PCCP

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

ARTICLE

Cite this: DOI: $10.1039 / \mathrm{x} 0 \times x 00000 \mathrm{x}$

Received 00th January 2012,
Accepted 00th January 2012

DOI: 10.1039/x0xx00000x
www.rsc.org/

Interactions between alkanes and aromatic molecules: a rotational study of pyridine - methane

Qian Gou, ${ }^{a}$ Lorenzo Spada, ${ }^{a}$ Montserrat Vallejo-López, ${ }^{a b}$ Alberto Lesarri, ${ }^{b}$ Emilio J. Cocinero, ${ }^{c}$ and Walther Caminati ${ }^{a}$ *

Abstract

The rotational spectrum of the adduct pyridine - methane shows that methane links to an aromatic molecule apparently through a $\mathrm{C}-\mathrm{H} \cdots \pi$ weak hydrogen bond. The shape and the internal dynamics behaviour of this complex are very similar to that of the van der Waals complexes involving aromatic molecules with rare gases.

Introduction

As the simplest carbon hydride, and a potent greenhouse gas, the methane $\left(\mathrm{CH}_{4}\right)$ chemistry has been an attractive subject in recent years. ${ }^{1}$ Understanding how CH_{4} interacts with the various kinds of molecules helps to figure out its role in the chemical processes in which it is involved and its effects on the atmospheric reactions.

For decades, high resolution spectroscopy, especially Fourier transform microwave (FTMW), has proved to be an ideal tool for probing experimentally the structures, energetics and dynamics of molecular systems or weakly-bound clusters in the unperturbed environments of the gas phase or a supersonic jet. The spectral investigations yield an accurate description of the intrinsic factors governing the structure and the relative magnitude of the different intermolecular interactions.

However, methane binding is elusive. Till now, only a few rotationally resolved investigations are reported on complexes of CH_{4}, with very simple molecules such as water, ${ }^{2}$ halogen hydrides, ${ }^{3} \mathrm{OCS}^{4}$ and $\mathrm{O}_{3} .{ }^{5}$ All the spectra of these complexes displayed several vibrational sublevels, due to the high symmetry of the CH_{4} subunit, and hence a large number of equivalent minima.

Pyridine (PYR) is the best-known heterocyclic aromatic molecule, used extensively in coordination ${ }^{6}$ and surface chemistry. ${ }^{7}$ For this reason many of its molecular adducts have been investigated using high resolution spectroscopy. Depending on the chemical nature of the partner species both π or σ type complexes have been observed. These interactions activate either the π system of the aromatic ring, or the non-bonding orbital (n) at the nitrogen atom. PYR-Metal (metal=Li, Ca , and Sc) complexes, produced with laservaporization, have been studied by ZEKE spectroscopy. ${ }^{8}$ It has been found that Li and Ca complexes prefer σ bonding, whereas the Sc complex favors a π mode, with binding energies of $27.0,49.1$ and $110.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively.

Plenty of information on the typology and strength of the non-bonding interactions of PYR with its partners have been obtained also by rotational spectroscopy. ${ }^{9-13}$ Interestingly, PYR is the only aromatic molecule for which, thanks to its
permanent dipole moment, the rotational spectra of all complexes with rare gases (RG, except radon) have been reported, providing experimental evidences of the magnitude and geometry of the dispersive interactions. In all complexes, a T-shape π-type structure is observed, ${ }^{9}$ even for complexes with two RG atoms, which exhibit a "double π " arrangement with one atom above and one atom below the ring. ${ }^{9 e}$, 10 The interaction energies are in the range $0.5-5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, may be weaker than weak hydrogen bonds (WHB).

Conversely, MW studies of molecular adducts of PYR with any other partners revealed always, to our knowledge, a σ-type arrangement. Four investigations are available describing this kind of interaction, including PYR complexes with simple molecules such as $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$ and SO_{3}. All of them are linked to the n orbital of PYR, through formal $\mathrm{C} \cdots \mathrm{N}$ or $\mathrm{S} \cdots \mathrm{N}$ contacts. ${ }^{11}$ In the adduct with SO_{3}, PYR acts as a Lewis base, donating its pair of electrons to the sulphur trioxide Lewis acid. The S-N bond becomes in this case a covalent bond, with unusually high bonding energy (about 120 kJ $\left.\mathrm{mol}^{-1}\right) .^{11 \mathrm{~d}}$

