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Influence of the Cation Size on the Second Harmonic 
Generation Response of Chiral A(VO2)2(PO4)3H2O (A = 
K+, NH4

+ and Rb+) 

 

R. Gautiera,b,*, S. Augustea, S. Cleversc, V. Duprayc, G. Coquerelc and E. Le Fura,* 

New insights on the relationships between chirality and nonlinear optical (NLO) properties are 
of interest for the future design of phases with strong Second Harmonic Generation (SHG) 
response. The structures of the new A(VO2)2(PO4)3H2O (A=K+ and Rb+) phases prepared by 
hydrothermal method were determined by single crystal X-ray diffraction. The SHG properties 
of these new chiral materials and the previously reported isostructural NH4(VO2)2(PO4)3H2O 
were measured. For an incident wavelength of 1064 nm, the SHG responses at 532 nm of Rb, 
NH4 and K analogues were respectively 2, 6 and 24 times stronger than quartz. The NLO 
properties were shown to increase strongly when the structure slightly contracts. 

 

INTRODUCTION 

Chiral materials are of interest owing to their physical 
properties such as dichroism or Second Harmonic Generation 
(SHG) activity. In the past decades, more attention has been 
focused on developing new strategies for the design of 
noncentrosymmetric (NCS) compounds with strong SHG 
response. In order to develop these strategies, one should firstly 
be able to identify the characteristics of the material which 
enhance the response.  
In the literature, different features have been reported to play a 
role in the SHG efficiency. Thus, Ye et al. showed that the 
SHG response was correlated with the alignment of polar 
anionic units.1 They calculated this alignment for different NCS 
materials and were able to predict the ones exhibiting high 
response. Then, this optimization of the alignment was a goal 
for different research groups trying to design new polar 
materials. Different strategies which enable this design were 
reported such as the use of shape units or hydrogen 
bondings.2-10 Other structural features were shown to play a role 
in the optimization of NLO properties. Thus, the dimensionality 
of the crystal structure and the polarizability of alkali metal can 
influence these properties. For example, Bera et al. showed an 
enhancement of the SHG response when increasing x in Li1-

xNaxAsS2 (Na has a higher polarizability than Li).11 In AAsSe2 
(A = Li, Na,), controlling the dimensionality is presented as a 
strategy to design better SHG materials.12 The distortion of a 
NCS structure from the CS equivalent was also shown to be 

correlated to the SHG response.13 This quantification is similar 
to the previously reported approach to evaluate the chirality 
degree of a molecule and has been successful to explain the 
strong SHG response of borate compounds.14  
In this context, it is important to note that most of the 
approaches to understand the relationships between crystal 
structure and SHG response have been focused on inorganic 
polar materials. The inorganic chiral materials have been much 
less studied and the structural parameters influencing the SHG 
response are not well understood. 
In order to provide more insights on the relationships between 
chirality and nonlinear optical (NLO) properties, we targeted 
the synthesis of new A(VO2)2(PO4)3H2O (A= alkali metal) 
isostructural of the previously reported chiral 
NH4(VO2)2(PO4)3H2O.15 These materials exhibit different 
SHG responses and serve to a better understanding of the 
structural parameters influencing the NLO properties. 
 

EXPERIMENTAL DETAILS 

Synthesis 

K(VO2)2PO43H2O and Rb(VO2)2PO43H2O crystals were 
prepared by hydrothermal method. The mixture is composed of 
1mmol V2O5, 2mmol M2CO3 (with M=K+ and Rb+), 1ml H3PO4 
85% and 4ml H2O. To prepare samples suitable for single 
crystal X-ray diffraction, the reactants were loaded in a Teflon-
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