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Many reactions in complex fluids, e.g. signaling cascades
in the cytoplasm of living cells, are governed by a diffusion-
driven encounter of reactants. Yet, diffusion in complex
fluids often exhibits an anomalous characteristics (’subdif-
fusion’). Since different types of subdiffusion have distinct
effects on timing and equilibria of chemical reactions, a
thorough determination of the reactants’ type of random
walk is key for a quantitative understanding of reactions
in complex fluids. Here we introduce a straightforward
and simple approach for determining the type of subdif-
fusion from single-particle tracking data. Unlike previous
approaches, our method also is sensitive to transient sub-
diffusion phenomena, e.g. obstructed diffusion below the
percolation threshold. We validate our strategy with data
from experiment and simulation.

Introduction. A wide class of reactions in complex fluids, e.g.
signaling cascades and protein complex formation in the cyto-
plasm of living cells, are governed by a diffusion-mediated en-
counter. For diffusion-limited reactions in three dimensions, a
constant reaction rate k ∼ Dr in terms of the reactants’ rela-
tive diffusion constant Dr has been derived by Smoluchowski
as early as 19161. Yet, this famous result becomes invalid
if fluids have a viscoelastic characteristics or if the accessi-
ble space in the fluid has a fractal dimension: Under these
circumstances the reactants’ random walk becomes compact,
and a proper reaction constant cannot be defined any more2.
Indeed, Smoluchowski’s construction crucially relies on the
fact that normal diffusion (Brownian motion) features a two-
dimensional random walk so that motion in three-dimensional
bulk fluids is non-compact. However, diffusion in viscoelastic
fluids or in porous media may be governed by compact ran-
dom walks and, as a consequence, the reaction coefficient k
may become time-dependent3,4.

Random walks are commonly evaluated by inspecting the
molecules’ mean square displacement (MSD). For normal
Brownian diffusion MSD ∼ Dt, whereas diffusion in vis-
coelastic media or in fractal geometries (e.g. percolation clus-
ters) typically shows a sublinear scaling, MSD ∼ Γtα (α < 1,

a Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
b Experimental Physics I, University of Bayreuth, 95440 Bayreuth, Germany
∗ Contact information for corresponding authors: juergen.koehler@uni-
bayreuth.de, matthias.weiss@uni-bayreuth.de

’subdiffusion’) with a generalized diffusion coefficient Γ. Dif-
fusion anomalies have been observed in many complex flu-
ids with a high concentration of macromolecules (’crowders’),
e.g. in living cells5–12 or in artificial fluids13–17. Defining sub-
diffusion via the MSD’s scaling, however, does not reveal the
molecules’ type of random walk that may feature distinct con-
sequences on chemical reactions.

As of yet, three general types of subdiffusive random walks
have been invoked to explain experimental observations of
subdiffusion in complex/crowded fluids. Despite a common
sublinear scaling of the MSD, they describe very different
physical scenarios with quite different effects on chemical re-
actions. Here, we only give a brief overview and refer the
reader for details to a very recent and extensive review by
Höfling and Franosch18.

The first model relies on hindering free diffusion by ran-
domly placing immobile obstacles in space (obstructed dif-
fusion, OD). If the density of obstacles approaches the per-
colation threshold, tracer particles are forced to move in a
fractal subspace which is reflected in a transient subdiffusion
over several orders of magnitude in time19. At the percolation
threshold, a single scale-free cluster of obstacles emerges, and
subdiffusion is seen on all time-scales19. In two dimensions,
the anomaly is then α ≈ 0.69, and fractal reaction kinetics are
required to adequately describe chemical reactions3,20.

The second model violates the Markovian property of
normal Brownian motion in that successive steps are anti-
correlated. This so-called fractional Brownian motion (FBM)
models a particle’s motion in viscoelastic fluids18, and reac-
tions may show significant changes due to an enhanced re-
binding of reactants4,21. Please note that FBM in general also
allows for correlated steps that lead to superdiffusion (not con-
sidered here).

