

∫ +∞

−∞
dxfs1

∫ +∞

−∞
dyfs1

∫ +∞

D
dzfs1

×
∫ +∞

−∞
dxfs2

∫ +∞

−∞
dyfs2

∫ +∞

D
dzfs2u(rfs1)u(rfs2)

]

.

(20)

The logarithm of both sides of Equation (18) can then be
taken and the right-hand side can be expanded as ln(1+ x) =
∑∞

i=1
(−1)i+1xi/i to obtain

w(D) = −
1
β

ln
[
Fs(T)VM

s

]
+ 〈U〉−

β
2

[
〈U2〉−〈U〉2]+O(U3).

(21)

It should be noted at this point that the kinetic term represented
by the product ofFs(T)VM

s is solely a function of temperature
for an incompressible substrate and as such does not affect
the position of phase equilibria for a system in thermal equi-
librium; furthermore this temperature-dependent ideal contri-
bution can be neglected altogether if the degrees of freedom
of the particles in the solid are restricted. Equation (21) can
be interpreted as the high-temperature series expansion of the
expression for the free-energy-averaged potential, represented
by Equation (12); the latter can be rewritten for the sake of
comparison as

w(D) = −
1
β

ln
[
Fs(T)VM

s

]
−

1
β

ln〈exp(−βU)〉. (22)

Even at moderate temperatures, truncation of the expansion
in Equation (21) at the first term is expected to be a poor ap-
proximation of the entire series. This can be seen in Figure 3,
where the free-energy-averaged (referred to as FEA hereafter)
potential is compared at different levels of truncation of the
expansion. The first term of the series, which represents an un-
weighted average of the configurational energy (UA1), clearly
provides a qualitative description of the full FEA potential,
but fails to reproduce the details at short distances, where pre-
sumably the roughness of the surface potential plays an im-
portant role. The incorporation of the second-order correc-
tion (UA2) over-corrects the interaction (with a divergence to
negative values close to the surface), while truncating after
third-order (UA3) improves the description of the potential
minimum, albeit at expenses of increasing the deviation for
distances close to the surface. This analysis is carried out by
direct simulation of Lennard-Jones (12-6) fluid particles in the
vicinity of a solid of identical Lennard-Jones (12-6) particles
as will be described in the next sections. At high temperatures
the higher-order terms in the expansion can be neglected, and
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Fig. 3 Effective fluid-surface potential in reduced units
(w∗ = w/εff ) as a function of reduced distance to the surface
(D∗ = D/σff ) at a temperatureT∗ = kBT/ε = 1. An LJ fluid-solid
interparticle interaction is considered between an LJ fluid particle
and a solid of identical LJ particles (σff = σss= σfs and
εff = εss= εfs) with an exposed (111) surface. The black squares
represent the corresponding effective FEA potential [i.e.,
considering the average of the Boltzmann factor; Equation (22)
without the ideal kinetic contribution of the solid]. The colour
symbols correspond to different truncations of the high-temperature
expansion [Equation (21)] of the free-energy average expression.
The yellow triangles correspond to the leading-order term (UA1
potential), the orange diamonds correspond to a truncation after the
second-order term (UA2) and the blue circles correspond to a
truncation after third-order term (UA3).

so the fluid-surface potential will be well represented by the
first term in the expansion (w' 〈U〉). We will now focus on
this first-order term. Note that Equation (19) can be seen as a
“sum” of the interactions between the fluid particle with all the
particles in the solid body (whereρsdxfs1dyfs1dzfs1 is the num-
ber of solid particles in a differential volume dxfs1dyfs1dzfs1).
The explicit integration of〈U〉 has been shown before (for ex-
ample by Israelachvili26 and many others) but is derived here
for completeness. For an isotropic intermolecular potential, it
is convenient to use cylindrical polar coordinates, which trans-
forms Equation (19) to

〈U〉 = ρs

∫ +∞

D
dz
∫ +∞

0
dRR

∫ 2π

0
dθu(

√
R2 +z2) (23)

As an example we take the Sutherland64–68potential, given by

uS(r) = ε
(

σ
r

)λ
, (24)

whereσ is the interparticle diameter,ε is the energy well-
depth andλ is the range of the intermolecular interaction, and
use it to perform the integration of Equation (23) so that

〈U〉 = ρs2π
∫ +∞

D
dz
∫ +∞

0
dRRε

σλ

(R2 +z2)λ/2
. (25)

Here the angular integration in the plane of the surface has
been carried out as the solid is assumed to be homogeneous.
The result of integrating over the radial direction is given by

〈U〉 = ρsεσ λ
∫ +∞

D
dz

[
−1

(λ −2)(R2 +z2)(λ−2)/2

]R=∞

R=0

= ρs2πεσ λ
∫ +∞

D
dz

1

(λ −2)z(λ−2)
. (26)

We refer to this intermediate integration of the inter-
molecular potential as the angular radial averageφ(z,λ ) =
2πεσλ/(λ−2)z(λ−2). Equation (26) for the average potential en-
ergy can then be expressed as

〈U〉 = ρs

∫ +∞

D
dzφ(z,λ ). (27)

In the case of a solid consisting of a single uniform layer, the
final integration over the normal direction would be equivalent
to the incorporation of a delta function in Equation (27):

