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Heat and mass transfer through interfaces is central in nucleation theory, nanotechnology and many other fields of research. Heat
transfer in nanoparticle suspensions and nanoporous materials display significant and opposite correlations with particle and
pore size. We investigate these effects further, for transfer of heat and mass across interfaces of bubbles and droplets with radii
down to 2nm. We use square gradient theory at and beyond equilibrium to calculate interfacial resistances, in single-component
and two-component systems. Interface resistances as defined by non-equilibrium thermodynamics, vary continuously with the
interface curvature, from negative (bubbles) to zero (planar interface) to positive (droplet) values. The interface resistances of
2 nm radii bubbles/droplets are in some cases one order of magnitude different from those of the planar interface. The square
gradient model predicts that the thermal interface resistances of droplets decrease with particle size, in accordance with results
from the literature, only if the peak in the local resistivity is shifted toward the vapor phase. Curvature will then have the opposite
effect on the resistance of bubbles and droplets. The model predicts that the coupling between heat and mass fluxes, when
quantified as the heat of transfer of the interface, is of the same order of magnitude as the enthalpy change across the interface,
and depends much less on curvature than the interface resistances.

1 INTRODUCTION

Boiling, condensation and crystallization are first order phase
transitions at the core of a multitude of processes. Everyday
examples can be found in refrigerators, bubbles in the soda,
coffee machines and rain. In industry, phase transitions are
central in transient operation of tanks and pipelines, chemical
reactors and multiphase heat exchangers1,2.

The field of nanotechnology is rapidly developing, and de-
mands knowledge of phase transitions at the nanoscale. Self-
assembly of nanoparticles at fluid interfaces (liquid-vapor and
liquid-liquid) will for instance enable the preparation of high
quality crystals, and nanoparticles at interfaces have been used
to modify material stability3,4. The typical phase transition
starts with the formation of a critical nanoscopic nucleus,
which subsequently grows in size and combines with other
entities to form a new phase5. The combined rate of these
steps is the nucleation rate, which is crucial to properly de-
scribe the above processes. One of the reasons why nucle-
ation is complicated, is that it is a non-equilibrium process6,
where the growth rate is decided by transfer of mass and en-
ergy. We know that the interface between the growing entities,
the nanoparticles, and the surrounding fluid becomes impor-
tant for small particles. Transfer of mass and energy will here
depend strongly on the properties of the interface, as opposed
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to macroscopic systems where bulk effects dominate7. The
growth process should thus be understood at the nanoscale, to
correctly predict nucleation rates8.

It is well known that the interface imposes additional
resistance to transfer. This was noticed already in 1941
by Kapitza, in his observations of a temperature "jump"
across a solid-liquid interface9. The interface resistance has
later been quantified by kinetic gas theory (See10 and refs.
therein), non-equilibrium molecular dynamics (NEMD) sim-
ulations11–13 and experiments14,15. The investigations with
NEMD simulations report thermal resistances of the order
10−7-10−8 m2K/W for liquid-solid interfaces16,17 and 10−10-
10−11 m2K/W for vapor-liquid interfaces11,13, which is much
larger than in bulk systems. It is clear, also from experi-
ments18, that the interface is a barrier to transport. For a
vapor-liquid interface with a thickness of 1 nm, the barrier
has a magnitude equivalent to a µm thick gas layer according
to kinetic gas theory7.

Experiments have shown a dependence of the thermal con-
ductivity in nanoparticle suspensions with the size of the parti-
cles, where the resistance decreases for smaller particles19–21.
It was hypothesized by Lervik et al., that this was due to
the interface curvature12. This was further demonstrated by
the considerable radius dependence they predicted across a
nanodroplet-water interface with NEMD-simulations12. It is
very interesting that nanoporous materials exhibit the opposite
behavior, where the resistance increases with smaller pores22.
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In this work, we quantify and discuss the curvature depen-
dence of interface resistances to heat and mass transfer, and
also coupling effects between heat and mass. We investi-
gate both single-component and two-component bubbles and
droplets, i.e. vapor-liquid interfaces (also called surfaces). In-
terface resistances will be presented for bubbles/droplets with
radii from 2 nm to the planar interface.

In our analysis, we use square gradient theory, both at
and beyond equilibrium. Square gradient theory is the first
approximation to density functional theory, first formulated
for single-component systems by van der Waals23, extended
to mixtures by Cahn and Hillard24 and to the non-equilibrium
domain by Bedeaux and coworkers for single-component
systems25, and Glavatskiy and Bedeaux for mixtures26.
The advantage of this model, compared to the capillary
approximation in CNT5,27,28, is that it provides continuous
profiles through the interface and can be used to predict
interface resistances. Prediction of interface resistances relies
on local resistivity profiles and, as we shall see, assumptions
about local resistivities affect interface properties strongly;
curvature dependence in particular. Square gradient theory
complements NEMD, Monte Carlo simulations and exper-
iments, in that a comparison with these more sophisticated
and time demanding approaches provides insight into the
structure of the interface at the mesoscopic level26.

We shall use equilibrium profiles combined with the inte-
gral relations to obtain interface resistances29–31, and com-
pare these to results from the non-equilibrium square gradi-
ent model, with actual gradients in temperature, composition
and pressure26,32. We present interface resistances which vary
continuously with the interface curvature, from negative (bub-
bles) to zero (planar interface) to positive (droplet) values.
This has to the best of our knowledge, not been shown be-
fore. Moreover, we show that interface resistances are one
order of magnitude different for 2 nm radii bubbles/droplets
than for the planar interface, and that the peak in local resis-
tivity must be shifted toward the vapor to give the expected
curvature dependence of the thermal interface resistances of
droplets. Curvature will then have the opposite effect on the
resistance of bubbles, and give a behavior similar to that ex-
hibited by nanoporous materials.

