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Rapid mechanochemical synthesis of two new Cd(II) 
based metal-organic frameworks with high removal 
efficiency of congo red 

Mohammad Yaser Masoomi,a Ali Morsalia ⃰and Peter C. Junkb 

Two new three-dimensional porous Cd(II)-based metal−organic frameworks, [Cd2(oba)2(4-
bpdb)2]n·(DMF)x (TMU-8) and [Cd(oba)(4,4'-bipy)]n·(DMF)y (TMU-9) have been synthesized 
via mechanosynthesis, by using a nonlinear dicarboxylate and linear N-donor ligands then 
characterized by single-crystal X-ray crystallography. The effect of using different N-donor 
ligands 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (4-bpdb) and 4,4ʹ-bipyridine (4,4ʹ-bipy) as 
pillars on the final structure has been studied. Also removal efficiency and order reaction 
kinetics of these MOFs in presence of congo red were investigated. 
 

 

Introduction 

Three-dimensional (3D) metal–organic frameworks (MOFs) are 
a new class of porous materials which are highly attractive 
because of their potential applications as functional materials in 
structure-dependent applications, such as gas storage and 
separation, ion exchange, sensing, catalysis, and drug 
delivery.1-6 Recently, the removal of hazardous compounds 
using MOFs as adsorbent materials has been widely expanded 
due to the remarkable characteristics of well-defined channels 
and cavities of regular size and shape.7-10 
The MOFs can be designed by choosing appropriate organic 
ligands and inorganic secondary building units (SBUs).11-15 Of 
the many ligands that have been employed for preparation of 
MOF structures, using a combination of organic aromatic 
polycarboxylate ligands and N-donor ligands can generate 
multidimensional networks and interesting topologies.16-20 V-
shaped flexible dicarboxylate ligand 4,4ʹ-oxybis(benzoic acid) 
(H2oba), has already been proven to be efficient for generation 
of MOFs especially in combination with N-donor pillars.21-23 
MOFs can be synthesized by different methods such as, 
conventional heating,24-26 solvothermal reaction,27, 28 
sonochemistry,29 microwave synthesis,30, 31 
mechanosynthesis32-37 and other methods.38, 39 Rapid 
development of MOFs necessitates rapid, economical and 
environmentally friendly approaches for their synthesis. 
Mechanosynthesis is a powerful alternative to conventional 
solution reactivity that has recently been shown to be effective 
for efficient and rapid synthesis of MOFs. Mechanochemical 
synthesis encompasses reactions conducted using mechanical 
force.40-42 Mechanochemistry takes effect by milling or grinding 
solid reactants together through different efficient 
methodologies such as liquid-assisted grinding (LAG),43, 44 ion- 
and liquid-assisted grinding (ILAG),45 film grinding46 or 
grinding–annealing.47, 48 

Usage of synthetic dyes such as azo-dyes especially in the 
textile industries and the discharge of waste material containing 
these compounds with intensive color and toxicity into the 
aquatic systems, are considered as environmental threats.49-51 
Several methods including physical, chemical and biological 
methods have been investigated for removal of dye from waste 
water. Among them, removal of dye by adsorption technologies 
is regarded as one of the most competitive methods due to high 
efficiency, economic feasibility and simplicity of operation.52-54 

In this study we synthesized two new Cd(II) based MOFs by 
choosing oba oxygen donor ligand and investigating the effect 
of N-donor ligands 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene 
(4-bpdb) and 4,4ʹ-bipyridine (4,4ʹ-bipy) as pillars. Interestingly, 
both MOFs were synthesized easily and rapidly via 
mechanosynthesis. Also, we demonstrate the capability of two 
MOFs in removal of congo red dye. 