〈U〉l = ρsa

∫ +∞

D
dzφ(z,λ )δ (z−D), (28)

where the subscript l indicates a single layer, and the subindex
a inρsa has been added to indicate that the solid density is now
an area or surface density. This leads to

〈U〉l = ρsaφ(D,λ ), (29)

or

〈U〉l = 2πρsaεσ2 1
(λ −2)

(
σ
D

)λ−2

. (30)

It is then easy to show the expression for a generalised
Lennard-Jones (λr-λa) potential, also known as a Mie poten-
tial69,70, which has the form of a sum of Sutherland terms,
one accounting for the repulsive and the other for the attrac-
tive contributions:

uMie(r) = Cε
[(

σ
r

)λr

−

(
σ
r

)λa
]

, (31)

where the constant

C =
λr

λr −λa

(
λr

λa

) λa
(λr−λa)

(32)

ensures that the potential minimum is at−ε, andλr andλa are
the repulsive and attractive exponent, respectively. A com-
prehensive historical overview of the Mie potential is given
in Ref.71. For this potential, Equation (30) has the following
form

〈U〉l = 2πρsaCεσ2
[

1
(λr −2)

(
σ
D

)λr−2

−
1

(λa−2)

(
σ
D

)λa−2]

.

(33)
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In the case of the ubiquitous Lennard-Jones (12-6) potential,
Equation (33) leads to the well-known (10-4) potential:

〈U〉l = 2πρsaεσ2
[

2
5

(
σ
D

)10

−

(
σ
D

)4]

. (34)

If however, we consider the wall to be a semi-infinite contin-
uum, we can perform the integration implicit in Equation (26)
for the Sutherland interaction, and such integration over the
normal direction for an homogeneous solid densityρs yields

〈U〉 = 2πρsεσ λ
[

−1

(λ −2)(λ −3)(z)(λ−3)
dz

]z=∞

z=D

= 2πρs
εσ3

(λ −2)(λ −3)

(
σ
D

)(λ−3)

. (35)

As before, the development for the Mie interaction is straight-
forward, leading to

〈U〉 = 2πρsaCεσ3
[

1
(λr −2)(λr −3)

(
σ
D

)λr−3

−
1

(λa−2)(λa−3)

(
σ
D

)λa−3]

. (36)

In the particular case of a Lennard-Jones intermolecular po-
tential one obtains the well-known (9-3) potential

〈U〉 = 2πρsεσ3
[

2
45

(
σ
D

)9

−
1
3

(
σ
D

)3]

. (37)

In all of our expressionsσ andε represent the size and energy
parameters of the potential of interaction between the fluid and
the solid.

2.2 The (10-4-3) Steele Potential

The most widely used potential to model adsorption on
carbon-based materials is (by far) the (10-4-3) potential of
Steele48,52,53. Although it is generally applied only for
graphitic structures, in the original manuscript of Steele53 the
form of the potential was also suggested as appropriate to rep-
resent the interactions of molecules with other solids involving
fcc lattices with exposed (111) and (100) surfaces. Steele52

observed that a fluid-surface potential based on sums of (10-4)
potentials for the different basal planes of the solid was a bet-
ter approximation than a fully integrated (9-3) potential. The
expression for a sum of integrated (10-4) potentials describing
the interaction with solid planesk parallel to the surface and
spaced atΔ intervals is

〈U〉 = 2πρsεσ2
∞

∑
k=0

[
2
5

(
σ

D+kΔ

)10

−

(
σ

D+kΔ

)4]

. (38)

Steele53 obtained an approximation to this potential through
a particular integration of the higher contributions in the sum

(other thank= 0), where those corresponding to theD−10 term
were neglected and those corresponding to theD−4 term were
integrated from a chosen distance to improve the accuracy of
the full potential. One can interpret58 such an approach as an
approximate representation of the solid where the first layer
of atoms (the surface) is taken as an infinitely thin wall of uni-
form surface density. This leads to a particle-wall potential of
the (10-4) form, as given by Equation (34). The rest of the
solid is integrated starting from a distanceαΔ from the sur-
face, to represent a slab of uniform volumetric density. In the
latter integration the attractive part of the pairwise potential of
the fluid-solid interaction is assumed to be predominant as is
indeed the case for moderate to large distances; the repulsive
part of the pair potentials active at short distances is neglected.
This translates into an additional contribution to the integrated
potential that is proportional to(D+αΔ)−3. The final expres-
sion is given by48,53

〈U〉 = 2πρsΔεσ2
[

2
5

(
σ
D

)10

−

(
σ
D

)4

−

(
σ4

3Δ(D+αΔ)3

)]

,

(39)

whereα is an adjustable parameter72, set toα = 0.61. The
productρsΔ is the area density of the surface. The Steele (10-
4-3) potential has been extended to account for polar interac-
tions by Zhao and Johnson59, and more recently to describe
pore-like geometries by Siderius and Gelb58.