Complexes of PYR with freons also have a σ-type arrangement. In the case of PYR-CF4, where the two subunits are held together by a $\mathrm{CF}_{3} \cdots \mathrm{~N}$ halogen bond, the top undergoes a free rotation with respect to PYR. ${ }^{12}$ In PYR-CHF 3 , PYR$\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CH}_{2} \mathrm{~F}_{2}$ two kinds of WHBs, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$, have been found to connect the two constituent units. ${ }^{13}$ The barriers to internal rotation of the CHF_{3} and of the $\mathrm{CH}_{3} \mathrm{~F}$ groups have been determined from the $A-E$ tunnelling splittings of the rotational transitions.

Which one will be the absolute minimum conformation of the complex of PYR with CH_{4} ? The methane hydrogen atoms are much less acidic than the freon's hydrogens. Will they interact with the n or with the π electronic system? Will the high symmetry of methane still generate internal rotation splittings of the rotational transitions also in a complex so heavy as PYR- CH_{4} ? This would be the first rotational characterization of a molecular complex constituted of an alkane (the simplest one, methane) and an aromatic ring.

Experimental section

Molecular clusters were generated in a supersonic expansion, under conditions optimized for the complex formation. Details of the Fourier transform MW ${ }^{14}$ spectrometer (COBRA-type ${ }^{15}$), which covers the range $6.5-18.5 \mathrm{GHz}$, have been described previously ${ }^{16}$.

A gas mixture of ca. 5% of CH_{4} in Helium at a stagnation pressure of $\sim 0.6 \mathrm{MPa}$ was passed over a sample of pyridine (cooled to $0{ }^{\circ} \mathrm{C}$) and expanded through a solenoid valve (General Valve, Series 9, nozzle diameter 0.5 mm) into the Fabry-Pérot cavity. The spectral line positions were determined after Fourier transformation of the time-domain signal with 8 k data points, recorded with 100 ns sample intervals. Each rotational transition appears as doublets due to Doppler Effect. The line position is calculated as the arithmetic mean of the frequencies of the Doppler components. The estimated accuracy of the frequency measurements is better than 3 kHz . Lines separated by more than 7 kHz are resolvable.

Theoretical calculation

One can assume, by chemical intuition, a stable conformer of PYR-CH 4 to be based on a C-H $\cdots \pi$ or on a C-H $\cdots n$ link. Full $a b$ initio geometry optimization (MP2/6-311++G(d,p) calculations), performed by using the Gaussian03 program package ${ }^{17}$ confirmed this hypothesis. The obtained relative energies (ΔE) and spectroscopic parameters are collected in Table 1. We also calculated the zero-point corrected energies (ΔE_{0} are the relative values reported in Table1) and, in order to have a better estimation of the relative energy of the two conformers, all intermolecular binding energy values were counterpoise corrected (ΔE_{BSSE}) for basis set superposition error (BSSE). ${ }^{18}$ The vibrational frequency calculations resulted in two negative frequencies for species II, which is probably a transition state for the motion which transfers CH_{4} from one side to the opposite one of the ring. According to the obtained results, the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is predicted slightly stronger than the $\mathrm{C}-\mathrm{H} \cdots n$ one.

Table 1 MP2/6-311++G(d,p) shapes and spectroscopic parameters of the two forms predicted to be the most stable of PYR- CH_{4}. These structures are stabilized by a C-H $\cdots \pi$ (form I) or a C-H $\cdots \mathrm{N}$ (form II) weak hydrogen bond.

${ }^{a}$ Absolute energies: -287.992494 $\mathrm{E}_{\mathrm{h}},-287.858116 \mathrm{E}_{\mathrm{h}}$ and $-287.990053 \mathrm{E}_{\mathrm{h}}$ for the three cases, respectively.

Rotational spectra

Since μ_{b} is the largest dipole moment component of the π complex, we started our search in the frequency region of the most intense μ_{b}-type transitions. We could assign three transitions of the R-branch family $(J+1)_{1, \mathrm{~J}+1} \leftarrow J_{0, \mathrm{~J}}$, with $J=1$ to 3. Then, several more μ_{b}-transitions and some very weak m_{a} -
transitions have been also measured. Each transition (see, for example, the $2_{12} \leftarrow 1_{01}$ transition illustrated in Figure 1) appeared as a multiplet of lines due to the ${ }^{14} \mathrm{~N}$ quadrupolar coupling effects.