2 THEORY

We will in this section present the theoretical framework used.
The equilibrium square gradient model was described previ-
ously33. We give the main equations in Sec. 2.1. The non-
equilibrium formulation is discussed in Sec. 2.2. The different
choices for local resistivities are described and justified in Sec.
2.3 before we discuss computational details in Sec. 2.4. How
to go from the continuous description in the square gradient

model, to a discontinuous description according to Gibbs’ de-
scription is shown in Sec. 2.5. In particular, we discuss how
to properly calculate excess properties from non-equilibrium
profiles in curved systems (Sec. 2.5.1). We then repeat how to
obtain interface resistance profiles from non-equilibrium pro-
files with the perturbation cell method26,32 (Sec. 2.5.2), or
from equilibrium profiles with the integral relations29,30 (Sec.
2.5.3).

2.1 The equilibrium square gradient model

The equilibrium square gradient model represents a con-
strained stationary state of the system’s Helmholtz energy
(zero first functional derivatives), where the local Helmholtz
energy density [J/m3] depends on density and density gradi-
ents:

fsgm = feos +
1
2

Nc

∑
i j=1

κi j∇ρi ·∇ρ j (1)

Here, i and j refer to the components, and Nc to the total num-
ber of components. Subscript sgm refers to the square gradi-
ent model, and eos to the local contribution. ρi is the density
of component i, and κi j are the square gradient constants. If
the mixing rule for the square gradient constants is defined
according to the most common expression κi j =

√κiκ j, the
differences between the square gradient, and the local chemi-
cal potentials become linearly dependent, and it is convenient
to introduce the structure parameters κ , εi and q:

κ = κNc (2)

εi =

√
κi

κ
(3)

q =
Nc

∑
i=1

εiρi (4)

Component Nc is chosen to be the most abundant one. All
components are related through εi (note that εNc = 1). We then
obtain the thermodynamic quantities in terms of the structure
parameters:

µsgm,k = µeos,k + εkκ∇2q (5)

fsgm = feos +
κ
2
(∇q)2 (6)

usgm = ueos +
κ
2
(∇q)2 (7)

hsgm = heos −κq∇2q (8)

psgm = peos −
κ
2
(∇q)2 −κq∇2q (9)

Here, µk is the chemical potential of component k, u is the
internal energy density, h the enthalpy density and p the pres-
sure, which for the geometries considered here is parallel to
the interface. The equilibrium square gradient model is thus
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fully defined by the boundary conditions, a second order dif-
ferential equation in q (Eq. 9), and (Nc-1) algebraic equations
representing the linear dependence between thermodynamic
quantities. We construct algebraic equations in terms of the
chemical potential differences, Ψk = µk −µNc :

Ψeos,k −Ψk = (εk −1)

(
peos − psgm − 1

2 κ(∇q)2
)

q
(10)

Eq. 10 is a combination of Eq. 5 and 9, and is chosen for
convenience. We could have used any set of (Nc-1) indepen-
dent equations representing algebraic relations between the
thermodynamic quantities, and obtained an equivalent model.
In the remaining part of this work, thermodynamic quantities
will always be defined according to the square gradient model.
Furthermore, we divide Eqs. 6-8 by the overall density to have
mass specific quantities and omit subscript sgm.

2.2 The non-equilibrium square gradient model

In the non-equilibrium square gradient model, we assume that
thermodynamic quantities locally follow the same expressions
as in equilibrium. Beyond equilibrium, there is transfer of heat
and mass through the interface governed by conservation of
mass, energy and momentum. The continuity equation is:

∂ρ
∂ t

=−∇ · (ρv) =−∇ ·J (11)

Here, J is the total mass flux which equals, ρv, where v is the
barycentric velocity vector. The specie mass balances are:

∂ρk

∂ t
=−∇ ·

(
ρkv+Jd,k

)
=−∇ ·Jk (12)

Where Jk is the mass flux and Jd,k is the diffusion flux of com-
ponent k, with ∑Nc

i=1 Jd,i = 0. The equation of motion is:

∂ (ρv)
∂ t

=−∇ · (ρvv)−∇p−∇ ·γα ,β (13)

We neglected the viscous stress tensor and external forces in
the above equation. The symbol γ denotes the thermody-
namic tension tensor, which has been derived for an interface
described by the square gradient model assuming mechanical
equilibrium26,34. With no external forces, it is:

γα ,β =
Nc

∑
i j

κi j
∂ρi

∂xα

∂ρ j

∂xβ
= κ (∇α q)

(
∇β q

)
(14)

Where α and β indicate the components of the coordinates.
The total energy balance is:

∂
∂ t

(
ρ
(
u+0.5v2))=−∇ ·

(
ρv
(
u+0.5v2)+Jq + pv

)
(15)

The Gibbs relation for the square gradient model was given by
Glavatskiy35:

T
ds
dt

=
du
dt

−
Nc

∑
i=1

µi
dwi

dt
+ p

d
dt

(
1
ρ

)
− (v−vs)

1
ρ

∇ ·γ (16)

Here, d/dt ≡ ∂/∂ t +v ·∇ is the substantial time derivative, s
the entropy, and wi is the mass fraction of component i. More-
over, vs is the velocity of the interface, which is zero in this
work. The last term contributes only in the interfacial region.
The entropy balance is:

ρ
ds
dt

=−∇ ·Js +σ (17)

Here, Js ≡ Js,tot −ρsv is the difference between the total en-
tropy flux and the convective term ρsv, and σ denotes the local
entropy production. Substituting for the balance equations in
the Gibbs relation, the entropy flux and production are found
to be26:

Js =
1
T

(
Jq −

Nc

∑
i

µiJd,i

)
=

1
T

(
Jq −

Nc−1

∑
i

ΨiJd,i

)
(18)

σ = Jq ·∇
(

1
T

)
−

Nc

∑
i

Jd,i ·∇
µi

T
(19)