2.3 Free-energy averaging procedure

Following Equation (12), an alternative route to the calcula-
tion of the effective FEA potentialw(D) is to obtain it directly
from computer simulations of the explicit molecular system as
an ensemble average:

w(D) = −
1
β

ln

〈

exp

(

−
M

∑
i=1

βufsi (xfsi ,yfsi ,zfsi )

)〉

, (40)

where distances are expressed relative to the fluid particle, so
that the minimum possible value ofzfsi for any i is D (zfsi >
D, i.e., D is the distance from the fluid particle to the solid
surface). Pairwise additivity is assumed, and the degrees of
freedom of the solid particles in Equation (12) are neglected.
In practice this is avoided in the simulations keeping the solid
particles fixed in a lattice.
We carry out the calculation of the effective fluid-solid poten-
tials by performing a simple Brute Force Monte Carlo simu-
lation in the canonical (NVT) ensemble determining random
positions of a single fluid particle relative to the explicit solid
lattice (corresponding to different values ofD). The ensemble
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average is then calculated as a sum

w(D) = −
1
β

ln

[
1

Ncnf

Ncnf

∑
j=1

exp

(

−
M

∑
i=1

βufsi (xfsi ,yfsi ,zfsi )

)]

,

(41)

whereNcnf is the number of unique configurations considered
in the calculation of the FEA potential.
Averages are taken over at least 50 million configurations (i.e.,
Ncnf = 5× 107), except for the less compact structures, for
which the number of configurations is increased to 100 million
(in the case of the (110) structure) and 5000 million (in the
case of the (111) plane with defects). The relative positions
to the surface (D) are discretised using a histogram with bins
of size 0.01σff , whereσff is the fluid particle diameter. At
the same time the corresponding UA1 potential〈U〉 is also
calculated, for the same positions:

〈U(D)〉 =
1

Ncnf

Ncnf

∑
j=1

(
M

∑
i=1

ufsi (xfsi ,yfsi ,zfsi )

)

. (42)

Boundary conditions are imposed both in thex andy direc-
tions and a cutoff ofrc = 6σff is used for the range of the
interactions (the pair-potential is simply truncated at that dis-
tance, chosen to ensure that the value of the potential is al-
most zero at that point). The size of the simulation box for
the fcc solid is taken as 12 times the spacing between the
atoms in bothx andy directions and a similar length in the
z direction unless a monolayered solid surface is considered,
for which z≈ 7σff . In particular, the dimensions for the box
when considering an fcc solid with the (111) surface exposed
are 12.0× 12.124× 12.0σ3

ff (multilayered solid of 7 layers);
for the box with an fcc solid with the (100) surface exposed
are 12.0×12.0×12.0σ3

ff (multilayered solid of 9 layers), and
for the box with an fcc solid with the (110) surface exposed
are 12.0× 16.971× 12.0σ3

ff (multilayered solid of 12 lay-
ers). In the case of graphite the dimensions of the box are
46.731× 46.86× 40.0Å3 (solid consisting of 5 layers). The
numerical values obtained for these potentials are tabulated in
the supplementary material.
In order to provide a closed-analytical intermolecular poten-
tial function the resulting discrete values are also correlated
by using the generic Mie form [cf. Equation (31)]. The corre-
sponding Mie parameters for each of the systems studied are
collected in Table 1. When the surface is less compact, such
as the solids exposing (100) and (110) structures or with de-
fects on the (111) surface layer, the Mie form does not lead to
a satisfactory representation of the actual discrete potential. In
such cases one can use the numerical values obtained from the
simulations, and use linear interpolation to evaluate the poten-
tial.

2.4 GCMC Simulation of Adsorption

To study the effect that the use of the different averag-
ing procedures (and corresponding potentials) has on the
macroscopic adsorption isotherms we also employ the coarse-
grained interactions as input for GCMC simulations in the
μVT ensemble. The adsorption isotherms determined are
compared with the results obtained from a detailed simula-
tion in which all of the interactions are explicitly considered.
A slit-like pore geometry is used to model the solid. Two solid
blocks (each of them comprising the number of layers afore-
mentioned) are considered, the surfaces of which are sepa-
rated by a distance (in thez direction) which is slightly larger
than twice the cutoff considered (rc = 6.0σff ); for the sepa-
rations and fluid densities shown the pore geometry and re-
sulting “confinement” does not have an influence on the ad-
sorption on a surface. The surface separation used for the ad-
sorption in the fcc solids studied isH = 13.0σff , and that for
the adsorption on graphite and graphene isH = 12.07σff . All
of these distances are measured relative to the centers of the
outermost solid particles. Periodic boundary conditions are
imposed in the other (x andy) cartesian directions.
The only realistic system considered in our current contribu-
tion is methane adsorbed on graphite. This system is widely
modelled using an LJ intermolecular potential and the Steele
fluid-surface potential, and limited comparisons have been
presented in the literature to evaluate the performance of al-
ternative interaction potentials73. The parameters used are
taken directly from Steele53: σff = 3.81Å , εff = 148.1K,
σss= 3.40Å , εss= 28.0K, ρss= 0.114Å−3 andΔ = 0.335Å.
The unlike interaction parameters are calculated using the
Lorentz-Berthelot combining rules, i.e.,σfs = (σff + σss)/2
andεfs = (εff εss)1/2. In all the GCMC simulations the solid-
solid interparticle interactions are neglected.
The GCMC simulations are carried out starting with an empty
pore which is filled until equilibrium is attained, using a stan-
dard procedure48,74,75. For each Monte Carlo cycle, both the
displacement of a randomly chosen fluid molecule and a ran-
dom creation/destruction of a fluid molecule are attempted.
Systems are left to equilibrate for at least 2 million cycles (up
to 5 million are sometimes needed at the conditions of max-
imum coverage studied) and averages are typically taken for
over a further 3 million cycles. Block averages are taken ev-
ery 10000 cycles. These block averages are used to compute
standard deviations to calculate the uncertainties.
In the GCMC simulations the temperature and the activity76,
directly related to the chemical potential, are specified. Sim-
ulations are also performed for bulk fluids that would hypo-
thetically be in equilibrium with the adsorbed fluid (i.e., these
are performed at the same temperature and activity) so that the
density of the bulk fluid can be calculated as a simple average.
This density is then used to determine the pressure at a given
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temperature through the equation of state of Johnsonet al.77

for Lennard-Jones fluids.