Figure 1 Recorded $2_{12} \leftarrow 1_{01}$ rotational transition of the observed conformer of PYR $-\mathrm{CH}_{4}$ showing the ${ }^{14} \mathrm{~N}$ hyperfine structure. Each component line exhibits the instrumental Doppler doubling.

The transition frequencies were fitted with Pickett's SPFIT computer program, ${ }^{19}$ according to the following Hamiltonian:

$$
\begin{equation*}
H=H_{\mathrm{R}}+H_{\mathrm{CD}}+H_{\mathrm{Q}} \tag{1}
\end{equation*}
$$

where H_{R} represents the rigid rotational parts of the Hamiltonian. The centrifugal distortion contributions (analyzed using the S reduction and I^{r} representation) ${ }^{20}$ are represented by $H_{\mathrm{CD}} . H_{\mathrm{Q}}$ is the operator associated with the ${ }^{14} \mathrm{~N}(I=1)$ quadrupolar interaction. The experimental spectroscopic parameters resulted from a non-linear least-squares fit ${ }^{17}$ and are reported in the first column of Table 2.

Table 2 Spectroscopic constants of the two measured isotopologues of PYR-CH4

	$\left[{ }^{14} \mathrm{~N}\right]$ PYR-CH	
4	$\left[{ }^{15} \mathrm{~N}\right]$ PYR-CH ${ }_{4}$	
A / MHz	$2995.7148(9)^{\mathrm{a}}$	$2961.1510(6)$
B / MHz	$1873.3363(6)$	$1872.2691(6)$
C / MHz	$1853.4941(6)$	$1838.9538(5)$
$D_{\mathrm{J}} / \mathrm{kHz}$	$5.46(1)$	$5.33(2)$
$D_{\mathrm{JK}} / \mathrm{kHz}$	$53.70(6)$	$[53.70]^{\mathrm{b}}$
$D_{\mathrm{K}} / \mathrm{kHz}$	$-56.59(8)$	$[-56.59]$
d_{1} / kHz	$-0.23(2)$	$[-0.23]$
$\chi_{\mathrm{aa}} / \mathrm{MHz}$	$3.251(5)$	-
$\chi_{\mathrm{bb}}-\chi_{\mathrm{cc}} / \mathrm{MHz}$	$-6.137(7)$	-
N^{c}	55	18
$\sigma / \mathrm{kHz}{ }^{\mathrm{d}}$	2.6	2.2

${ }^{\text {a }}$ Uncertainties (in parentheses) are expressed in units of the last digit. ${ }^{\mathrm{b}}$ Fixed to the values of the normal species. ${ }^{\text {c }}$ Number of transitions in the fit. ${ }^{\text {d }}$ Standard deviation of the fit.

The rotational spectrum of the ${ }^{15} \mathrm{~N}$ isotopologue was searched and assigned after empirical scaling of the rotational constants of the parent species. The unsplit ($I=1 / 2$) transition frequencies were fitted as described above, and the spectroscopic parameters are shown in the right column of Table 2. All experimental transitions are given as Supporting Information.

Clearly, a comparison of the experimental values of the rotational and quadrupole coupling constants (Table 2) to the theoretical values (Table 1) gives an acceptable match only for conformer I (the $a b$ initio geometries are available as

Supporting Information). The large values of D_{JK} and D_{K} indicate a rather flat potential energy function of the bending motions of methane with respect to the aromatic ring, a feature often encountered in rotational analysis of the spectra of aromatic ring with RGs. ${ }^{21}$

In previous investigations of adducts of CH_{4} with very small molecules $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{HF}, \mathrm{HCN}\right)$, many of the microwave transitions appeared as triplets, according to its three nuclear-spin modifications, denoted as A, F, and $E .^{2,3}$ In the complexes with slightly heavier molecules, such as OCS and ozone, only doublets were observed, and the splittings among the observed A and F component lines were quite smaller. ${ }^{4,5}$ For PYR-CH 4 , we observed only a single spin line for each transition. We think that for such a heavy complex, all nuclear spin components are overlapped with each other.