σ = Jq ·∇
(

1
T

)
−

Nc−1

∑
i

Jd,i ·∇
Ψi

T
(20)

2.2.1 Phenomenological equations
The local entropy production in Eq. 20, consists of products of
fluxes and thermodynamic forces, which according to classical
non-equilibrium thermodynamics leads to the following linear
force-flux relations from the first expression for σ :

∇
(

1
T

)
= r′′qqJq +

Nc

∑
i

r′′qiJd,i (21)

−∇
(µk

T

)
= r′′kqJq +

Nc

∑
i

r′′kiJd,i k = 1, ...,Nc (22)

Or the equivalent, from the second expression for σ :

∇
(

1
T

)
= rqqJq +

Nc−1

∑
i

rqiJd,i (23)

−∇
(

Ψk

T

)
= rkqJq +

Nc−1

∑
i

rkiJd,i k = 1, ...,Nc −1 (24)

Here, r′′ and r are resistivity coefficients, which are expected
to depend on both local variables and density gradients. The
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linear form of these equations for interface transport has been
verified by earlier work36–38. Furthermore, it can be remarked
that distance from global equilibrium, is not in conflict with
the existence of local equilibrium where thermodynamic re-
lations are valid. Local equilibrium was verified for planar
interfaces with similar gradients in temperature and compo-
sition as this work, using Gibbs excess variables26,39. With
∑Nc

i Ji = 0, the relations between r′′ and r become:

rqq = r′′qq (25)

rqi = riq = r′′iq − r′′Ncq (26)

rki = rik = (r′′ki − r′′Nci)− (r′′kNc
− r′′NcNc) (27)

We use Maxwell-Stefan’s framework for multicomponent dif-
fusion to define the bulk resistivities. The framework has
many advantages, e.g. that it is independent of the frame of
reference. The bulk the resistivity coefficients, r′′ are identi-
fied as7:

r′′ o
qq =

1
λT 2 (28)

r′′ o
qi = r′′ o

iq =−
(
hi +q 0

i
)

r′′ o
qq (29)

r′′ o
ki = r′′ o

ik =− R
cÐkiMw,iMw,k

+
r′′ o

iq r′′ o
kq

r′′ o
qq

(30)

r′′ o
kk = dk +

(r′′ o
kq )2

r′′ o
qq

(31)

Here, superscript o, denotes values in the bulk phases. λ is
the thermal conductivity, hi is the partial mass enthalpy, Mw,i
the molar mass of component i, R the gas constant, c the to-
tal molar concentration and Ði j the Maxwell-Stefan diffusion
coefficients. We used temperature and composition dependent
models for the thermophysical properties, as described in Ap-
pendix A. With the same notation as7, qo

k is the local heat
of transfer of component k on mass basis, and qo

k and dk are
defined as:

q o
k =

Nc

∑
i ̸=k

1
Mw,k

RT xi

Ðki

(
DT,k

ρk
−

DT,i

ρi

)
(32)

dk =
Nc

∑
i ̸=k

1
Mw,k

Rxi

Ðkiρk
(33)

Here, xi is the mole fraction, and DT,i the thermal diffusion
coefficient of component i.

2.3 Resistivities in the interfacial region

Across the interface, resistivities depend on gradients in den-
sities in a way similar to what thermodynamic quantities do33.
The exact nature of this dependence is yet unknown. We use

the same dependence as recent literature and assume that local
resistivity coefficients r j(x) =

[
rqq,rq1,r11

]
, are described by

the following modulatory curves26:

r j,m = rg
j +(rl

j − rg
j )ybulk +α j,m

(
rg

j + rl
j

)
eq,p

ygrad jm (34)

where:

ybulk =

(
q−qg

p,eq
)(

ql
p,eq −qg

p,eq
) ygrad =

|q′|2∣∣q′p,eq
∣∣2
max

(35)

Here, subscript "p,eq" means the equilibrium profiles from the
planar interface. The first two terms on the right hand side of
Eq. 34 represent a curve which follows the order parameter,
q, from the gas bulk resistivities (superscript g), to the liquid
bulk resistivities (superscript l). The above formulation dif-
fers in molar and mass units only by a constant, and behavior
is thus independent of frame of reference. The term, ygrad,
represents a contribution from the density gradients, similar to
the contribution to the local Helmholtz energy in the square
gradient model (see Eq. 6). The parameter α is a constant
prefactor, which decides the amplitude of the gradient contri-
bution. A contribution from density gradients in the expres-
sion for the thermal resistivity, rqq, is strongly supported by
the results from Holyst and Litniewksi40. They show that the
temperature difference across the interface increases and the
evaporation rate of nanodroplets decreases, the larger the dif-
ference in density becomes between the two phases. Gas et al.
also discusses how diffusion is fundamentally different at the
nanoscale41.

NEMD simulations have indicated that the peak in the local
resistivity profile is closer to the vapor-phase11,42. For some
systems, however, the peak may be closer to the liquid-phase,
so we consider three different cases for jm with m = {1,2,3}:

j1 = 1 j2 =

(
ql

eq,p

q(x)

)2

j3 =

(
q(x)
ql

eq,p

)2

(36)

With j1, the resistivity profile has no preference for the liq-
uid or vapor-phase (Case n). With j2, the peak in resistivity
is closer to the gas-phase (Case g), and with j3, the peak in
resistivity is closer to the liquid-phase (Case l). Where possi-
ble, we chose the amplitude of the gradient term in the local
resistivity profiles to reproduce interface resistances from ki-
netic gas theory with condensation coefficients set to 0.5. The
values are given in Appendix B. In particular, αqq was cho-
sen to reproduce the thermal interface resistance, Rqq. The
amplitudes of the cross coefficients, αq1 changed the interface
resistances little and were set to 1.00. Values for mass trans-
fer, α11, were chosen to reproduce the interface resistance for
mass of Component 2 from kinetic gas theory, R22. This could
not be achieved for the j3-profile, and the α11,3-value was set
to 1.00.
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Liquid/Vapor

bulk

(a) Planar geometry
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329.5
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 (r−R
n
) [nm] 

