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ABSTRACT 

Proteins exist as an ensemble of conformers that are distributed on free energy landscapes 

resembling folding funnels. While the most stable conformers populate low energy basins, pro-

tein function is often carried out through low-populated conformational states that occupy high 

energy basins. Ligand binding shifts the populations of these states, changing the distribution of 

these conformers. Understanding how the equilibrium among the states is altered upon ligand 

binding, interaction with other binding partners, and/or mutations and post-translational modifi-

cations is of critical importance for explaining allosteric signaling in proteins. Here, we propose a 

statistical analysis of the chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for 

the interpretation of protein conformational equilibria following linear trajectories of NMR chemi-

cal shifts. CONCISE enables one to quantitatively measure the population shifts associated with 

ligand titrations and estimate the degree of collectiveness of the protein residues’ response to 

ligand binding, giving a concise view of the structural transitions. The combination of CONCISE 

with thermocalorimetric and kinetic data allows one to depict a protein’s approximate conforma-

tional energy landscape. We tested this method with the catalytic subunit of cAMP-dependent 

protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nu-

cleotide and pseudo-substrate binding. When complemented with chemical shift covariance 

analysis (CHESCA), this new method offers both collective response and residue-specific corre-

lations for ligand binding to proteins. 

  

Page 2 of 28Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 3

INTRODUCTION 

To perform their functions, proteins undergo conformational transitions among different states 

that are distributed in funnel-like free energy landscapes similar to the classical folding funnels1, 

2.  Allosteric effectors, such as co-factors, drugs, and other binding partners, modulate the con-

formational equilibrium by shifting the population of these conformers among different energy 

basins 3-5. Understanding how the equilibrium between these states is altered upon ligand bind-

ing is of critical importance for elucidating allosteric signaling and regulation of proteins 6.  

NMR spectroscopy is emerging as the technique of choice to map allosteric phenomena at the 

atomic level 7-9, unveiling mechanisms underlying allostery10, 11. Heteronuclear correlation exper-

iments 12 provide NMR amide “fingerprints” of proteins and protein complexes. For amide 

groups, the [1H,15N]-HSQC experiment correlates the 1H and 15N frequencies (chemical shifts); 

amide chemical shifts are sensitive probes for structural changes and are used to assess folded 

state and monitor the effects of ligand binding on protein structures13-16. Resonance chemical 

shifts reflect the weighted average of different conformer populations within the sample and are 

affected by the exchange regime between the different conformational states. Under a slow ex-

change regime in the NMR time scale (kex << ∆ω), the amide resonances display distinct peaks. 

Under intermediate exchange (kex ~ ∆ω), the resonances broaden out, while for a fast exchange 

regime (kex >> ∆ω), the resonances display narrow lines, reflecting the weighted average of the 

populations present in the sample. For ligand binding studies, it is customary to carry out titra-

tion experiments. If a protein exists in fast equilibrium between different states, and ligand bind-

ing shifts the equilibrium toward a single state, the trends of the chemical shifts upon ligand titra-

tion follow linear paths that reflect ligand dissociation constants (reviewed in 17). Similarly, if a 

protein exists in equilibrium between different states in a fast exchange regime and one were to 

promote the population of other states by mutations or posttranslational modifications, the tra-

jectories of the chemical shifts follow linear trends 17-24.   
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 4

These linear trends can be used to quantitate both the stability and functional states of pro-

teins 25. Amide chemical shift linear trends provide the basis for a quantitative method recently 

proposed by Melacini’s group to correlate long-range chemical shift changes to allosteric regula-

tion, as well as to differentiate between active and inactive states of the regulatory subunit of 

cAMP dependent Protein Kinase A 26-29. More recently, the Forman-Kay group used a similar 

approach to analyze the allosteric coupling in the cystic fibrosis transmembrane conductance 

regulator 30 and quantify the differential engagement of peptide complexes 31. Finally, chemical 

shift trajectories have been utilized to determine the affinities and the number of binding sites in 

protein ligand interactions 32.   