The third model is based on assigning power-law distributed
waiting times to a particle between periods of free Brownian
motion (continuous time random walk, CTRW)22. If the nor-
malizable distribution of waiting times has a divergent mean
and divergent higher moments, subdiffusion can be observed
over extended time scales. The more time has elapsed since
starting an ensemble of tracers, the more particles have been
assigned extraordinary long waiting times, and as a conse-
quence more and more particles become immobilized. This
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aging effect, i.e. an increasing amount of ’frozen’ particles,
and the associated subdiffusive spreading is a property of the
ensemble. In contrast, the time-averaged MSD of a single
tracer particle shows no signs of anomalous diffusion23,24.
This discrepancy between single particles and an ensemble has
been named weak ergodicity breaking and distinct effects on
reactions are to be expected here (see, e.g.,18,25 for an intro-
duction).
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Fig. 1 (a) Representative time-averaged MSD curves [Eq. (2)] of
single trajectories of nanobeads diffusing in solutions containing
60% sucrose (circles) or 30% dextran (squares). Full red lines are
best fits of an 8th order polynomial. Fitting the MSD in the
grey-shaded region (50-500ms in accordance with our previous
evaluation 17) revealed an anomalous diffusion for dextran
(α ≈ 0.76) but not for sucrose solutions (α ≈ 1). Dashed lines
indicate the respective scaling. (b) Local diffusion anomaly [Eq. (3)]
for the same curves as determined via the polynomial fit (symbols as
before). Full lines represent the mean anomaly (averaged over 21
trajectories) for sucrose (black) and dextran (red) solutions.
Dash-dotted lines indicate the corresponding standard deviation of
the mean. After an apparent superdiffusion due to inertial and
statistical effects (cf. main text), α ≈ 1 for sucrose solutions. For
dextran solutions, however, a clear subdiffusive regime is visible
(α ≈ 0.8, grey shaded region) that converges asymptotically towards
normal diffusion.

Given these different types of subdiffusion and their dis-
tinct impact on chemical reactions, it is clear that elucidating
the type of random walk of nanometer-sized objects is key for

a quantitative understanding of reactions in crowded/complex
fluids. Several reports have touched on this issue before by
exploiting statistical features of the recorded random walk be-
yond the scaling of the MSD17,26–32. Yet, a conclusive test
that can be applied quickly to individual experimental trajec-
tories while being capable of reporting also on the nature of
transient subdiffusion phenomena has been lacking so far. In
fact, most tests even have been limited to separating CTRW-
like random walks from stochastic processes with a stationary
distribution of increments like OD or FBM.

Here, we introduce a straightforward yet decisive test for
the type of subdiffusive random walk in complex fluids from
single-particle trajectories. Validating our approach with ex-
perimental trajectories obtained for nanobeads diffusing in
complex fluids and simulations on transient subdiffusion of
the OD type, we find that our approach is particularly more
sensitive in reporting on transient subdiffusion phenomena
than previously considered methods.
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Fig. 2 (a) The Gaussianty g(τ) [Eq. (4)] fluctuates around zero for
trajectories measured in sucrose (black) and dextran fluids (red).
Hence, both data sets are due to Gaussian random walks. Symbols
refer to the representative trajectories shown in Fig. 1a, full lines are
the mean of 21 trajectories, and dash-dotted lines indicate the
corresponding standard deviation of the mean. (b) As expected from
the Gaussianity, h(τ) [Eq. (6)] is essentially constant in time (δ = 0)
for trajectories in sucrose (black) and dextran fluids (red). Symbols
and lines as before.
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Materials and Methods. Single particle tracking on flu-
orescent beads in sucrose and dextran solutions was done as
described earlier33,34. In brief, a cycling-orbit strategy35 was
used to follow the center of mass of fluorescent nanobeads
(diameter 20nm), i.e. diffusive motion of the bead was de-
tected by changes in the fluorescence amplitude and phase.
The diffusive motion was compensated by a piezo element.
This setup allowed for a spatiotemporal resolution of trajec-
tories in the 4ms/10nm range and trajectories of > 105 posi-
tions could be recorded. We would like to note that the bead is
only twofold larger than apoferritin, a cellular protein complex
that has been studied in crowded media before15. Moreover,
a cycling-orbit tracking strategy can, in principle, also be ap-
plied to smaller beads. A too rapid diffusion and bleaching,
however, may limit the number of recorded photons per time,
hence increasing the positional uncertainty.