T
 [K

]
(b) Temperature profiles as functions of r

Liquid/Vapor

slab

r

RtotRn

(c) Cylindrical geometry

−3 −2 −1 0
329.5

330

330.5
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tot

) 

T
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]

(d) Temperature profile through vapor slab

Bubble/Droplet

r
Rtot

Rn

(e) Spherical geometry

−0.8 −0.6 −0.4 −0.2 0
329.5

330

330.5

 −1/r [(nm)−1] 

T
 [K

]

(f) Temperature profile through bubble

Fig. 1 Illustration of symmetric geometries (left) and temperature profiles (right) from the non-equilibrium square gradient model for a planar
interface (solid line) a vapor slab (dashed line) and a bubble (dash-dot line) for the system hexane-cyclohexane.
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Table 1 The balance equations at steady-state, the leading term for
extrapolation and the Lamé coefficients of the symmetric geometries
in Fig. 1

Geometry Planar Cylinder Sphere

Momentum:
(∂Jm)

∂ r
= 0

∂ (rJm)

∂ r
= p

∂
(
r2Jm

)
∂ r

= 2rp

Mass:
∂ (Jk)

∂ r
= 0

∂ (rJk)

∂ r
= 0

∂
(
r2Jk

)
∂ r

= 0

Energy:
(∂Je)

∂ r
= 0

∂ (rJe)

∂ r
= 0

∂
(
r2Je

)
∂ r

= 0

Leading term
extrapolation:

r ln(r) r−1

Lamé coeffi-
cients:

h1 = h2 = h3 = 1 h1 = h2 = 1, h3 = r h1 = 1, h2 = r sin(θ), h3 = r

Kinetic theory applies to a system of hard spheres7. Trans-
port properties predicted from the theory do not apply to real
systems, as deviations from hard sphere values were found
already for Lennard-Jones particles43. Since this work only
aims to investigate qualitatively the curvature dependence of
interface resistances, kinetic gas theory is sufficient as refer-
ence.

2.4 Solution method

For systems at steady-state with special symmetries, the
square gradient model can be simplified considerably. These
systems are; a planar interface, a cylinder, and a sphere, where
the geometries are illustrated in Fig 1. In these cases the non-
equilibrium square gradient model is reduced to a set of al-
gebraic and one-dimensional first order differential equations.
We define the momentum flux, Jm, and energy flux, Je, as:

Jm = ρv2 +κ (∇q)2 + p (37)
Je = ρv

(
u+0.5v2)+ Jq + pv (38)

The balance equations can then be redefined according to the
first rows of Tab. 1. Many of the equations are zero, meaning
that the expressions in the parentheses are constant. Solving
the balance equations is then reduced to a problem of finding

a set of constants. This is more accurate and easier from a nu-
merical point of view. The spherical geometry in Fig. 1e is the
basis for our discussion of bubbles and droplets. In the non-
equilibrium square gradient model, values of pressure, tem-
perature and composition at boundaries are specified different
from in the equilibrium configuration, which leads to a flux of
energy and mass through the interface. For the curved inter-
faces in Figs. 1c and 1e, it is necessary to place the source/sink
of mass and energy at a finite radius to avoid a diverging flux at
r = 0. Non-equilibrium bubbles/droplets or cylinders config-
ured according to the figures are never found at steady-state in
nature, because the boundary conditions that sustain the fluxes
across the interface are unrealistic. The models are, nonethe-
less, useful in the study of transport across curved interfaces,
as we shall see in Sec. 3.

The combined system of differential and algebraic equa-
tions was solved using the "bvp4c" solver in Matlab, coupled
with a multidimensional Newton-Raphson approach to solve
the system of algebraic equations (Eq. 10) at each iteration.
In the planar case, all balance equations were unknown con-
stants, identified by the solver to satisfy the boundary condi-
tions. In the curved cases, the momentum balance gave an
additional differential equation to be solved. The scaled dif-
ferential equations were solved to a relative accuracy of 10−8.
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2.5 From a continuous to discontinuous description

The square gradient model gives continuous profiles through
the interface. According to Figs. 1b, 1d and 1f, the non-
equilibrium square gradient model gives jumps in the tempera-
ture across the interface, which represents a barrier to transfer,
such as observed in NEMD-simulations and experiments. In
the study of macroscopic systems and nucleation processes, it
is computationally demanding and unpractical to resolve the
details of each bubble/droplet. One is then interested in the
overall resistance to heat and mass imposed by the interface.
This can be achieved by applying Gibbs’ method for excess
variables to R. From the calculation of the excess entropy pro-
duction in Eq. 19 or 20 and the conditions at a steady-state
interface, the linear force-flux relations can be defined with
excess interfacial resistances, R. We refer to these for simplic-
ity as interface resistances26. Subscript "n" is used to denote
either a droplet or a bubble at the center of the container, and
"e" for the exterior (see Fig.1f). The relation between thermo-
dynamic forces and fluxes across the interface is then7:

1
T e −

1
T n = RqqJ′eq +

Nc

∑
i

Re
qiJi (39)

−
(

µe
k

T e +
µn

k
T n

)
−he

k

(
1

T e −
1

T n

)
= Re

kqJ′eq +
Nc

∑
i

Re
kiJi (40)