Inspired by this body of work, we developed a complementary analysis method (CONCISE, 

COordiNated ChemIcal Shifts bEhavior) that estimates the density of the states of a protein in 

different bound forms, providing a degree of collective response, or cooperativity, of the protein 

residues upon ligand binding. The method can be generally employed to investigate a variety of 

perturbations including mutations, post-translational modifications, and protein-protein interac-

tions. Moreover, such an approach may be very useful in cases where chemical shifts are the 

only means to gain insight into protein function, such as in molten globule proteins33. When 

combined with thermocalorimetric data, the density of populations obtained by this analysis de-

fines a free energy landscape of the protein’s ligated states. We tested this method for the con-

formational transitions of the C-subunit of the cAMP-dependent protein kinase A (PKA-C) upon 

nucleotide and pseudo-substrate binding, and constructed the free energy landscape along the 

enzymatic reaction coordinates.  

PKA-C is a ubiquitous enzyme involved in many signaling pathways, playing a fundamental 

role in the pathophysiology of several different cellular events. PKA-C has a bilobal fold, with a 

small lobe (N-lobe), comprising mostly β-sheets that harbor the nucleotide binding pocket, and a 

large lobe (C-lobe), including mostly helical segments that host the substrate binding groove34, 

35. During turnover, PKA-C is thought to interconvert between three major conformational states: 
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 5

open (apo), intermediate (nucleotide-bound), and closed (nucleotide and substrate bound)34, 35. 

While the apo form explores mainly an open conformation, with the two lobes disengaged and 

conformational dynamics uncommitted to catalysis, nucleotide binding shifts the enzyme con-

formational ensemble toward a dynamically committed state that is able to bind the substrate 

with enhanced affinity (positive cooperativity)22-24. Finally, substrate binding shifts the equilibrium 

toward a new basin, where the conformational dynamics are redistributed throughout the entire 

protein, priming it for phosphoryl transfer22. Binding of an inhibitor peptide (PKI5-25), however, 

traps the kinase in a fully closed state, quenching the conformational dynamics throughout the 

enzyme and restricting the opening and closing motions required for product release22. To map 

these equilibria, we utilized previously measured chemical shifts of the PKA-C fingerprints of the 

apo, ATP-γ-N (AMP-PNP)-bound, ATP-bound, and AMP-PNP/PKI-bound forms, and applied 

both CONCISE and the chemical shifts covariance analysis (CHESCA)26. We found that our 

method is able to distinguish between the multiple states and quantitate the density of each 

state, and, when combined with binding free energy data, define the free energy landscape of 

the kinase. While site-specific correlations among the residues are attainable through the 

CHESCA analysis26, CONCISE is able to estimate the collective response of the enzyme.    

METHODS 

Calculation of the Population Density 

In order to validate our method, we generated synthetic [1H,15N]-HSQC spectra corresponding 

to four virtual states (A, B, C, and D) similar to those obtained experimentally for PKA-C, with  

an identical number of peaks, positions, and range of chemical shift perturbations. Then, we 

simulated four different cases. In the first case (ideal, Figure 1A), we placed the chemical shifts 

of the resonances in four virtual states according to perfect linear trajectories, with equilibrium 

positions:  0 (state A), 1/3 (state B), 2/3 (state C), and 1 (state D), going from A to the D state. 

For the second case (ideal+noise, Figure 1B), we added random noise to both the nitrogen 
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(standard deviation, SD = 0.20 ppm) and proton (SD = 0.03 ppm) dimensions of the ideal spec-

trum in Figure 1A. In the third case (random, Figure 1C), the positions of the resonances were 

completely randomized, and in the fourth case (mixed random+ideal, Figure 1D), we set half of 

the peaks following linear trajectories with added random noise (with nitrogen and proton SD of 

0.10 and 0.02 ppm, respectively), while the other half of the peaks represented a random distri-

bution of the states, as in Figure 1C.  