3 Results and discussion

3.1 Adsorption of Methane on Graphene and Graphite

We start our analysis by studying the adsorption of methane on
carbon surfaces. The choice of the system is made to assess
both the adequacy of considering the solid as a continuous dis-
tribution of atoms as well as the FEA potentials. The solid is
first taken as graphene; as we mentioned in the previous sec-
tion we employ the specific interaction parameters of Steele53

for methane on graphene in this case. For a solid consisting of
a single layer of graphene, the integration of an intermolecular
potential based on LJ interactions over such a surface leads to
a (10-4) potential, as discussed earlier,cf. Equation (34). The
corresponding (10-4) potential is compared to the effective po-
tential obtained after summation of pair potentials between a
fluid particle and every particle that forms the solid [i.e., the
UA1 potential,cf. Equation (42)]. This comparison is plotted
in Figure 4, where it can be seen that both descriptions agree
quantitatively. As discussed earlier, these descriptions corre-
spond to the use of only the leading-order term in the high-
temperature expansion of the expression for the FEA poten-
tial. In order to assess the effect of temperature, the FEA po-
tential [cf. Equation (41)] is depicted at relatively low temper-

Fig. 4 Effective fluid-surface potentialw as a function of distance to
the surfaceD for the adsorption of a methane molecule on graphene.
The intermolecular potential used for the explicit interactions
between the fluid-solid particles of this system is the original LJ
parameterization of Steele53: σff = 3.81Å , εff = 148.1K,
σss= 3.40Å andεss= 28.0K, with Lorentz-Berthelot combining
rules for the fluid-solid interaction parameters. The symbols
correspond to an effective FEA potential at a temperatureT = 59K
(green circles) andT = 118K (blue squares), and an effective UA1
potential (red triangles). The continuous curve is the corresponding
(10-4) potential. An amplified view of the potential close to the wall
can be seen in the inset.

Fig. 5 Effective fluid-surface potentialw as a function of distance to
the surfaceD for the adsorption of a methane molecule on graphite.
The intermolecular potential used for the explicit interactions
between the fluid-solid particles of this system is the original LJ
parameterization of Steele53: σff = 3.81Å , εff = 148.1K,
σss= 3.40Å andεss= 28.0K, with Lorentz-Berthelot combining
rules for the fluid-solid interaction parameters. The symbols
correspond to an effective FEA potential (blue squares) at a
temperatureT = 118K and an effective UA1 potential (red
triangles). The solid curve is the corresponding (10-4-3) potential.
The dashed curve is the corresponding (9-3) potential. An amplified
view of the potential close to the wall can be seen in the inset.

atures in Figure 4, chosen to beT = 59K (which in the case of
the interaction potential parameters of methane corresponds to
T∗ = TkB/εff ≈ 0.4) andT = 118K (T∗ ≈ 0.8). Temperatures
of T∗ ≈ 0.4 are below the triple point for Lennard-Jones flu-
ids78,79; the behaviour of methane on carbon surfaces presents
interesting phenomena at these low temperatures80,81. In spite
of this, negligible differences are observed between the free-
energy average potential and the leading-order term even at
such low temperature. The GCMC simulations (not shown)
also confirm that both the FEA potential and the UA1 po-
tential lead to the same adsorption isotherms of methane on
graphene; the adsorption isotherms obtained using a discrete
description of the solid are also found to be essentially indis-
tinguishable from those obtained with the coarse-grained po-
tentials.

If instead one considers a graphitic structure (a multi-layer car-
bon), the corresponding coarse-grained integration obtained to
leading-order considering it is a homogeneous material will
lead to a (9-3) potential [cf. Equation (37)]. In Figure 5 we
compare the corresponding (9-3) integrated potential with di-
rect summation of the pair potentials of a methane molecule
with every carbon atom in the solid. The integration over the
parallel layers in the structure of graphite, leading to the (9-3)
potential, does not even provide a qualitative description. This
result is not new as it was already noted by Steele52 and lead
to the development of the (10-4-3) potential. In Figure 5 we
also plot the FEA potential at a temperature ofT = 118 K.
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Fig. 6 Density of adsorbed methane per unit area versus pressure at
a temperatureT=118 K on graphite. The intermolecular potential
used for the explicit interactions between the fluid-fluid and
fluid-solid particles of this system is the original LJ
parameterization of Steele53: σff = 3.81Å , εff = 148.1K,
σss= 3.40Å andεss= 28.0K, with Lorentz-Berthelot combining
rules for the fluid-solid interaction parameters. The symbols
correspond to the results from GCMC simulations for the discrete
solid (yellow diamonds), for a fluid-wall interaction represented by
the effective FEA potential (blue squares), for a fluid-wall
interaction represented by the effective UA1 potential (red triangles)
and for a fluid-wall interaction represented by the (10-4-3) Steele
potential (green circles). The dashed line (to the right of the
diagram) is the corresponding saturation pressure of the bulk fluid at
this temperature. An amplified view of the low-pressure area can be
seen in the inset.