Here, J′q is the measurable heat flux, defined as: J′q = Jq −
∑Nc

i hiJd,i, and is independent of frame of reference. Note, that
all quantities in Eq. 39 and 40 are bulk properties extrapolated
from the phase indicated by the superscripts to the interface at
radius, Rn. The above expressions differ from those defined
in previous work, in that the vapor is not necessary located at
the smaller spatial values (e.g. droplets and liquid slabs). Eqs.
39 and 40 use fluxes and enthalpies from the external phase
as reference. They can also be defined in terms of the internal
phase, and in this work, we present results only with the gas
phase as reference. The above equations can be written more
compactly as:

X = RJ (41)

Here, X is a vector containing the thermodynamic forces, R
a matrix with the interface resistances and J a vector with the
fluxes from Eq. 39 and 40. We define the interfacial heat of
transfer of component k as [J/kg]:

q∗g,l
k =

(
J′ g,l

q

Jk

)
∆T=0,Ji̸=k=0

=−
R g,l

qk

Rqq
(42)

q∗k is defined in terms of the measurable heat flux. The heats
of transfer, also called heat of transport, can be defined either
with respect to the gas phase, or with respect to the liquid
phase. The following relation has been derived by Kjelstrup
and Bedeaux7:

q∗g
k −q∗l

k =−∆g,lhk (43)

Where, ∆g,lhk, is the change in partial mass enthalpies of com-
ponent k across the interface, which for single-component sys-
tems is known as the vaporization enthalpy. Eq. 43 shows that
some of the coupling coefficients between mass and energy
across the interface must be of the same order of magnitude as
the enthalpy difference across the interface, i.e. much larger
than in bulk systems. We shall discuss this quantity in more
detail in Sec. 3.

Physically feasible local resistivity profiles must result in a
positive excess entropy production. The interface resistance
matrix, R, must therefore be positive definite. To achieve this,
the main coefficients Rqq, R11 and R22, must be positive. The
cross coefficients, R12, Rq1 and Rq2, however, are allowed to
be negative, if the following inequality is satisfied for every
z = {i ̸= k,q}:

0 < RkkRzz −R2
zk (44)

2.5.1 Excess properties of curved interfaces
To properly define excess properties from non-equilibrium

profiles, state variables must be extrapolated to the interfacial
region from the bulk phases. How to do this for planar inter-
faces was discussed in detail by Johannessen and Bedeaux39,
where state variables were fitted to polynomials in the spatial
variable, r, in bulk regions. It is evident from Fig. 1b why
this is an excellent idea, since temperatures are close to linear
in the bulk phases, even if the mixture has highly non-linear
thermophysical properties. Curved systems do not give tem-
perature profiles which are linear in r according to the dashed
and the dash-dot lines in Fig. 1b. In fact, there are no polyno-
mials with r as argument which give satisfactory extrapolation
in the cylindrical and spherical geometries (Fig 1c and 1e).

A cylindrical geometry gives temperature profiles which
are nearly linear in ln(r) according to Fig. 1d, and a spher-
ical geometry gives profiles which are nearly linear in r−1

according to Fig. 1f. This is because temperature profiles
in the bulk-phases are well approximated by the equation
for steady-state heat conduction, the Laplace equation. The
spatial variables suitable for extrapolation in the geometries
considered in this work are summarized in Tab. 1.

2.5.2 The perturbation cell method
The idea behind the perturbation cell method is to solve the

non-equilibrium square gradient model with small perturba-
tions from equilibrium. The responding fluxes and thermody-
namic forces will then represent the linear response, and can
be used to find interface resistances. The interface resistance
matrix can be estimated using:
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R = XJT (JJT )−1
(45)

This equation gives the least square value of R given J and
X. To estimate the matrix of interface resistances to a suf-
ficient accuracy requires a number of independent perturba-
tions which exceeds the number of independent interface re-
sistances. We used (4 + 2Nc) perturbations, specified as in
literature26,32. We refer to the work by Johannessen and Be-
deaux for further discussion of the perturbation cell method32.

2.5.3 The integral relations
The integral relations were discussed for single components

systems and planar interfaces by Johannessen and Bedeaux29

and extended to mixtures and systems with curvature by
Glavatskiy and Bedeaux30. They introduced the operator Er,
defined as:

Er {ϕ}= hs
2h

s
3

∫ rs,+

rs,−
dx1

h1

h2h3
ϕ ex (46)

Here, the region from rs,− to rs,+ represents the interfacial re-
gion, and h1,h2,h3 are the Lamé-coefficients (see Tab. 1).
For single-component systems the interface resistances were
found to be:

Rg
qq = Er

{
rqq
}

(47)
Rg

q1 = Er
{

rqq (hg −h)
}

(48)

Rg
11 = Er

{
rqq (hg −h)2

}
(49)

And for a two-component system:

Rg
qq = Er

{
rqq
}

(50)

Rg
q1 = Er

{
−rqq

(
h−hg

1

)
+ rq1w2

}
(51)

Rg
q2 = Er

{
−rqq

(
h−hg

2

)
− rq1w1

}
(52)

Rg
11 =Er

{
rqq
(
h−hg

1

)2

−2rq1w2
(
h−hg

1

)
+ r11w2

2
} (53)

Rg
12 =Er

{
rqq
(
h−hg

1

)(
h−hg

2

)
+

rq1
(
w1
(
h−hg

1

)
−w2

(
h−hg

2

))
− r11w1w2

}(54)

Rg
22 =Er

{
rqq
(
h−hg

2

)2

+2rq1w1
(
h−hg

2

)
+ r11w2

1
} (55)

For multicomponent systems, the expressions are more com-
plicated, but can be elaborated based on Chapter 8 in26, which
we refer to for further details and derivations.