In order to analyze the chemical shift trajectories, we utilized principal component analysis 

(PCA). This approach is similar to the one proposed by Sakurai and Goto 25, 36 and allows one to 

filter out nearest-neighbor effects and perturbations that do not reflect the shifts in the conforma-

tional equilibrium upon ligand binding (see also Melacini 27 and Forman-Kay31). We model the 

conformational equilibrium by a two-state conformational exchange, and the four states can be 

described as population weighted states. In Figure 2, we report a typical example of the PCA 

analysis filtering procedure for two selected resonances in the ideal+noise case (Figure 1B). To 

give equal weight to both proton and nitrogen chemical shift perturbations, 15N chemical shifts 

were scaled by a factor of 0.154. PCA is applied separately to each residue, and rotates the res-

idue’s resonances from the 1H, 15N plane to a new coordinate system, defined by PC1 and PC2, 

which is a linear combination of the original axes. The new axes (PC1/PC2) maximize the vari-

ance along PC1 and minimize it along PC2. As a result, a perfectly linear correlation would per-

fectly align along PC1 and show no spread along PC2, and thus we consider the PC1 projection 

as a measure of the equilibrium position as reported by each individual residue. The ratio be-

tween the SD along PC1 and that of PC2 defines the degree of linearity for each residue, which 

is used to filter out those resonances whose chemical shift changes do not report on the con-

formational equilibrium or for which the nearest-neighbor effects trump the sensitivity to the con-

formational equilibrium.  

After linearizing the trajectories for each residue, the per-residue information is averaged to-

gether into a global descriptor – the average PC score – that reports on the position of each 
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 7

state along the equilibrium. To average the PC1 projections, all PCs must be oriented in the 

same direction. Since the PCA analysis orients the trajectories of the peaks either toward the 

positive, or rotated by 180° toward negative values (Figures 2B and 2E), we imposed a com-

mon orientation for all of the trajectories, applying a 180° rotation for those trajectories in the 

opposite direction (Figures 2E and 2F). The two states that define the directionality correspond 

to the extremes (initial, A, and final, D, states) of the conformational equilibrium. The scores of 

different residues along PC1 are then normalized, dividing by the standard deviations of PC1 

(see scale on top of Figures 2B, 2C, 2E, and 2F). Once oriented and normalized, the PC1 pro-

jections of the selected subset of residues are averaged and the standard deviations computed 

(Figure 3). The average PC1 score indicates the position of each state along the equilibrium, 

while the spread reported by the standard deviation bars is a measure of the collective response 

of the selected subset of residues to ligand binding. In this context, narrow distributions are in-

dicative of a collective behavior of the protein residues reaching the ligated state, while broad 

distributions indicate the presence of uncoordinated behavior. To filter out resonances not re-

porting on conformational equilibrium, the average is performed on a reduced set of residues 

with the highest degree of linearity. We found that a SDPC1/SDPC2 ratio ≥ 3 gives a reasonable 

threshold for linearity, while at the same time ensuring a sufficient number of residues for a sta-

tistically significant sampling. The experimental error was taken into account by discarding all of 

the residues with a PC1 range below 0.05 ppm, which is analogous to the range used in the 

projection analysis method 26.  

Covariance Analysis (CHESCA) 

The CHESCA analysis of the chemical shift covariance was carried out in agreement with the 

protocol proposed by Melacini and co-workers 26. While the original CHESCA method uses the 

15N and 1H chemical shifts weighted sum (δ = wNδN + wHδH, with wN = 0.2 and wH = 1) to calculate 

the covariance matrix, we used instead the PC1 scores, which more directly report on the con-

formational equilibrium.. While our approach gives a concise view of the conformational transi-
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 8

tions, CHESCA gives a residue-specific view of the correlations among the residues in different 

protein domains 26. Therefore, we calculated the correlation coefficients between the PC1 

scores of the different residues using the following relationship: 

( )( )
( )( )2

222

jjii

jjii

ij

ssss

ssss
c

−−

−−
=  

where s indicates the normalized PC1 scores for residues i and j, and the brackets indicate 

the mean over all of the states. The correlation coefficients between residues are plotted in a 

matrix format to identify the residues with highly correlated chemical shift changes. Furthermore, 

we clustered the residues using a hierarchical clustering step as described by Selvaratnam et 

al. 26. The largest cluster of correlated residues was identified using a correlation coefficient of 

0.99 as threshold for the clustering trees. 