Further spectral searching has been dedicated to the second conformer of Table 1, but without success. Probably this form is relaxing to the most stable conformer upon supersonic expansion. ${ }^{22}$

Molecular structure

The determination of the structure of $\mathrm{PYR}-\mathrm{CH}_{4}$ was not straightforward, as the molecular cluster is considerably floppy. By combining the rotational constants of the two isotopologues, we could calculate the substitution coordinates ${ }^{23}$ of the N atom. The obtained values are shown in Table 3 in the principal axes system of the parent species. The c coordinate would have had a slightly imaginary value, but, by symmetry, we fixed it to zero to obtain the a and b coordinates of Table 3 .

Table $3 r_{s}$ coordinates (\AA) of the N atom in the principal axes system of the parent species. c has been fixed to zero by symmetry.

	a	b
Exptl.	$\pm 0.411(4)^{\text {a }}$	$\pm 1.424(1)$
Calc.	-0.441	1.427

${ }^{\text {a }}$ Uncertainties (in parentheses) are expressed in units of the last digit.

Motions of methane with respect to pyridine

Upon formation of the complex, the three translational motions of the isolated spherical top CH_{4} are replaced by three low energy vibrational modes. The low energy and large amplitude of these motions bring Coriolis coupling contributions to the moments of inertia, rendering defective the usual methods for rigid structure determinations. In consequence we used a procedure accounting for these effects successfully applied in the van der Waals complexes of PYR with Ne , Ar and Xe. ${ }^{9}$ One of the large amplitude motions can be described as the stretching between the two centres of mass (CM) of the two constituent molecules, while the remaining ones can be thought as two bending motions of CH_{4} around PYR.

a) Stretching motion and dissociation energy

The stretching motion can be, in a first approximation, isolated from the other motions. For such a kind of asymmetric top complex in which the stretching motion between the two subunits is almost parallel to the a-axis of the complex, the stretching force constant $\left(k_{\mathrm{s}}\right)$ can be roughly estimated to be $2.73 \mathrm{~N} / \mathrm{m}$, corresponding to the
harmonic stretching fundamental $v_{\mathrm{s}}=59.0 \mathrm{~cm}^{-1}$, within pseudodiatomic approximation through the equation: ${ }^{24}$
$k_{\mathrm{s}}=16 \pi^{4}\left(\mu R_{\mathrm{CM}}\right)^{2}\left[4 B^{4}+4 C^{4}-(B-C)^{2}(B+C)^{2}\right] /\left(h D_{\mathrm{J}}\right)$
where μ is the pseudo diatomic reduced mass, $R_{\mathrm{CM}}(3.664 \AA$ from $a b$ initio calculation) is the distance between the CMs of the two subunits, and B, C and D_{J} are the experimental spectroscopic parameters of Table 2.

A one-dimensional flexible model ${ }^{25}$ has been used to calculate the rotational and vibrational energy levels to adjust the values of dissociation energy E_{D} and equilibrium distance between the two CMs of the two moieties R_{e} within a Lennard-Jones type potential, in such a way to reproduce v_{s} and $(B+C)_{0}$. Figure 2 shows the LennardJones potential energy curves for PYR- CH_{4}. The values of $E_{\mathrm{D}}=$ $3.9(1) \mathrm{kJ} \mathrm{mol}^{-1}$ and $R=3.642(1) \AA$ have been obtained. The calculations have been resolved into 41 mesh points ${ }^{25}$ in the range from -2.0 to $+2.0 \AA$ with respect to the minimum of the potential energy function.

Figure 2 Lennard-Jones potential energy diagrams for the dissociation of PYR-CH4.

b) Bending motions

The planar moments of inertia are defined and related to the moments of inertia through:

$$
\begin{equation*}
M_{\mathrm{aa}}=\sum_{\mathrm{i}} m_{\mathrm{i}} a_{\mathrm{i}}^{2}=1 / 2\left(-I_{\mathrm{a}}+I_{\mathrm{b}}+I_{\mathrm{c}}\right), \text { etc. } \tag{3}
\end{equation*}
$$

They represent the mass extension along each principal axis. In going from isolated PYR to PYR- CH_{4}, the principal axes are switched as shown in Figure 3, but we consider the x, y, z directions to be almost the same for the monomer and the complex. The corresponding changes of the planar moments of inertia are listed in Table 3. The negative values of ΔM_{xx} and ΔM_{yy} are surprising at the first sight. Similar changes in going from pyrimidine to pyrimidineAr , have been interpreted as a combination of mass dispersion and vibrational Coriolis coupling associated with the two bendings. ${ }^{21}$

Figure 3 Geometry and principal axis system in PYR-CH4 and PYR. CM is the centre of mass of PYR.