3 RESULTS AND DISCUSSION

The formalism in Sec. 2 was presented for multicomponent
systems. For simplicity, however, results will be particularized
for the single-component system hexane, and the binary sys-
tem, cyclohexane-hexane (Component 1-2) at 330K because
they have been popular in literature13,26. In previous work, we
presented stationary solutions of the square gradient model for
a two-component system with a fixed overall composition33.
In this work, we use a fixed composition in the external phase.
This is a more natural boundary condition with a clear phys-
ical interpretation, because it gives bubbles/droplets nucleat-
ing in the same mixture, and extrapolate to the same state at
zero curvature. In particular, the composition in the external
phase corresponds to the coexistence state at 330K and 0.5981
bar. The phase envelope and stability with these conditions
are qualitatively the same as with constant overall composi-
tion (See Fig. 4 in33). Parameters and scales associated with
the square gradient model are the same as in previous work33.
In Sec. 3, we first compare the two methods presented to find
interface resistances, namely the perturbation cell method and
the integral relations (Sec. 3.1), before we proceed to dis-
cuss interface resistances of bubbles/droplets with radii from
2 nm to the planar interface (Sec. 3.2). We associate bubbles
with negative and droplets with positive curvatures according
to standard convention (curvature with respect to the liquid
phase).

We use the same container radius, Rtot = 37.7nm, in all sim-
ulations (See Fig. 1e). If the size of the container for a given
bubble/droplet size is increased, keeping the density and com-
position in the outer phase constant, we find that the descrip-
tion of the bubble/droplet and also the interface resistances do
not change. Interface resistances are found to be independent
of container size, however, the bubble/droplet becomes unsta-
ble in larger containers. We refer to Sec. 3.3 for a discussion
of this, were we conclude that it makes perfect sense to cal-
culate interface resistances also for unstable bubbles/droplets,
given that there is no essential change in the description of the
bubble/droplet.

3.1 The integral relations and the perturbation approach

Fig. 2 shows a comparison of interface resistances cal-
culated with the integral relations (lines), and with the
perturbation cell method (stars). The two methods predict
the same interface resistances within a sufficient accuracy
(<0.1%). We present the heat-mass cross resistance for the
single-component system (Fig. 2a), and the thermal interface
resistance for the two-component system (Fig. 2b), but
could well have chosen any other two interface resistances to
demonstrate that the methods give the same results.
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We thus confirmed numerically that the integral relations
derived by Bedeaux and coworkers are valid, also for multi-
component systems with curvature. Moreover, Fig. 2 gives
credibility to our implementation, and to the numerical ac-
curacy chosen. From a practical point of view, we recom-
mend the integral relations to calculate interface resistances,
in particular for curved systems. The first reason for this is
the placement of the source/sink of mass and energy at a fi-
nite radius in the spherical container, which makes the per-
turbation method inaccurate for small bubbles/droplets (radii
below 5nm). Furthermore, the difference in computational
time is considerable. The time needed to calculate equilib-
rium profiles and compute the integral relations is in the or-
der of seconds. The perturbation cell method needs 6 and
8 solutions of the non-equilibrium square gradient model for
the single-component and the two-component systems respec-
tively, which gives a calculation time of approximately 15
minutes for every star in Fig. 2a, and about 1 hour for every
star in Fig. 2b. Consequently, we used the integral relations to
calculate the interface resistances in the remaining part of this
work.

3.2 Interface resistances

Figs. 3, 4 and 5 show how interface resistances change from
bubbles with 2nm radius (negative curvature) to the planar in-
terface with zero curvature to 2nm droplets (positive curva-
ture). We present results based on gas-phase enthalpies and
fluxes, but have also calculated interface resistances based on
the liquid phase. Moreover, we have checked that all pre-
sented interface resistances give positive definite resistance
matrices, i.e. that Eq. 44 is satisfied. Even if some of the
cross-coefficients are negative, they are in agreement with the
second law of thermodynamics.

The results presented refer to the radii defined by the
equimolar dividing interface of the total molar density. We
also calculated interface resistances with radii corresponding
to the interface of tension. This gave slightly different absolute
values of the interface resistances, but we confirmed that they
had the same curvature dependence. For the cases examined,
the curvature dependence is qualitatively independent of the
choice of dividing interface. This agrees with recent work by
Glavatskiy and Bedeaux examining bubbles with radii above
20nm. They showed that there was little difference between
the interface resistances with three choices of the dividing in-
terface31.

Resistances both for one- and two-component systems vary
continuously with the interface curvature, from negative (bub-
bles) to zero (planar interfaces) to positive (droplet) values.
For one component, also the first derivatives of the interface
resistances are continuous. This emphasizes the symmetric
and connected nature of bubbles and droplets, discussed ear-

lier33. In the two-component case, we found that only the first
derivative for the thermal interface resistance, Rqq, was con-
tinuous. The observed discontinuity of the first derivative in
the other resistances is a consequence of the fact that the com-
position in the external phase is fixed. The external phase,
and hence the external composition changes discontinuously
in (R−1

n = 0).
A common property of all figures is that the curvature

dependence of the interface resistances is closely connected
to the nature of the local resistivities. As explained in Sec.
2.3, three different local resistivity functions were considered;
one neutral (Case n), one with the peak closer to the gas-phase
(Case g), and one with the peak closer to the liquid-phase
(Case l). With freedom to choose amplitudes of the gradient
contributions, we chose kinetic gas theory as reference for
the thermal interface resistance, Rqq, at the planar interface.
The same reference was used for the mass interface resistance
of component 2, R22, in the two-component case (see Sec.
2.3 for details). Consequently, the profiles in Figs 3 and 4b
cross the vertical-axis in the same point. Even if the local
resistivity profiles give the same interface resistances for a
planar interface, they give very different predictions for small
bubbles and droplets. In Case n, interface resistances depend
only moderately on the radii of the bubbles/droplets (typically
<10%). A shift in the position of the peak in local resistivity,
however, will give significant curvature dependence. Consider
for instance Fig. 3, or Fig. 4b, where interface resistances
given by the dashed lines (Case g) are one order of magnitude
higher for the smallest bubbles than at the planar interface.