Simulations of obstructed diffusion were performed on a
two-dimensional square lattice (2000 × 2000 sites, periodic
boundaries) using the blind ant algorithm: In each step, the
particle blindly attempts to move to one of the four next-
neighbor sites, and the move is accepted unless the site is
blocked by an obstacle. A fraction 0 ≤ ϕ ≤ 0.35 of randomly
chosen lattice sites was made inaccessible for random walkers,
hence leading to transient subdiffusion. To meet the scales of
the experiment, the lattice constant was chosen as ∆x = 10nm
and the free diffusion constant was set to D0 = 1µm2/s. Parti-
cle positions were recorded every 4ms, and trajectories of 105

positions were acquired for each particle. For each value of
ϕ = 0,0.2,0.35, 20 random obstacle configurations with a sin-
gle diffusing particle were chosen to obtain 20 trajectories for
each condition. Simulations therefore had comparable length
and time scales and similar statistics as our experimental data.
While increasing the number of trajectories certainly will en-
hance the statistics, we have refrained from doing so to have
the same statistical fluctuations as seen in the experimental
data.

Results. In order to highlight its applied nature, we outline
our test for the type of subdiffusion by directly applying it to
experimental single-particle tracking data recorded in sucrose
and dextran solutions. We have been shown previously that
these data are governed by normal and fractional Brownian
motion, respectively17,36.

In order to determine the type of subdiffusive random walk,
one first needs to separate diffusion processes with stationary
distributions of increments (e.g. OD and FBM) vs. those with
nonstationary distributions (e.g. CTRW). Given that a CTRW-
type of motion is related to an ageing process, one may employ
the recently reported emergence of a weak ergodicity break-
ing23,24 for this: For CTRW-like random walks, the ensemble-
averaged MSD shows a diffusion anomaly α < 1 whereas the
time-averaged MSD of single trajectories follows the scal-
ing of a normal Brownian motion (α = 1). The ensemble-

averaged MSD of j = 1, . . . ,M trajectories is defined as

⟨r(t)2⟩e =
1
N

M

∑
j=1

(r(t) j − r j(t = 0))2 , (1)

while the time-averaged MSD of a single trajectory with N
positions and a temporal resolution ∆t reads

⟨r(τ)2⟩t =
1

N − k

N−k

∑
i=1

(ri − ri+k)
2 . (2)

Here, ri = r(t = i∆t) and τ = k∆t. If one observes ⟨r(τ)2⟩t ∼
τα with a significant α < 1 over at least one decade, one
can hence infer that particles undergo an anomalous diffu-
sion that is not of the CTRW type. Alternative measures
like the mean-maximal excursion method28 or the so-called
p-variation method26 may be engaged as somewhat more so-
phisticated means to further support this conclusion. The lat-
ter, however, may have only limited significance for noisy
data37,38.

When evaluating the time-averaged MSD, one needs to in-
fer the anomaly degree on the time scales of interest. A
straightforward approach to reveal the local diffusion anomaly
value is given by the MSD’s logarithmic derivative:

α(τ) =
d ln(⟨r(τ)2⟩t)

d ln(τ)
. (3)

Evaluating this expression for experimental MSDs, however,
is plagued by strong numerical fluctuations. In order to avoid
these spurious features, we smoothed each experimental MSD
curve by fitting it with an eight-order polynomial. Polynomi-
als of lower order deviated significantly from the experimental
MSD at very small and very large times, whereas higher-order
polynomials did not yield a significant improvement for deter-
mining the local anomaly. Using the fit parameters, we then
calculated the analytical derivative of Eq. (3). This approach
yielded smoothly varying results for α(τ) (see representative
curves in Fig. 1a).

In agreement with our previous results on the same trajec-
tories17,36, α(τ) reported a vanishing diffusion anomaly, i.e.
α ≈ 1, for large time scales for the motion of nanobeads in
sucrose solutions (Fig. 1b). A slight superdiffusive signature
for small times is due to inertial and statistical effects: Com-
pensating for the particle’s motion by moving the piezo ele-
ment required a relaxtion to the resting state. This contributed
a non-diffusive signal to the MSD on the scale of few mil-
liseconds17. In addition, the unavoidable motion of particles
during photon acquisition, i.e. position determination, adds a
negative constant to the MSD that imitates a super-diffusive
motion on short time scales (see39 for details).

In contrast, diffusion in dextran solutions was clearly sub-
diffusive for small times as judged on basis of α(τ) (Fig. 1b).
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Fig. 3 The number of boxes with edge length ε that are visited at
least once by trajectories in sucrose (circles) and dextran solutions
(squares) show an asymptotic approach to the anticipated scaling
N(ε)∼ 1/ε2 (dashed line) for small ε. Yet, the apparent scaling
exponent varies considerably as a function of ε (highlighted in more
detail in the inset by dividing out the leading order). Thus, the
scaling of the number of distinct visited sites that enters h(τ)
depends strongly on the coarse graining of the trajectory. See main
text for more details.