Experimental HSQC titration data of PKA-C 

The HSQC data used in our analysis were taken from the previous published work by Master-

son et al. 22, and all the samples were obtained under the same buffer, pH, and temperature 

conditions. A crucial element for the successful application of this method is the correct refer-

encing of the resonances in the [1H,15N]-HSQC spectra, since the chemical shifts are highly 

sensitive, even to small structural perturbations. Therefore, the corrections to the chemical shifts 

(∆δ 15Nj, ∆δ 1Hj) for a state j were calculated minimizing a distance function, Dj, defined as: 

( ) ( )∑
=

−∆++−∆+=
Nres

i

ref

i

jj

i
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i
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i

j HHHNNND
1

111151515 δδδδδδ  

where the superscript ref indicates the reference state (in our case the apo form), the sub-

script i runs over all of the N residues, and j is the state to be re-referenced.  

RESULTS 

CONCISE analysis of synthetic data 
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 9

The CONCISE calculations carried out on the synthetic data are shown in Figure 3, where the 

average position and spread of the PC1 scores for each state are displayed as bar plots and 

normal distributions. For the ideal case illustrated in the first panel of Figure 3A-B (perfect linear 

correlation), the equilibrium values for the four states were -1.34, -0.45, 0.44, and 1.35 standard 

units, which correspond to the equilibrium positions of 0, 1/3, 2/3, and 1. Since no random noise 

was added to the spectrum, there is no spread in the equilibrium positions. In contrast, the in-

troduction of random noise (Figure 3A-B, second panel) causes a slight shift of the average PC 

score, broadening the distribution by approximately one standard deviation. When a random 

distribution of the chemical shifts is used (Figure 3A-B, third panel), the B and C states are in-

distinguishable (SD -0.04 and -0.01), while states A and D are still distinguishable (SD -0.63 and 

0.68). The latter originates from the rotation of the principal components, which requires a spe-

cific peak order and the assignment of the two reference states. Therefore, if the average values 

of the two reference states differ by ~1.3 standard deviations and the broadening is greater than 

2 standard deviations, the analysis cannot be applied. Finally, the fourth panel in Figure 3A-B 

illustrates the results obtained for the mixed case, where the first half of the peaks (1-175) are 

ordered along the linear trajectory, while the second half (176-350) are randomly distributed. As 

expected, the random data introduce a broadening of the distributions, which can be eliminated 

using the filtering method described above (Figure 3C-D). While the filtering improves the accu-

racy of the average position and reduces the broadening of the distribution reported in the fourth 

panel of Figure 3, it produces no effect in the case of random chemical shift distribution report-

ed in the third panel of Figure 3.  

CHESCA analysis of synthetic data 

Figure 4 shows the calculated correlation matrices of PC1 scores for the synthetic data, with 

a threshold for displaying correlation coefficients higher than 0.9. For the ideal case, the chang-

es in chemical shifts are all strongly correlated, since the residues follow perfect linear trajecto-
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 10

ries. Upon addition of random noise (Figure 4B), the values of the correlation coefficients 

throughout the protein sequence lower substantially. Nonetheless, it is still possible to observe 

that several residues throughout the proteins are highly correlated. For the random case (Fig-

ure 4C), the degree of correlations among the different residues is much lower. However, some 

of the residues still show correlation coefficients greater than 0.9. The latter is due to a limited 

number of samples (4 states). If more states are included, these correlations will become much 