As before, we can see that the FEA potential differs only
slightly from the leading-order term descriptions of the ex-
pansion. One observes the most important deviations close to
the surface of the solid, a region of relevance to the adsorption.
In practice, the various coarse-graining approaches provide an
equivalent representation of the adsorption in this case, as con-
firmed in the calculation of the adsorption isotherms, shown
in Figure 6. The shape of the adsorption isotherm conforms
to the sigmoid isotherm corresponding to type II in the BET
classification82. At low vapour pressures the density of the
adsorbed fluid raises at a considerable rate, which indicates
that the adsorbate-adsorbent interaction is dominant with re-
spect to the forces between the adsorbate molecules. At pres-
sures close to the vapour pressure of the bulk fluid, the density
of adsorbed fluid increases steeply towards the corresponding
density of the bulk phase, which is an artifact of the confine-
ment geometry. As seen the different effective potentials also
provide a good description of the adsorption when compared
with the exact result obtained by calculating the solid-fluid po-
tential explicitly (cf. Figure 6).
In the honeycomb lattices that form the layers of graphitic car-
bons the space between adjacent carbons is only 1.42Å as
compared to the characteristic diameter, 3.4Å , hence the sur-

0.0000

1.4142

0.0 1.0
0.0000

1.7321

0.0 1.0
0.0

1.0

0.0 1.0

(111) (100) (110)

0.0000

0.7100

1.4200

2.1300

2.8400

0.0000 1.2298 2.4595

Graphene

Fig. 7 Schematic comparing the packing in the hexagonal basal
planes of graphite (or graphene), as well as the (111), (100) and
(110) crystallographic planes studied in this work. The particles are
depicted at the relative positions (top plots) and with the equivalent
diameters (bottom plots) used in the simulations.

face layers are tightly packed (cf. Figure 7). Furthermore,
the size of a methane molecule (3.82Å ) is relatively large in
comparison. As a result, the molecule does not feel the het-
erogeneity of the surface which is presumably the main reason
for the similarity between the different averaging scenarios.

3.2 Effect of surface layer corrugation

The adequacy of the various coarse-graining methodologies
in describing the effects of the geometric surface heterogene-
ity on adsorption is studied in this section for simple model
systems. An LJ adsorbent fluid interacting with an LJ multi-
layered solid adsorbate of otherwise identical particles (σff =
σss= σfs andεff = εss= εfs) arranged in the form of a closed-
packed fcc structure (ρsσ3 =

√
2) is considered. Three dif-

ferent possible orientations are selected for the solid, so that
the face exposed to the fluid is based on the (111), (100), or
(110) lattice plane (see Figure 7). It is apparent (and perhaps
rather striking) how rough these surfaces are as compared to
the hexagonal base plane of graphitic carbon. Higher devia-
tions between a simple unweighted average of pair-potential
sums and a free-energy averaged potential are to be expected
at low temperature for these faces of the fcc structure. We
start with the case in which the solid face is based on a sin-
gle surface monolayer. A comparison between these effec-
tive potentials can be seen in Figure 8 at a reduced tempera-
ture of the Lennard-Jones fluid ofT∗ = 1 for the three differ-
ent monolayer solids considered. One can see from Figure 9
that in all three cases the adsorption isotherms observed cor-
responds to Type III82. The fluid adsorbed per unit area in-
creases with pressure until the vapour pressure of the fluid at
the corresponding temperature is reached (which is the satu-
ration value). At low pressure the amount adsorbed is negli-
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gible; it increases suddenly at pressures near saturation, giv-
ing an indication of the dominant forces between adsorbate

Fig. 8 Effective fluid-surface potentials in reduced units
(w∗ = w/εff ) as a function of reduced distance to the surface
(D∗ = D/σff ). An LJ fluid-solid interparticle interaction is
considered between an LJ adsorbent fluid particle and a single
monolayer solid adsorbate surface of identical LJ particles
(σff = σss= σfs andεff = εss= εfs) with (a) (111), (b) (100) and (c)
(110) geometries. The blue squares represent the corresponding
effective FEA potential at a temperatureT∗ = kBT/εff = 1 and the
red triangles the corresponding effective UA1 potential.

molecules over the adsorbate-adsorbent interaction. It is seen
that a consideration of the FEA potential leads to softer ef-
fective potentials, compared to the simple unweighted energy
average, with an attractive range spanning to distances closer
to the wall. This softening of the potential is strongly depen-
dent on the corrugation of the surface and indicates that the
averaging technique is taking into account the effect of the
fluid particles exploring the gaps of the surface at low tem-
perature. This effect is not captured when one considers only
an unweighted average of the configurational energy (either
based on sums or integration). Although for the sake of clar-
ity this has been omitted from Figure 8, an integration over
the structureless surface (i.e., the (10-4) potential) provides
essentially the same description as the unweighted average of
the pair-potential sums for all three surface geometries. Com-
paring the deviations between the effective potentials for the
different solid orientations we can see that in general the FEA
fluid-surface potential deviates more from the (10-4) potential
as the surface structure becomes less dense.