For all interface resistances, except R12 and Rq2 in the
two-component case, a shift of the peak toward the vapor-
phase or the liquid-phase has the opposite effect on curvature
dependence. Molecular dynamics simulations and experi-
ments indicate that thermal resistance of droplets, Rqq, should
decrease with smaller particles, i.e. give a better thermal
conductance12,19,20. This behavior is only exhibited by Case g
in Fig. 3, where the peak in local resistivities is shifted toward
the vapor-phase. A peak closer to the vapor-phase is actually
consistent with NEMD-simulations, see for instance Fig. 4
in11. Amazingly, square gradient theory predicts qualitatively
reasonable curvature dependence for the thermal interface
resistance of droplets, but only with a local resistivity similar
to that from NEMD-simulations. Even if curvature appears
to enhance transport of mass and energy across interfaces
of droplets, the square gradient model predicts the opposite
effect on bubbles according to the dashed lines in Fig 3. We
have not succeeded to find any simulations or experiments
which elaborate further on this. However, we believe it can
help explain why the thermal conductivity decreases with
pore size in nanoporous materials22, when the opposite effect
is observed in nanoparticle suspensions12. In the pores, the
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density is much lower than in the surrounding substance,
similar to the situation for bubbles in a liquid.

The thermal interface resistances are very similar for one
and two components (Fig. 3a and 3b), but this is not the case
for the rest of the resistances. The resistance to mass-transfer
of hexane, for instance, is different both in magnitude and
behavior (compare R22 values in Fig. 4a and 4b). While
the liquid-gas phase transition in a single-component system
is purely evaporation/condensation, the picture is much
more complicated with two components. In multicomponent
systems, also a separation of components should be expected
at the interface, meaning that components move in opposite
directions. The common property of the curvature dependence
is that the main coefficients, R11 and R22 depend on curvature
similar to the thermal interface resistance, i.e. transfer is
enhanced for droplets and diminished for bubbles at smaller
radii in Case g. The cross coefficient R12 has a different
behavior, but is of the same order of magnitude as the main
coefficients. The above discussion shows that one should not
use interface resistances calculated for single-components in
multicomponent systems.

The cross coefficients between heat and mass, Rq1 and Rq2
presented in Fig. 5, are best discussed in terms of the heats
of transfer of the interface, shown in Fig. 6. The heats of
transfer were calculated with Eq. 42, which we have divided
by the difference in partial mass enthalpies across the inter-
face. We verified that all profiles presented satisfy Eq. 43.
A first observation is that enthalpy differences across the in-
terface and heats of transfer are comparable in size, and the
heat of transfer of Component 2 is actually larger than the dif-
ference in partial mass enthalpy for Cases n and l (Fig. 6b).
In other words, the mass flux during evaporation at constant
temperature, carries an amount of heat to the interface which
is larger than the enthalpy of evaporation44. The excess heat
is carried into the next phase with the mass flux. A similar
magnitude of the heat of transfer was observed by Inzoli et al.
using NEMD-simulations13.

The coupling between heat and mass across the interface
is 7 orders of magnitude larger than in the bulk region of the
gas-phase! The large value means that all consistent modeling
of heat and mass across interfaces must take the coupling
effect into account. This is not yet generally apprehended in
the engineering society2. The figures show that the heats of
transfer across the interface depend much less on curvature
than the interface resistances. In previous work, they were
also found to be insensitive to large changes in the pressure44.

Figures and discussion in Sec. 3 show that square gradient
theory can predict how interface resistances change with size
of bubbles/droplets, given that we know the behavior of local

resistivities. NEMD-simulations have shown that the local re-
sistivities have peaks closer to the vapor-phase, and that they
are larger in the interfacial region than in the bulk phases11,42.
Apart from that, further details about functional forms of the
local resistivities are currently unknown. We thus recommend
that these effects should be quantified by NEMD-simulations
which determine the local resistivities and compare with re-
sults from square gradient theory to give insight into the local
structure of interfaces. This will in the future facilitate further
comparison with e.g. state-of-the-art NEMD-simulations of
droplet evaporation40,45.
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Fig. 2 Heat-mass cross coefficients in the single-component system (left) and thermal interface resistance coefficients in the two-component
system (right). Case n (solid line), Case g (dashed line) and Case l (dash-dot line). The stars are results from the perturbation cell method.
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Fig. 3 Thermal interface resistance coefficients. Case n (solid line), Case g (dashed line) and Case l (dash-dot line).
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Fig. 4 Interface resistance coefficients for mass. Case n (solid line), Case g (dashed line) and Case l (dash-dot line).
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Fig. 5 Interface resistance heat-mass cross coefficients. Case n (solid line), Case g (dashed line) and Case l (dash-dot line).
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Fig. 6 Heats of transfer divided by partial mass enthalpies. Case n (solid line), Case g (dashed line) and Case l (dash-dot line)
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Fig. 7 Bubble radius as function of scaled mass in the container,
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thermodynamic stability limit with changing container size (solid
line)

3.3 Transfer coefficients and thermodynamic stability

Bubbles and droplets are intrinsically unstable in atmospheric
conditions (constant temperature and pressure), however, they
can be stabilized in closed systems46. We have presented in-
terface resistances for bubbles and droplets with radii down to
2nm, where the smallest bubbles/droplets are thermodynam-
ically unstable with the given container size. In Fig. 7, the
upper branches of the dashed lines correspond to stable bub-
bles, which turn into unstable bubbles at the lower branches.
The scaled mass is the total mass in the system divided by the
mass in a container filled with the liquid-phase at coexistence
conditions. The figure shows that the minimal size of stable
bubbles/droplets depends strongly on the total container vol-
ume. Smaller container volumes enable smaller bubbles and
droplets to be conserved, where the state of the smallest pos-
sible bubble follows the solid line. Bubbles/droplets can be
stabilized down to a minimum radius located at the bottom of
the curves.