For about one order of magnitude, the anomaly value was
significantly lower than unity, while α(τ) converged towards
unity for large time scales. This result is in favorable
agreement with earlier observations on subdiffusion of nano-
particles in dextran solutions6,14,15. Given that α(τ) reports
a subdiffusive characteristics in the time-averaged MSD, tra-
jectories taken in crowded dextran fluids cannot be a con-
sequence of a CTRW-like random walk. In fact, we have
shown earlier that the very same trajectories have all features
of FBM36. Thus, inspecting the time-averaged MSD indeed
yields a first test whether random walk models with stationary
or non-stationary increment distributions are to be considered.

To probe which random walk model with a stationary incre-
ment distribution might underlie single-particle tracking data,
we quantify the trajectory’s Gaussianity via

g(τ) =
2⟨r(τ)4⟩t

3⟨r(τ)2⟩2
t
−1 (4)

with the trajectory’s quartic moment

⟨r(τ)4⟩t =
1

N − k

N−k

∑
i=1

(ri − ri+k)
4 . (5)

For normal Brownian motion, and more general for any ran-
dom walk with a Gaussian statistics of increments (e.g. FBM),

(a)
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Fig. 4 (a) Anomaly α(τ) [Eq. (3)] (averaged over 20 trajectories)
for obstructed diffusion with different volume fractions of obstacles.
While for ϕ = 0 (black) and ϕ = 0.2 (red) no significant anomaly is
observed, a significant transient subdiffusion is seen for ϕ = 0.35
(blue). (b) The averaged Gaussianity g(τ) clearly depicts the
transient non-Gaussian nature of the random walk at ϕ = 0.35 (blue)
for short time scales, whereas free diffusion at ϕ = 0 (black) is
reported to be a Gaussian process. Interestingly, the Gaussianity
already reports significant deviations from a normal Brownian walk
at ϕ = 0.2 (red) while no significant subdiffusion has been detected
via α(τ). (c) Albeit the simulated OD scenarios for ϕ = 0.2 (red)
and ϕ = 0.35 (blue) have been clearly marked by the Gaussianity as
non-Gaussian (sub)diffusion processes, the scaling of h(τ) does not
significantly differ from that of normal Brownian motion at ϕ = 0
(black). Please note the same time axis for all plots.

the Gaussianity g(τ) should be strictly zero, whereas signif-
icant deviations from zero are expected for other diffusion
models18. Indeed, in line with our previous results17,36 we
observed g(τ)≈ 0 for our experimental trajectories in sucrose
and dextran solutions (Fig. 2a). This result further underlines
that subdiffusive trajectories in dextran solutions are due to
Gaussian random walks (here: FBM).
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To crosscheck the information on the type of random walk
delivered by the Gaussianity, we inspected the scaling of a
recently introduced quantity31:

h(τ) = s(τ)/⟨r(τ)2⟩t ∼ τδ . (6)

Here, s(τ) is the number of distinct sites visited within a period
τ, while the denominator is simply the time-averaged MSD.
Due to different scaling laws of s(τ) for different types of ran-
dom walks, δ = 0 was predicted for FBM, whereas δ < 0 for
OD. Indeed, our experimental data are consistent with a scal-
ing exponent δ = 0 (Fig. 2b), hence confirming the conclu-
sions drawn from the Gaussianity.

Despite the favorable agreement between both approaches,
we would like to highlight the advantages of an analysis in
terms of the Gaussianity over the scaling approach [Eq. (6)].
First of all, our approach does not require to specify and to
vary a box size for coarse graining. Briefly, for the scaling
approach coarse graining is needed for defining the number
of distinct vistited sites, s(τ), of a trajectory segment of (tem-
poral) length τ. The most straightforward approach is to su-
perimpose the trajectory with square boxes of edge length ε,
and to count the number of non-empty boxes (= distinct vis-
ited sites), N(ε). If ε is too small, then each position of the
trajectory will have its ’own’ site, whereas a too large ε masks
local features of the random walk. Both extremes are unfa-
vorable for s(τ). As a matter of fact, the quantity N(ε) is the
central quantity of a box-counting algorithm with which one
can estimate the fractal dimension d f of an object via the scal-
ing N(ε) ∼ 1/εd f . Yet, N(ε) does not show a unique scaling
for typical experimental trajectories (Fig. 3), i.e. the value of
d f depends on the choice of the box size ε. As the scaling
exponent δ in Eq. (6) depends crucially on d f

31, the choice
of ε is crucial for a proper analysis. Being aware of this, the
authors of Ref.31 therefore proposed to vary the trajectory’s
coarse graining via ε to reveal the smallest δ possible for the
trajectory, which, however, makes the analysis of experimen-
tal data considerably more laborous.