The deviation between these effective potentials is further as-
sessed in the description of an adsorption isotherm atT∗ = 1
of an LJ adsorbent fluid on an LJ monolayer solid adsor-
bate. These are compared in Figure 9 with the corresponding
isotherm obtained for a discrete description of the solid. In
the case of a (111) solid monolayer [Figure 9(a)], both FEA
and UA1 potentials provide a good approximation of the ad-
sorption obtained with the discrete description, the deviations
falling within (or close to) the standard deviation of the simu-
lation results. The use of an UA1 potential appears to result in
a systematic underprediction of the density of adsorbed fluid
particles at this temperature, which is a direct consequence of
the shorter attractive range with the wall. The underestima-
tion of the density of adsorbed fluid particles resulting from
the use of the temperature-independent unweighted average is
more pronounced in the case of the (100) and (110) mono-
layer solids [Figure 9(b) and (c)], as would be expected on
the basis of the increased softness of the free-energy averaged
potential at shorter distances compared to the unweighted po-
tential. The use of a free-energy averaged potential is clearly
a requirement in the case of the (110) surface, the most corru-
gated of all the surfaces we have studied.

In the case of a solid formed from multiple layers in an fcc
structure, the trends in results obtained are very similar and
to avoid redundancy we limit the discussion to a comparison
of the two effective potentials used to model an fcc solid with
an exposed (110) surface, depicted in Figure 10 at a reduced
temperature ofT∗ = 1. The corresponding results for the ad-
sorption isotherms obtained from the GCMC simulations are
given in Figure 11.
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Fig. 9 Reduced density of adsorbed LJ fluid per unit area
(ρ∗

a = ρaσ2
ff ) versus reduced pressure (p∗ = pσ3/εff ) at reduced

temperatureT∗ = kBT/εff = 1. An LJ adsorbent fluid interacting
with a single monolayer solid adsorbate surface of identical LJ
particles (σff = σss= σfs andεff = εss= εfs) with (a) (111), (b)
(100) and (c) (110) geometries is considered. The symbols
correspond to the results from GCMC simulations for the discrete
solid description (yellow diamonds), for a fluid-wall interaction
represented by the corresponding effective FEA potential (blue
squares) and for a fluid-wall interaction represented by the
corresponding effective UA1 potential (red triangles). The dashed
line is the corresponding saturation pressure of the bulk fluid at this
temperature.

3.3 Heterogeneous surfaces

The coarse graining of potentials is of course most useful
for surfaces that possess either structural or energetic hetero-

geneities. Solids of practical interest invariably contain these
types of heterogeneities and the assumption of a perfect crys-

Fig. 10Effective fluid-surface potentials in reduced units
(w∗ = w/εff ) as a function of reduced distance to the surface
(D∗ = D/σff ). An LJ fluid-solid interparticle interaction is
considered between an LJ adsorbent fluid particle and an fcc solid
adsorbate of identical LJ particles (σff = σss= σfs and
εff = εss= εfs) exposing a (110) surface. The blue squares represent
the corresponding effective FEA potential at a temperature
T∗ = kBT/εff = 1 and the red triangles the corresponding effective
UA1 potential.

Fig. 11Reduced density of adsorbed LJ fluid per unit area
(ρ∗

a = ρaσ2
ff ) versus reduced pressure (p∗ = pσ3/εff ) at reduced

temperatureT∗ = kBT/εff = 1. An LJ adsorbent fluid interacting
with an fcc solid adsorbate of identical LJ particles (σff = σss= σfs
andεff = εss= εfs) exposing a (110) surface is considered. The
symbols correspond to the results from GCMC simulations for the
discrete solid description (yellow diamonds), for a fluid-wall
interaction represented by the corresponding FEA potential (blue
squares) and for a fluid-wall interaction represented by the
corresponding UA1 potential (red triangles). The dashed line is the
corresponding saturation pressure of the bulk fluid at this
temperature. An amplified view of the low pressure area can be seen
in the inset.
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Fig. 12Representation of the solid with a vacancy on a (111)
surface. The LJ surface particles are represented by the blue
coloured spheres; the particles in grey represent identical LJ
particles below the first layer of the solid.

talline structure may be a gross oversimplification83. The ac-
curacy of the effective potentials is first assessed in the study
of a solid with a (111) surface containing a single defect within
the simulation box. The surface studied thus corresponds to a
vacancy per 168 particles of the original surface, as shown

Fig. 13Effective fluid-surface potentials in reduced units
(w∗ = w/εff ) as a function of reduced distance to the surface
(D∗ = D/σff ). An LJ fluid-solid interparticle interaction is
considered between an LJ adsorbent fluid particle and an fcc solid
adsorbate of identical LJ particles (σff = σss= σfs and
εff = εss= εfs) exposing a (111) surface with a single vacancy. The
solid symbols represent the corresponding effective FEA potential
(blue squares) at a temperatureT∗ = kBT/εff = 1 and the
corresponding effective UA1 potential (red triangles). For purposes
of comparison the open symbols correspond to the effective FEA
potential (diamonds) at a temperatureT∗ = kBT/εff = 1 and the
effective UA1 potential (circles) for the case of a perfect crystalline
solid exposing a (111) surface.

in Figure 12. The changes in the shape of the fluid-surface
potential caused by the addition of this apparently small het-
erogeneity are shown in Figure 13, where the potential is com-
pared to that of the perfect crystalline solid (without defects).
It can be seen that the introduction of even a small defect con-
centration leads to a marked influence on the effective FEA
potential. This potential now presents a second minimum at
very short range. If the free-energy expansion of the poten-
tial is truncated at first order it can be seen that the vacancy
has a negligible effect on the shape of the potential, indicating
that at high temperature the fluid particles do not sample the
defect on the surface to any discernible degree. The inclusion
of further defects produces an increase in the depth of the first
minimum while decreasing that of the second.