Only solutions of the square gradient model which corre-
spond to minima of the Helmholtz energy are thermodynam-
ically stable, and represent steady-state bubbles/droplets. In
theory, one could calculate interface resistances from stable
bubbles/droplets using a range of container volumes as illus-
trated by the dashed lines in Fig. 7. The analysis can be sim-
plified by realizing that the description of the bubble/droplet is
independent of container size. This is true if the surface energy
of the container wall is negligible. Bubbles/droplets which

can be stabilized in some container are identical to station-
ary solutions representing unstable bubbles/droplets in larger
containers, and it is only necessary to consider results from
one container volume. In the capillary description from CNT,
this can be proven rigorously. At equilibrium, all intensive
variables describing the bubble/droplet are in this description
uniquely determined by the temperature, radius, density and
composition in the outer phase. It is then always possible to
make the bubble/droplet thermodynamically unstable by in-
creasing the container size, and adding mass to keep density
and composition in the outer phase fixed. The bubble/droplet,
however, remains unchanged. With solutions from the square
gradient model, this can only be shown numerically. We have
thus investigated the stationary solutions of the square gra-
dient model with changing container size and indeed verified
that the properties of the bubble/droplet are independent of the
container size, if Rn ≪ Rtot. In particular, the interface resis-
tances as function of radius remained the same.

4 CONCLUSION

We have investigated how transport of heat and mass across
the interface depends on the curvature of bubbles and droplets.
Overall interface resistances were presented for both single-
component and two-component systems. They were obtained
most accurately with integral relations, based on solutions
from the equilibrium square gradient model. We verified that
the non-equilibrium square gradient model with gradients in
temperature, pressure and composition gave the same results.
The interface resistances varied continuously with the inter-
face curvature, from negative (bubbles) to zero (planar inter-
face) to positive (droplet) values. In some cases, interface
resistances changed one order of magnitude from the planar
interface to 2 nm radii bubbles/droplets. If the peak in lo-
cal resistivity was shifted toward the vapor-phase, the square
gradient model predicted the thermal interface resistances of
droplets to decrease with particle size, in accordance with re-
sults from the literature. Curvature had then the opposite effect
on bubbles than droplets, and exhibited behavior similar to
that found in nanoporous materials. The interface resistances
were found to be independent of the container size used in the
simulations. Heats of transfer of the interface were of the same
order of magnitude as the enthalpy difference across the inter-
face, and depended much less on curvature than the interface
resistances. The heat-mass coupling resistances must thus be
taken into account for accurate modeling of transport across
interfaces. We recommend future comparison with NEMD-
simulations to further quantify the curvature effects.
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A Thermophysical properties

To quantitatively capture the physical phenomena and dependencies expected
in the bulk phases, it is imperative to have thermophysical models which take
properly into account temperature, pressure and composition dependencies.
Diffusion coefficients and viscosities of pure gas and liquid components were
calculated by second order polynomials in temperature, listed in literature 47.
The Wassilijewa equation with the Mason and Saxena modification was used
to predict the thermal conductivity of gas mixtures 48, and the liquid phase
thermal conductivity was weighted with the mass fractions. Following rec-
ommendations by Taylor and Krishna 49, the gas phase diffusion coefficients
were estimated from the method of Fuller et al. in the gas phase, and the
method by Wilke and Chang in the liquid phase 48. Maxwell-Stefan diffusion
coefficients were estimated using the thermodynamic correction factors in the
gas phase (See 49 for details). The mixture diffusion coefficient in the liq-
uid was further estimated by the method by Vignes 49, based on the diffusion
coefficients in infinite dilution calculated by the Wilke-Chang correlation.

The Soret effect, which describes mass diffusion in a temperature gradient
follows a fundamentally different mechanism in the liquid-phase than in the
gas-phase. In gases, the Soret effect comes mainly from selective collision in-
teraction between the components. In the liquid, the largest effect comes from
selective attraction/repulsion between components. Kempers gave approxi-
mate expressions for thermal diffusion in liquids which he later elaborated to
include gases 50. We will here use the method by Kempers, but reformulate
the Soret effect in terms of the heats of transfer suitable for our framework:

q o
i

vi
− q o

n
vn

=

[
hres,n

vn
−

hres,i

vi

]
−

RT
[

αig,n (1− xn)

vnMw,n
−

αig,i (1− xi)

viMw,i

] (56)

Here subscript "res", refers to a residual property, i.e. the deviation from the
ideal gas-phase. The advantage of the expression above is that it is not limited
to binary mixtures, is valid for both the liquid and the gas phase, and does not
contain the derivative of the chemical potential with respect to mole fractions.
In addition to the equation above, ∑Nc

i wiq o
i = 0 due to the Gibbs-Duhems
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relation. The heats of transfer are then available for any mixture through a
system of linear equations. In particular, for the two-component system:

q o
1 =

[
hres,2

v2
−

hres,1

v1
−RT

(
αig,2x1

v2Mw,2
−

αig,1x2

v1Mw,1

)]
·
[

1
v1

+
w1

v2w2

]−1 (57)

q o
2 = −

w1q o
1

w2
(58)

Here, αig are the ideal gas thermal diffusion factors, which were set to 0.07 for
both components. The equations above give thermal diffusion factors which
are considerably larger in the liquid phase than the gas phase, as expected
from experiments.

B Numerical values
The amplitudes used for the gradient contribution to the local resistivities are
given in Tab. 2.

Table 2 The amplitudes of the gradient terms in the local resistivity
profiles, α

Case rqq rq1 r11

Single-component n 303.46 (-) (-)
Single-component g 6.7367 (-) (-)
Single-component l 1115.9 (-) (-)
Two-component n 406.1565 1.00 19.661
Two-component g 7.9787 1.00 0.27145
Two-component l 1498.585 1.00 1.00
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