Experimental section 

Materials and Physical Techniques  

All reagents for the synthesis and analysis were commercially 
available from Aldrich and Merck Company and used as 
received. The ligand 4-bpdb (1,4-bis(4-pyridyl)-2,3-diaza-1,3-
butadiene) was prepared by the reported method.55 Melting 
points were measured on an Electrothermal 9100 apparatus. IR 
spectra were recorded using Thermo Nicolet IR 100 FT-IR. The 
samples were characterized with a field emission scanning 
electron microscope (FE-SEM) ZEISS SIGMA VP (Germany) 
with gold coating. 
The thermal behaviour was measured with a PL-STA 1500 
apparatus with the rate of 10 ºC.min-1 in a static atmosphere of 
nitrogen. X-ray powder diffraction (XRD) measurements were 
performed using a Philips X’pert diffractometer with mono 
chromated Cu-Kα radiation. Elemental analyses were collected 
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on a CHNS Thermo Scientific Flash 2000 elemental analyzer. 
A simultaneous inductively coupled plasma-optical emission 
spectrometry (ICP-OES, Varian Vista-PRO, Springvale, 
Australia) with a radial torch coupled to a concentric nebulizer 
and Scott spray chamber and equipped with a charge-coupled 
detector (CCD) was used for ICP measurements. 
Data collection for TMU-8 was performed at 100 K on a 
ADSC Quantum 210r Synchrotron, with Silicon Double Crystal 
monochromated MoK radiation, λ = 0.71073 Å. Data 
collection for TMU-9 was performed at 100(2) K on a Bruker 
APEX II CCD area detector X-ray diffractometer with graphite-
monochromated Mo K radiation ( = 0.71073 Å). 
The unit cell contains 8 higly disordered DMF molecules, the 
contribution of the solvent was removed from overall scattering 
by using PLATON/SQUEEZE program. Density, molecular 
weight and composition are given taking solvate molecules into 
account. 
The structures were solved by direct methods and refined by 
refinement of F2 against all reflections. Structure solution and 
refinement were accomplished using SIR97, SHELXL97 and 
WinGX.56 
Synthesis of [Cd2(oba)2(4-bpdb)2]n·(DMF)x (TMU-8; where x 
varies depending on the synthetic methodology used; for 
mechanosynthesis: x = 0; for conventional heating: x = 3.5) 
Conventional heating: Single crystals of TMU-8 suitable for X-
ray diffraction were obtained by mixing Cd(NO3)2.4H2O (0.308 
g, 1 mmol), H2oba (0.254 g, 1 mmol) and 4-bpdb (0.213 g, 
1mmol) in 30 ml of DMF. This mixture was sonicated until all 
solid was uniformly dispersed (~ 3 minutes) and heated at 80 
˚C. After 72 hours, yellow crystals (0.459 g, yield 65% based 
on oba) of TMU-8 were collected. d.p. >300 °C. IR data (KBr 
pellet, ν/cm-1): 516(m), 657(m), 687(m), 783(m), 825(w), 
875(m), 1011(w), 1091(m), 1160(m), 1238(vs), 1305(w), 
1396(vs-br), 1540(vs), 1599(vs), 1672(vs), 2927(w), 3060(w) 
and 3439(w-br). Elemental analysis (%) calculated for 
[Cd2(C14O5H8)2(C12H10N4)2]·(C3NOH7)3.5: C: 53.1, H: 4.3, N: 
11.4; Found: C: 53.8, H: 4.4, N: 11.3. 
Mechanochemical synthesis: TMU-8 was also isolated after 
grinding Cd(OAc)2·2H2O (1 mmol), H2oba (1 mmol) and 4-
bpdb (1 mmol) by hand for 25 minutes. The resulting powder 
was washed with small amounts of DMF (3 ml) in order to 
remove any unreacted starting material, and then dried at 100 
°C for 24 h (yield: 80%). IR data (KBr pellet, ν/cm-1): 516(m), 
654(m), 685(m), 779(m), 816(w), 873(m), 1009(w), 1097(m), 
1157(s), 1237(vs), 1311(w), 1390(vs-br), 1540(vs), 1599(vs), 
2927(w), 3056(w) and 3425(m-br). Elemental analysis (%) 
calculated for [Cd2(C14O5H8)2(C12H10N4)2]: C: 53.9, H: 3.1, N: 
9.7; Found: C: 53.2, H: 2.8, N: 9.8. 
Synthesis of [Cd(oba)(4,4'-bipy)]n·(DMF)y (TMU-9; where y 
varies depending on the synthetic methodology used; for 
mechanosynthesis: x = 0; for conventional heating: x = 1) 
Conventional heating: Colorless crystals of TMU-9 were 
obtained using the same reaction conditions and ratios as used 
for the isolation of TMU-8, but using 4,4'-bipy instead of 4-
bpdb. Yield: 0.376 g (63% based on oba). IR data (KBr pellet, 
ν/cm-1): 501(s), 627(s), 656(m), 700(w), 785(s-br), 873(s), 