weaker or filtered out. When only half of the protein resonances have linear changes in the 

chemical shifts, (mixed case, Figure 4D) it is possible to see a higher density of correlations in 

the map for the first part of the protein, while weaker correlations are observed for the remaining 

residues. To identify the large correlation clusters, we applied a hierarchical clustering analysis 

to the data (see dendrograms in Figure S2). The largest clusters obtained from these calcula-

tions are shown in the correlation matrices of Figure 5. To select the clusters, we used a 

threshold of 0.99. For the ideal case (Figure 5A), there is only one cluster, which includes all of 

the protein’s residues. Addition of noise reduces the size of the largest cluster (Figure 5B), 

while in the random case (Figure 5C), the correlations among the residues through the protein 

are sparse, with only a handful of residues contributing to the largest correlated cluster. In the 

mixed case (Figure 5D), the method shows more dense correlations for the linear trajectories of 

the residues, while the fictitious correlations are rather sparse.  

Mapping Protein kinase A Intramolecular Allostery using CONCISE and CHESCA 

We applied CONCISE to the conformational transitions of PKA-C as mapped by [1H,15N]-

HSQC spectra for four different states of the enzyme: apo, binary (AMP-PNP bound), binary 

(ATP-bound), and ternary (AMP-PNP and PKI5-25 bound). Peak positions for the four experi-

mental data sets are shown in Figure 6A. The distributions of the residue positions in the differ-

ent states are reported in Figure 6B. The two limits of the linear trajectories are represented by 

the apo and the ternary complex, corresponding to the open and closed conformations, respec-
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tively 35. The average PC scores obtained using the full set of residues (dashed lines in Figure 

6B) are within reliable thresholds, with the two extremes of the linear relationship separated by 

2.22 standard units and with a spread of about one standard deviation. After filtering out the res-

idues characterized by low linearity and small perturbations, the results obtained with the re-

duced set (solid lines in Figure 6B) improved significantly, i.e., the distance between the two 

extremes increases and the spread is reduced to less than one standard deviation. Overall, the 

positions of the four states (-1.11, -0.50, 0.28, and 1.33) correspond to equilibrium positions of 

0, 0.25, 0.57, and 1, defining the fractional populations of the different states. The binding of the 

two different nucleotides induces two intermediate conformations: one (AMP-PNP bound) slight-

ly shifted toward the open state and the second (ATP-bound) shifted toward the closed state. 

The spread of the distribution indicates the collective behavior of the residues, since it measures 

the extent to which each residue approaches a defined state. Since the distributions of the 

chemical shifts are directly related to the populations of the different states, it is possible to 

combine this information with thermocalorimetric measurements and define a conformational 

energy landscape for PKA-C. To construct the free energy basins for the open, intermediate, 

and closed states of the kinase along the open to close reaction coordinate, we used a harmon-

ic potential underlying the Boltzmann distribution for each state: 

( )2

22
)( µ

σ
−







= s
RT

sE  

where s is the position along the average PC score in standard deviation units, and µ and σ 

are the mean and standard deviation for each distribution. Nucleotide and substrate binding 

were mapped along the “Ligand” reaction coordinate (see Figure 7), with the states uniformly 

distributed along this coordinate and widths fitted to reproduce the experimental transition states 

barriers. The transition from apo to ATPγN-bound was mapped using the dissociation constant 

Kd (39 µM) and the kon (0.7 106 to 2.8 106 M-1s-1) from ATPγN binding 24, which resulted in an 
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energy barrier ranging from 8.7 to 9.5 kcal mol-1, and a free energy difference between the two 

minima of -6.0 kcal mol-1. In addition, using the Kd for PKI binding to the ADP:PKA binary form 

(0.03 to 0.06 µM)24, we determined an upper limit (-9.9 to -10.3 kcal mol-1) for the free energy 

associated to the transition from the binary to the ternary complex. For the transition state be-

tween the binary and ternary forms, we were able to set an upper limit of about 7 kcal mol-1 

based on the following considerations: first, the transition state barrier for PKI and PLN binding 

should be comparable (Hammond’s postulate); second, the rate limiting step is associated with 