In PYR- CH_{4} the problem is slightly different, because CH_{4} is not an atom and the four hydrogen atoms contribute to the $I_{\mathrm{g}}(\mathrm{g}=a, b, c)$ values. However, assuming a free rotation of CH_{4} with respect to PYR, in the $m=0$ torsional ground state, it will not contribute to the I_{a} value, while its contributions to I_{b} and I_{c} are about the same. As a consequence, the M_{bb} and M_{cc} values do not include the contributions of the four hydrogen atoms. We can apply then the same method used for pyrimidine-Ar to evaluate the force constants of the bending motions of CH_{4} with respect to PYR. The two motions are considered local harmonic oscillations, on one side of the aromatic plane, by a model that describes-notation according to the C_{s} symmetry of the complex-the A^{\prime} type mode in the $x z$ plane by the displacement X and the $A^{\prime \prime}$ type displacement in the y direction by Y,

$$
\begin{equation*}
V(X, Y)=(1 / 2)\left[k_{\mathrm{x}} Y^{2}+k_{\mathrm{y}}\left(X-X_{\mathrm{e}}\right)^{2}\right] \tag{4}
\end{equation*}
$$

where X_{e} is the displacement, within the symmetry plane, of the CM of CH_{4} from the z-axis of PYR at equilibrium. The calculation has been done within two-dimensional flexible model, resolving the range $(-2.0 \AA,+2.0 \AA)$ into 21 mesh points for each of the X and Y displacements.

Since only two experimental data (ΔM_{xx} and ΔM_{yy}) are available, only two of the three parameters $X_{\mathrm{e}}, k_{\mathrm{x}}$ and k_{y} can be estimated. Thus we assumed $k_{\mathrm{x}}=k_{\mathrm{y}}$, a condition nearly fulfilled for the van der Waals complexes with the same shape as PYR-CH4. At the meantime, $\Delta M_{z z}$ was used to estimate the z-coordinate of the CM of CH_{4}, Z_{0}. The best agreement with the experimental data was obtained for the coordinates and listed in Table 3. The result indicates that, at equilibrium position, the CM of CH_{4} is $3.544 \AA$ above the ring, and tilted about 6.0° from the CM of PYR towards the nitrogen atom.

Table 3 The values of M_{gg} of PYR and PYR- CH_{4} and $\Delta \mathrm{M}_{\mathrm{gg}}$ upon complexion, and the flexible model results corresponding to the parameters determined
(a) Experimetal and calculated data

	$M_{\mathrm{gg}}(\mathrm{u} \AA)$			$\Delta M_{\mathrm{gg}}(\mathrm{u} \AA)$	
	PYR		PYR-CH Cl_{4}		

(b) Determined parameters
$k_{\mathrm{x}}=k_{\mathrm{y}}=0.36(1) \mathrm{N} \mathrm{m}^{-1} \quad X_{\mathrm{e}}=0.375(1) \AA \quad Z_{0}=3.544(1) \AA$

Conclusions

The rotational spectrum of PYR- CH_{4} represents an unprecedented investigation of a complex of an alkane with an aromatic molecule. The obtained results point out that CH_{4} prefers to locate above the ring and link to PYR through a $\mathrm{C}-\mathrm{H} \cdots \pi$ WHB, rather than $\mathrm{C}-\mathrm{H} \cdots n$ interaction. This behaviour, typical of complexes of PYR with RGs, would suggest classifying CH_{4}, in relation to his ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. In this sense, and taking into account the dissociation energy of PYR- CH_{4}, the "rare gas" methane is very similar to Kr , as shown in Figure 4.

We report in Figure 4 the dissociation energies of the complexes of PYR with two families of partners, fluoromethanes $\left(\mathrm{CF}_{\mathrm{n}} \mathrm{H}_{4-\mathrm{n}}, n=\right.$

0 to 4) and rare gases (He to Xe). The intermediate members of the $\mathrm{CF}_{\mathrm{n}} \mathrm{H}_{4-\mathrm{n}}$ group ($n=1-3$) are linked to PYR through $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and C $\mathrm{H} \cdots \mathrm{F}$ WHBs and have higher interaction energies than the members at the extremes. $\mathrm{CF}_{4}(n=4)$ is linked through a halogen bond to the N atom, while $\mathrm{CH}_{4}(n=0)$, similarly to a rare gas displays the lowest interaction energy of the group. It is also interesting to note a sort of linearity in the dissociation energy of the complexes of RG with the increase of the atomic number: actually such a linearity was found for a plot of the dissociation $\left(E_{\mathrm{D}}\right)$ against the RG polarizabilities, as described in Ref. [9g]. Kr and CH_{4} have, indeed, very similar polarizabilities (2.448 and $2.465 \AA^{3}$, respectively), and this is plausibly the reason of the similar E_{D} values of their complexes with PYR.