A second and more severe problem of the scaling approach
is its intrinsic insensitivity to transient subdiffusion phenom-
ena. Given that a proper determination of δ requires to deter-
mine the scaling of h(τ), δ-values are only meaningful when
being extracted/averaged over at least one order of magnitude
in time. Thus, transient and incomplete subdiffusion phe-
nomena may be missed. To highlight this sensitive point,
we have performed simulations of obstructed diffusion with
ϕ= 0, 0.2, 0.35. While ϕ= 0 represents free diffusion, ϕ= 0.2
and ϕ = 0.35 represent an OD scenario that is well below the
percolation threshold, i.e. only a weak and transient subdiffu-
sion can emerge19.

As expected, evaluation of the temporal anomaly α(τ)
[Eq. (3)] revealed no significant subdiffusion for ϕ = 0. Also
for ϕ = 0.2 no significant subdiffusion was visible, wheras a

considerable transient anomaly is seen for ϕ = 0.35 (Fig. 4a).
Evaluation of g(τ) clearly marked the free Brownian mo-
tion at ϕ = 0 as a Gaussian process whereas ϕ = 0.35 is
clearly detected as a non-Gaussian process on short time
scales (Fig. 4b). Even the random walk at ϕ = 0.2, albeit not
showing a significant subdiffusion, is highlighted as a tran-
sient non-Gaussian process. This result clearly demonstrates
the sensitivity of g(τ) for transient and even incomplete sub-
diffusion processes. In contrast, the scaling of h(τ) did not
show major changes when inreasing the obstacle fraction from
ϕ = 0 to ϕ = 0.2 or ϕ = 0.35 (Fig. 4c). This result underlines
that the scaling of h(τ) may be a good measure for asymptotic
subdiffusion processe whereas transient subdiffusion, maybe
even combined with experimental noise, may not be detected.
The Gaussianity, however, is a straightforward and sensitive
quantity that can report on transient anomalous diffusion.

As a result of the above, we propose the following three-
step protocol to uncover the anomalous random walk model
from single-particle tracking data:

1. Check if the ensemble-averaged MSD [Eq. (1)] deviates
significantly from normal diffusion. If a subdiffusive
characteristics, i.e. α < 1, is seen you can proceed with
the next step.

2. Check if α(τ) [Eq. (3)] of the time-averaged MSD
[Eq. (2)] shows subdiffusion. If a significant anomaly is
visible then particles most likely do not undergo a CTRW
and you can proceed with the next step. If α(τ) ≈ 1, a
CTRW may be the most meaningful model for the parti-
cles’ random walk.

3. Calculate the trajectory’s Gaussianity [Eq. (4)]. If g(τ)≈
0 then FBM is the most reasonable model, whereas posi-
tive values are a signature for obstructed diffusion.

Notably, for the case of mixed processes, e.g. CTRW in com-
bination with OD40 or with FBM12, a non-zero value of the
Gaussianity due to the CTRW contribution is anticipated at
least asympotically18. The contribution of OD will then be
superimposed on smaller time scales. However, a CTRW con-
tribution will already be highlighted during the second point
in the above to-do list. Given that diffusion processes with
spatially smoothly varying diffusion constants41 or spatio-
temporally changing temperature fields42 are in part reminis-
cent to a CTRW process41, it is likely that only little modifi-
cations will be needed in the above approach to also clearly
report on such processes.

In summary, we have proposed and tested here a quick and
versatile test for the type of subdiffusion that does not in-
volve complex data handling. As seen above, our approach
can even reveal transient and incomplete types of subdiffusive
random walks within a few, easy steps. We therefore suggest
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this test as a helpful toolbox especially for evaluating experi-
mental single-particle tracking data.
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cially supported by the Human Frontier Research Program.
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