Both average free-energy and unweighted-configurational-
energy potentials are used to determine adsorption isotherms
and the results are compared to those obtained for the discrete
solid in Figure 14. At low pressure the adsorption obtained
with the FEA potential agrees fairly well with that obtained
using the explicit atomic description, while the potential based
on the leading-order truncation is seen to lead to an underes-
timation of the amount of fluid adsorbed. At higher pressure,
positions closer to the wall are favoured in the case of the sys-
tem with the FEA potential. The latter implicitly takes into ac-
count the energetic bias of a particle being close to the vacancy
compared to being at other positions. The result is a slight
overestimation of the density of adsorbed fluid at pressures
close to saturation, in comparison to the results obtained with
the explicit description of the solid. This is of course a direct
consequence of the way the free-energy average is computed,
taking into account only the Henry’s low-density limit, i.e., the
interaction of a single fluid particle with the wall. Fluid-fluid
interactions are assumed to be independent of the adsorption,
while for filled pores or densely packed surface layers clearly
cooperative effects will come into play84.

Finally we study the case of a solid with chemical periodici-
ties on its surface represented by heterogeneous energetics. In
particular we consider a surface with alternating strips of solid
particles characterised by different interaction energies:εss

(i.e., identical to that of the fluid and the rest of the solid par-
ticles) in one stripe and 2× εss in the other stripe; all the other
fluid-solid interactions are otherwise identical, and Lorentz-
Berthelot combining rules are used to obtain the fluid-solid
interaction parameters. For this study we examine an fcc solid
with a (110) surface. The arrangement of the stripes is rep-
resented in Figure 15. The coarse-grained potentials for the
fluid-solid interaction are plotted in Figure 16. As expected,
adding these energetic heterogeneities on the surface results
in overall potentials with a deeper minimum, compared to the
perfectly homogeneous surfaces. We can also see that the in-
crease in the depth of the potential is more pronounced in the
case of the FEA potential, compared to the simple UA1.
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The performance of these effective potentials is compared in
the computation of an adsorption isotherm in Figure 17. We
can see that in spite of incorporating a large range of chemical
heterogeneity, the FEA potential provides a good represen-
tation of the adsorption isotherm determined with a explicit
atomistic description, while the use of a simple UA1 potential
leads to a considerable underprediction of the adsorbed fluid
density.

Fig. 14Reduced density of adsorbed LJ fluid per unit area
(ρ∗

a = ρaσ2
ff ) versus reduced pressure (p∗ = pσ3/εff ) at reduced

temperatureT∗ = kBT/εff = 1. An LJ adsorbent fluid interacting
with an fcc solid adsorbate of identical LJ particles (σff = σss= σfs
andεff = εss= εfs) exposing a (111) surface with a vacancy is
considered. The difference between figures (a) and (b) is the
logarithmic scale in densities. The symbols correspond to the results
from GCMC simulations for a discrete solid description (yellow
diamonds), for a fluid-wall interaction represented by the
corresponding FEA potential (blue squares) and for a fluid-wall
interaction represented by the corresponding UA1 potential (red
triangles). The dashed line is the corresponding saturation pressure
of the bulk fluid at this temperature.

Fig. 15Representation of the solid with energetic heterogeneities
on a (110) surface. The particles comprising the main body of the
solid (represented in grey to emphasise the surface) are identical to
those of the fluid (σff = σss= σfs andεff = εss= εfs), and identical
to the blue spheres, whereas the interaction parameters
characterising the yellow spheres areσss and 2× εss (and therefore
σfs = σss andεfs =

√
2× εss).

4 Conclusions

Obtaining realistic effective fluid-surface potentials is an es-
sential step in the development of theories of adsorption on
solid substrates. Fluid-surface potentials are commonly de-
veloped based on unweighted averages of the sum of the
intermolecular potential of a fluid molecule with the atoms
that constitute the solid. Assuming that the solid is homoge-
neous and the pairwise interactions follow a Lennard-Jones
(12-6) model, this leads to integrated potentials such as the
commonly used (9-3) and (10-4) formulations. As an al-
ternative, we provide a detailed analysis of the use of free-
energy-averaged (FEA) potentials to study surface adsorption.
The expression to obtain these potentials is developed here
and the resulting forms are compared to the potentials based
on unweighted-averages of the configurational energy (UA1).
The latter are shown to be equivalent to the leading-order term
in the high-temperature expansion represented by the FEA po-
tential. An examination of the FEA potential makes clear that
the effective coarse-grained fluid-surface potentials should be
temperature dependent, while this temperature dependence is
neglected if the (10-4), (9-3) or (10-4-3) potentials or their
equivalents are used. Both types of averages (weighted and
unweighted) converge to the same interaction at high temper-
atures, where the intricate details of the surface are smeared
out.
We have evaluated the use of both UA1 and FEA potentials
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for various types of fluid-solid interactions and we have used
them to describe adsorption isotherms by undertaking GCMC
simulations. In particular we have studied the interaction and
adsorption of methane on graphene and graphite, as well as the
corresponding behaviour of the prototypical LJ fluid adsorbent
on different faces of fcc LJ solids adsorbates. The FEA poten-
tials are found to provide a more accurate representation of
the fluid-solid interaction. FEA potentials can also be used to
take into account the fact that fluid particles are prone to ex-
plore the gaps of the surface at temperatures where the kinetic
energy is not dominant, which is reflected by softer effective
potentials as compared to the corresponding UA1 potential.
The less compact and corrugated the surface is, the less accu-
rate unweighted averages are found to be compared with the
FEA potentials.
We conclude that the use of an UA1 or an analytical integra-
tion such as the (10-4) potential should be restricted to high
temperatures. This also applies to the (10-4-3) potential for fcc
solids. For very compacted (or less corrugated) surfaces such
as that of graphene (or graphite), the use of a (10-4) [or a (10-