Figure 4 The dissociation energies and the typologies of the complexes that the $\mathrm{CF}_{\mathrm{n}} \mathrm{H}_{4-\mathrm{n}}$ family ($\mathrm{n}=0$ to 4) and the full set of RGs form with PYR are graphically shown. The member CH_{4} behaves similarly to Kr , and it can be considered like a pseudo rare gas.

Despite the low interaction energy, ab initio calculations suggest the directionality of methane towards the π system of PYR in such a way to form a weak hydrogen bond, probably representing a limit case between dispersion and electrostatic forces. CH_{4} seems to be "one-leg" connected to the π system of PYR, and to freely rotate around it, as suggested by the rotational constants A, which is larger than the rotational constant C of isolated PYR (2995.715 against 2959.21 MHz).

It seems, in addition, that in such a large complex, a coalescing of the CH_{4} spin states takes place.

The internal dynamics in PYR-CH4 is comparable to that of the van der Waals complexes involving aromatic molecules with RGs. The effects of the CH_{4} 's large amplitude motions on the rotational spectrum have been used to obtain the equilibrium location of the CH_{4} moiety and the potential energy surface describing its dynamics.

Acknowledgements

We thank Italian MIUR (PRIN project 2010ERFKXL_001) and the University of Bologna (RFO) for financial support. Q. Gou thanks the financial support from the program of China Scholarships Council (CSC) M.V.L. and E.J.C. gratefully acknowledges the MICINN for a FPI grant and a "Ramón y Cajal" contract,
respectively. Financial support from the Spanish Ministry of Science and Innovation (CTQ2011-22923 and CTQ2012-39132), the Basque Government (Consolidated Groups, IT520-10) and UPV/EHU (UFI11/23) is gratefully acknowledged. Computational resources and laser facilities of the UPV-EHU were used in this work (SGIker and I2Basque).

Notes and references

${ }^{a}$ Dipartimento di Chimica "G. Ciamician" dell'Università, Via Selmi 2, I40126 Bologna (Italy); E-mail: walther.caminati@unibo.it.
${ }^{b}$ Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, E-47011, Valladolid, Spain.
c Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, (UPV-EHU), Apartado 644, E-48940 Bilbao, Spain.
\dagger Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
1 R. H. Crabtree, Chem. Rev., 1995, 95, 987.
2 R. D. Suenram, G. T. Fraser, F. J. Lovas, and Y. Kawashima, J. Chem. Phys., 1994, 101, 7230; L. Dore, R. C. Cohen, C. A. Schmuttenrnaer, K. L. Busarow, M. J. Elrod, J. G. Loeser, and R. J. Saykally, J. Chern. Phys., 1994, 100, 863.
3 A. C. Legon, B. P. Roberts, and A. L. Wallwork, Chem. Phys. Lett., 1990, 173, 107; A. C. Legon, and A. L. Wallwork, J. Chem. Soc. Chem. Comтип., 1989, 9, 588; Y. Ohshima, and Y. Endo, J. Chem. Phys., 1990, 93, 6256.
4 J. P. I. Hearn, and B. J. Howard, Mol. Phys., 2002, 100, 2679.
5 A. R. H. Walker, G. T. Fraser, R. D. Suenram, and F. J. Lovas, J. Chem. Phys., 2000, 113, 2139.
6 See, for example: R. Kempe, Eur. J. Inorg. Chem., 2003, 791, and ref.s therein; J. Ashmore, J. C. Green, L. H. Malcolm, M. L. Smith, C. Mehnert, and E. J. Wucherer, J. Chem. Soc. Dalton Trans., 1995, 11, 1873, and ref.s therein.
7 See, for example, S. Haq, and D. A. King, J. Phys. Chem., 1996, 100, 16957, and ref.s therein.
8 S. A. Krasnokutski, and D.-S. Yang, J. Chem. Phys., 2009, 130, 134313.