ADP release, which sets an upper limit of about 15 kcal mol-1 to S16p-PLN dissociation; and 

third, the Kd for PLN binding to ADP:PKA (10±4 µM) brackets its binding free energy between -

6.7 and -7.2 kcal mol-1. Based on these considerations, we modeled the transition state (TS) to 

be about 3 kcal mol-1. Figure 7 shows the free energy surface with three energy basins, corre-

sponding to the apo, intermediate and closed state. The shapes of the minima correspond to the 

density of the populations calculated from the chemical shifts. These results are in qualitative 

agreement with the molecular dynamics calculations22 where the ternary complex was shown to 

sample a narrow minimum in the closed conformation, while the nucleotide-bound binary form 

explored a wider range of conformations along the open/closed reaction coordinate. 

To analyze the extent of the chemical shift correlations between residues in the different part 

of the kinase, we mapped the largest cluster of correlated residues on the correlation matrix 

(Figure 8A). These clusters are indicative of the effects of the ligands on the conformational 

equilibrium of the enzyme and on the propagation of the allosteric signals throughout the struc-

ture26. We found that a large number of residues report on the open-to-close transitions of the 

enzyme. Interestingly, these correlations span the entire enzyme structure (Figure 8B), indicat-

ing a collective response of the protein to the binding events. Several residues with large chem-

ical shift changes (∆δ > 0.15 ppm, red spheres in Figure 8C) do not follow linear paths and are 

mostly localized near the ligand binding sites. For these residues it is not possible to discern the 
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perturbations associated with the opening and closing equilibrium from the electrostatic and 

structural changes induced locally by ligand binding. Within the largest correlated cluster, we 

observe that residues on both the small and large lobes respond to ligand binding in a correlat-

ed fashion (Figure 8B), and among these only a couple of residues are in direct contact with the 

nucleotide.  Within the cluster of correlated residues, we identified several that belong to loops 

that play key roles in catalysis. Notably, we observe a group of residues in the Mg2+-positioning 

loop (Arg-190, Val-191, and Gly-193), which we have previously found to allosterically coupled 

to the active site perturbations caused by myristoylation of the PKA-C N-terminus37. Other resi-

dues characterized by correlated behavior include Trp-196 (activation loop), Ile-209, and Leu-

211 (peptide positioning loop), and Glu-334 (acidic patch). Interestingly, there are also residues 

that trace the inner core of the enzyme, including Ala-40 that contributes to forming the C-spine 

38, Val-104, and Phe-100 of the C-helix/β4 loop (peripheral to the C-spine).  

DISCUSSION 

Proteins exert their function via binding of ligands or other partners. Binding of a ligand to rigid 

protein scaffolds follows a mechanism reminiscent of the classical lock-and-key 39 or induced-fit 

mechanisms 40. However, many proteins undergo conformational interconversions involving 

domains or loops, and in more extreme cases, the entire protein. For instance, signaling pro-

teins such as protein kinases are notoriously dynamic molecules 41, 42, with conformational iso-

mers distributed among high and low energy states resembling classical folding funnels 1, 2, 4. 

The extent of conformational dynamics manifested by a protein defines the shape of these free 

energy basins as well as the heights of the energy barriers between the different basins 43. Dy-

namic proteins display broad basins and low energy barriers between them, whereas more rigid 

proteins populate low energy basins and possess high energy barriers between the different 

states 44. A revised view of allostery suggests that binding events are interpretable as conforma-

tional shifts of proteins among the different energy basins 45, with ligands selecting those con-
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formers that are complementary to their structural and dynamic features, shifting the population 

of the biomacromolecules from the unligated to the more stable ligated state 46-48.  