Fig. 16Effective fluid-surface potentials in reduced units
(w∗ = w/εff ) as a function of reduced distance to the surface
(D∗ = D/σff ). An LJ fluid-solid interparticle interaction is
considered between an LJ adsorbent fluid particle and an fcc solid
adsorbate exposing a (110) surface with energetic heterogeneities
comprising alternating stripes of solid particles of different
interaction energy; one of the stripes is characterised by particles
identical to those of the fluid and the main body of the solid
(σff = σss= σfs andεff = εss= εfs), whereas the other stripe is
characterised by the interaction parametersσss and 2× εss (and
thereforeσfs = σss andεfs =

√
2× εss). The solid symbols represent

the corresponding effective FEA potential (blue squares) at a
temperatureT∗ = kBT/εff = 1 and the corresponding UA1 potential
(red triangles). For purposes of comparison the open symbols
correspond to the effective FEA potential (diamonds) at a
temperatureT∗ = kBT/εff = 1 and the effective UA1 potential
(circles) for the case of a perfect crystalline solid exposing a (110)
surface.

Fig. 17Reduced density of adsorbed LJ fluid per unit area
(ρ∗

a = ρaσ2
ff ) versus reduced pressure (p∗ = pσ3/εff ) at reduced

temperatureT∗ = kBT/εff = 1. An LJ adsorbent fluid interacting
with an fcc solid adsorbate exposing a (110) surface with energetic
heterogeneities in alternating stripes is considered; one of the stripes
is characterised by particles identical to those of the fluid and the
main body of the solid (σff = σss= σfs andεff = εss= εfs), whereas
the other stripe is characterised by the interaction parametersσss
and 2× εss (and thereforeσfs = σss andεfs =

√
2× εss). The

difference between figures (a) and (b) is the logarithmic scale in
densities. The symbols correspond to the results from GCMC
simulations for a discrete solid description (yellow diamonds), for a
fluid-wall represented by the corresponding effective FEA potential
(blue squares) and for a fluid-wall represented by the corresponding
UA1 potential (red triangles). The dashed line is the corresponding
saturation pressure of the bulk fluid at this temperature.

4-3)] potential will lead to negligible deviations, and therefore
it is a good approximation even at the lowest temperatures.
Presumably the excellent agreement rendered by the (10-4-
3) potential for graphitic substrates even at low temperature
may be the reason why FEA potentials are not in wider use.
However, the wider the lattice spacings in comparison to the
molecular diameter of the fluid, the more significant the de-
viations of a type (10-4-3) potential are expected to be from
a fully atomistic description. In all cases using a FEA po-
tential to simplify the fluid-solid by a fluid-wall interaction
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has shown to be a reliable approach for the representation of
the adsorption behaviour of explicit atomistic systems, and a
generalisation of conventional methods. For solids with de-
fects there will be a point at which the representation of the
solid by a continuum wall will not be a good approximation.
When the solid contains vacancies, FEA potentials may lead
to an over weighting of those positions therefore leading to an
overestimation of the fluid-solid interaction. Solids contain-
ing chemical periodicities embodied through energetic hetero-
geneities are however better represented, even for highly het-
erogeneous systems, where FEA potentials provide an excel-
lent agreement with the adsorption isotherm determined from
the explicit atomistic potentials. At high temperatures the fluid
particles do not feel the latter types of heterogeneities on the
surface to the same extent, and as a consequence simple UA1
potentials lead to undepredictions of adsorption apart from at
high temperature.
In conclusion, we have shown that the use of free-energy av-
erages is a promising approach to the accurate coarse grain-
ing of detailed atomistic potentials. Incorporating average
free-energy potentials, and thereby considering their appro-
priate temperature dependence, should aid in improving the
theoretical basis of surface adsorption theories. Temperature-
independent average potentials such as the (10-4-3) poten-
tial are also commonly employed in classical density func-
tional theories (DFTs)85 of surface adsorption and confined
systems6,47,86. As a consequence the DFT calculations will
suffer from the same deficiencies (as discussed for the simu-
lation studies) because unweighted average surface potentials
of this type do not generally provide a good representation of
the effective substrate-fluid interactions apart from in the high-
temperature limit. The use of free-energy average interactions
such as the FEA potentials described in our current manuscript
would therefore also be highly desirable in any DFT descrip-
tion of adsorption. In future work we intend to extend recent
work on the coarse-graining of molecular fluids with the Mie
potential87–91to include a consideration of surface adsorption,
making use of group-contribution versions of the theory92 to
aid in the prediction of the fluid-solid interaction.
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