9 C. Tanjaroon, W. Jäger, J. Chem. Phys., 2007, 127, 034302; A. Maris, W. Caminati, and P. G. Favero, Chem. Commun., 1998, 2625; B. Velino, and W. Caminati, J. Mol. Spectrosc., 2008, 251, 176; T. D. Klots, T. Emilsson, R. S. Ruoff, and H. S. Gutowsky, J. Phys. Chem., 1989, 93, 1255; R. M. Spycher, D. Petitprez, F. L. Bettens, and A. Bauder, J. Phys. Chem., 1994, 98, 11863; S. Melandri, G. Maccaferri, A. Maris, A. Millemaggi, W. Caminati, and P. G. Favero, Chem. Phys. Lett., 1996, 261, 267; S. Tang, L. Evangelisti, B. Velino, and W. Caminati, J. Chem. Phys., 2008, 129, 144301

10 L. Evangelisti, L. B. Favero, B. M. Giuliano, S. Tang, S. Melandri, and W. Caminati, J. Phys. Chem., 2009, 113, 14227; S. Melandri, B. M. Giuliano, A. Maris, L. Evangelisti, B. Velino, and W. Caminati, ChemPhysChem, 2009, 10, 2503.
11 R. P. A. Bettens, and A. Bauder, J. Chem. Phys., 1995, 102, 1501; J. L. Doran, B. Hon, and K. R. Leopold, J. Mol. Struct., 2012, 1019, 191; M. S. Labarge, J.-J. Oh, K. W. Hillig II, and R. L. Kuczkowski,

Chem. Phys. Lett., 1989, 159, 559; S. W. Hunt, and K. R. Leopold, J. Phys. Chem. A, 2001, 105, 5498.
12 A. Maris, L. B. Favero, B. Velino, and W. Caminati, J. Phys. Chem. A, 2013, 117, 11289.
13 L. B. Favero, B. M. Giuliano, A. Maris, S. Melandri, P. Ottaviani, B. Velino, and W. Caminati, Chem. Eur. J., 2010, 16, 1761; L. Spada, Q. Gou, M. Vallejo-López, A. Lesarri, E. J. Cocinero, W. Caminati, Phys. Chem. Chem. Phys., in press, DOI: ; M. Vallejo-López, L. Spada, Q. Gou, A. Lesarri, E. J. Cocinero, W. Caminati, Chem. Phys. Lett., 2014, 591, 216.
14 T. J. Balle, W. H. Flygare, Rev. Sci. Instrum., 1981, 52, 33.
15 J.-U. Grabow, W. Stahl, Z. Naturforsch A., 1990, 45, 1043; b) J.-U., Grabow, doctoral thesis, Christian-Albrechts-Universität zu Kiel, Kiel (1992); c) J.-U. Grabow, W. Stahl, H. Dreizler, Rev. Sci. Instrum. 1996, 67, 4072; d) J.-U. Grabow, Habilitationsschrift, Universität Hannover, Hannover (2004); e) Program available at http://www.pci.uni-hannover.de/~lgpca/spectroscopy/ftmw
16 W. Caminati, A. Millemaggi, J. L. Alonso, A. Lesarri, J. C. Lopez, S. Mata, Chem. Phys. Lett., 2004, 392, 1.
17 Gaussian03 Revision B.01; Frisch, M. J. et al., Gaussian Inc.: Pittsburgh, PA, 2003.
18 S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.
19 M. H. Pickett, J. Mol. Spectrosc., 1991, 148, 371.
20 J. K. G. Watson, in Vibrational Spectra and structure, Vol. 6 (Ed: J. R. Durig), ELSEVIER, New York/Amsterdam, 1977, pp.1-89.
21 W. Caminati, S. Melandri, P. G. Favero, R. Meyer, Chem. Phys. Lett., 1997, 268, 393.
22 See for example: R. S. Ruoff, T. D. Klots, T. Emilson, H. S. Gutowski, J. Chem. Phys., 1990, 93, 3142.
23 J. Kraichman, Am. J. Phys., 1953, 21, 17.
24 D. J. Millen, Can. J. Chem., 1985, 63, 1477; W. G. Read, E. J. Campbell, G. Henderson, J. Chem. Phys., 1983, 78, 3501.
25 R. Meyer, J. Mol. Spectrosc., 1979, 76, 266.