NMR chemical shifts are atomic reporters of the conformational equilibria that the proteins un-

dergo upon ligand binding. Although the extent of the chemical shift perturbations has been rou-

tinely used to identify binding hotspots and estimate the populations of the conformers, more 

recent analyses of the chemical shift trajectories for two-state equilibria suggest that statistical 

correlations can give a more complete view of the conformational transitions of proteins and 

identify possible allosteric networks 26, 27. The latter is particularly important to rationalize the 

conformational transitions of PKA-C 49, 50, where we observed chemical shift changes inter-

spersed throughout the entire enzyme. When analyzed using the compounded 1H/15N chemical 

shifts of the enzyme fingerprint, we were able to identify contiguous paths localized in the prox-

imity of the nucleotide and ligand binding sites 24. However, in several instances we were not 

able to interpret the long-range chemical shift perturbation sparsely distributed across the entire 

enzyme. Nonetheless, many of these changes followed linear trajectories upon ligand binding 22, 

23.  

The CONCISE approach presented here enables us to filter out chemical shift changes occur-

ring in the immediate proximity of the ligand binding crevices from those that report on the con-

formational transitions, identifying the progressive conformational transitions of the enzyme from 

the apo (open), intermediate (partially closed) to the ternary complex (fully closed state) upon 

nucleotide and substrate binding. Importantly, our analysis shows that the residues involved in 

the opening and closing transitions act collectively, i.e., with a coordinated behavior upon ligand 

binding (Figure 6C). Interestingly, CONCISE discriminates between the positions of the equilib-

rium reached upon binding two nucleotides, ATP and ATPγN (AMP-PNP). ATPγN has been 

considered a non-hydrolyzable nucleotide, which mimics the effects of ATP binding. Our analy-

sis reveals that ATPγN induces a conformational state slightly more open than the correspond-
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ing ATP-bound enzyme. The density distribution of the amide resonances upon addition of 

ATPγN is shifted toward the apo state of the enzyme, with an average position for the ATPγN-

bound of ~27%; whereas the corresponding distribution of the population of the ATP-bound ki-

nase is shifted toward the closed state with an average value of ~62%. A possible explanation is 

that the geometry around the β- and γ-phosphates is crucial to define the intermediate state, and 

small changes in the geometry of the γ-phosphate may cause the enzyme to adopt a more open 

conformation. The latter suggests that ATPγN is not a perfect mimic for ATP.  

How does the kinase reach a defined conformational state? Are there preferential paths acti-

vated by ligand binding that modulate allosteric response (networks)? Are the perturbations lo-

calized or does the protein respond collectively? 

For PKA-C, we found that the major cluster of residues reporting on the opening and closing 

of the enzyme is not localized in a specific area; rather it is distributed throughout the enzyme 

across the small and large lobes.  Although it is possible that some of the missing links that 

would physically connect all correlated residues are unassigned or filtered out due to large 

nearest neighbor effects, from these data it is not possible to explain all the observed correla-

tions in terms of spatial proximity. Perhaps, the best explanation for allosteric behavior in PKA-C 

is a combination of well-defined pathways 51, 52 together with non-structure-based allosteric phe-

nomena, reflecting thermal fluctuation (local folding and unfolding) in agreement with ensemble-

based model 53, where allostery is formulated as thermodynamic coupling between protein do-

mains in the absence of physical couplings.  It should be noticed that the chemical shift analysis 

provided here gives only a partial view of signal propagation throughout the enzyme. A definite 

answer will require analysis of further isotopic probes, including those of methyl side chain 

groups, that can trace the changes in the hydrophobic residues populating the core of the ki-

nase 54. 

  CONCLUSIONS 
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In conclusion, we presented a statistical interpretation of the linear trajectories of the chemical 

shifts that gives a quantitative and concise view of the transitions associated with ligand binding. 

In the case of PKA-C, our method describes the collective behavior of the resonances through 

the structural transitions upon ligand binding, and shows that it is possible to discern between 

different nucleotides, nucleotide analogs, and competitive inhibitors in the conformational transi-

tions of the enzyme. This method is also applicable to other structural perturbations, such as 

post-translational modifications or mutations, to identify the average conformational state of a 

protein. The combination of the population densities derived from the chemical shifts with ther-

mocalorimetric and kinetic data enables the description of the free energy landscape of proteins. 

Therefore, this method gives a concise view of the way in which different ligands, such as drugs 

and peptides, can affect the conformational equilibrium and will be instrumental in the design of 

positive or negative allosteric effectors.  
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FIGURE LEGENDS 

Figure 1. Synthetic [1H,15N]-HSQC spectra mimicking possible chemical shift perturba-

tions upon ligand binding. A) ideal case (perfect linear correlations); B) ideal case with the 

addition random of noise; C) completely random behavior of the chemical shifts; D) mixed case, 

where half of the peaks follow random chemical shift trajectories and the other half follow linear 

behavior with noise added. For each spectrum, the trajectories of the chemical shifts for the four 

states (A, B, C, D) are connected with black lines. 

Figure 2. Graphical representation of the PCA of the linear chemical shift trajectories. 

PCA is applied to the chemical shifts of two residues for the ideal+noise case. Panels A and D 

show a close-up of the peaks positions in the synthetic [1H,15N]-HSQC spectra. The data pro-

jected along the two principal components are shown before (panels B and E) and after (panels 

C and F) orientation. For PC1, the top scale shows the projection normalized to one standard 

deviation. 

Figure 3. Application of the CONCISE method to four synthetic data sets represented in 

Fig. 1. A) Average PC scores versus the different states (A, B, C, and D) for all residues. The 

mean equilibrium values (circles) and standard deviations (vertical bars). B) Normal distributions 

for the residues around the mean values. C) Average PC scores versus the different states plot-

ted for the subset of residues showing linear trajectories. D) Normal distributions for the case C 

for linear residues.   

Figure 4. PCA correlations for the four synthetic states. The correlation coefficients be-

tween the PC1 scores for all residues are plotter using a scale showing only correlations higher 

than 0.9. 

Figure 5. Correlation-Matrix as part of the CHESCA analysis for four synthetic states. On 

the matrix (left panel), the largest cluster resulting from hierarchical clustering (correlation cutoff 
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of 0.99) is indicated with blue lines and mapped on the crystal structure of the kinase using blue 

spheres.  

Figure 6. CONCISE analysis applied to the kinase experimental data. A) Superposition of 

the kinase resonances of [1H,15N]-HSQC spectra for the four states with peak positions shown 

as dots of different colors connected by black lines. B) The equilibrium position analysis for 

PKA-C four states is shown as circles and vertical bars, representing averages and standard 

deviations, respectively. Dotted lines show the results obtained using all available residues, and 

solid lines refer to the reduced set of residues. C) The equilibrium positions for the reduced set 

of residues are plotted as normal distributions centered in the average and with width given by 

the standard deviation. Dotted lines display the results obtained by discarding all the residues 

for which the apo and closed states are not the two extremes; solid lines show the results ob-

tained by discarding all residues in which the states are not in following the apo-ATPγN-ATP-

closed order. 

Figure 7. PKA-C free energy landscape. The PKA-C free energy profile is shown along the 

ligand binding and along the open/closed reaction coordinates. The Apo state is shown in green 

(pdb code 1J3H), the binary form in cyan (1BKX), and the ternary complex in blue (1ATP). 

Figure 8. PKA-C Collective Behavior. A) The largest cluster of correlated residues in the 

linear data set obtained with a cutoff of 0.99 is shown as blue lines on a matrix representation. 

B) The largest correlated cluster is mapped onto the kinase structure as blue spheres. C) The 

residues that do not follow linear paths are shown as grey spheres, and in red are highlighted 

those characterized by large chemical shifts perturbations. 

  

Page 18 of 28Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 19

Fig. 1 
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Fig. 2 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7 
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Fig. 8 
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