1009(w), 1088(s), 1161(s), 1240(vs), 1398(vs-br), 1545(vs), 
1599(vs), 1677(vs), 2929(w), 3058(w) and 3439(m-br). 
Elemental analysis (%) calculated for 
[Cd(C14O5H8)(C10H8N2)]·(C3NOH7)1: C: 54.2, H: 3.9, N: 7.0; 
Found: C: 53.8, H: 3.3, N: 7.3. 
Mechanochemical synthesis: TMU-9 was synthesized by 
grinding Cd(OAc)2·2H2O (1 mmol), H2oba (1 mmol) and 4,4'-
bipy (1 mmol) by hand for 20 minutes. The resulting powder 
was washed with small amounts of DMF (3 ml) in order to 
remove any unreacted reactants, and then dried at 100 °C for 24 
h (Yield: 79%). IR data (KBr pellet, ν/cm-1): 498(w), 624(m), 
654(w), 696(w), 780(m-br), 872(m), 1008(w), 1099(w), 
1157(s), 1241(vs), 1393(vs-br), 1544(s), 1598(vs), 3063(w) and 
3408(w-br). Elemental analysis (%) calculated for 
[Cd(C14O5H8)(C10H8N2)]: C: 54.9, H: 3.1, N: 5.3; Found: C: 
54.2, H: 3.4, N: 5.5. 
Evaluation of removal efficiency 
Congo red (CR) (C.I. Direct Red 28 C32H24N6O6S2·2Na) was 
chosen as a model pollutant to evaluate the adsorption capacity 
of the MOFs. An aqueous stock solution of CR was prepared by 
dissolving CR in deionized water. Aqueous solution with 
desired concentration of CR was obtained by dilution of the 
stock solution with water. Adsorption experiments of CR were 
carried out on stirred aqueous solutions in a cylindrical quartz 
UV-reactor containing about 50 mL of 50 ppm CR aqueous 
solution in presence of about 25 mg of MOFs. The suspension 
was sonicated for 5 min. Temperature of the solutions did not 
exceed 20◦C using tap water circulating in jacket of the reactor. 
Samples for analyses were taken from the reaction suspension 
at specified reaction times and immediately centrifuged at 6000 
rpm for 10 min to remove the particles and were further 
analyzed by monitoring the absorbance at 497 nm using UV–
Vis spectrophotometer (Shimadzu UV 2100). The 
concentration of dye in each sample was determined at λmax = 
497 nm, using a calibration curve. By this method, degree of 
removal (percent) of CR may be obtained in different intervals. 
The percent removal is calculated by the following equation: 
% Removal = (Ci – Ct)/Ci ×100 
where, Ci is the initial concentration of dye and Ct is the 
concentration of dye at any specified time. 
Results and discussion 
Two new three-dimensional porous Cd(II) based metal-organic 
frameworks, [Cd2(oba)2(4-bpdb)2]n·(DMF)x (TMU-8: TMU 
stands for Tarbiat Modares University) and [Cd(oba)(4,4'-
bipy)]n·(DMF)y (TMU-9) have been readily and quickly 
synthesized by mechanosynthesis (grinding by hand) of a 
mixture of Cd(OAc)2·2H2O, H2oba, and 4-bpdb or 4,4'-bipy for 
~ 25 min. The SEM images of these mechanosynthesized 
MOFs show plate like morphology (Fig. 1). Comparison 
between the simulated (derived from the single crystal 
structures of TMU-8 and TMU-9) and experimental (resulting 
from the mechanosynthesized powder) powder X-ray 
diffraction (PXRD) patterns confirm that mechanosynthesized 
TMU-8 and TMU-9 were structurally identical to TMU-8 and 
TMU-9 prepared via conventional heating (Fig. 2) (as also 
evidenced by elemental analysis). 
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along the a axis. (c) and (d) Representation of TMU-8 along b- and c-axes. The 
N-donor ligand, 4-bpdb, connects the 2D layers to yield the 3D structure of 
TMU-8. (e) Perspective view of the TMU-8 structural unit shows the pore sizes 
and DMF guest molecules accommodate in the pores. (f) Representation of the 
pores, highlighting the azine groups (in blue). Hydrogen atoms and DMF 
molecules are omitted for clarity. Color code: O: red; N: blue; C: gray and Cd: 
yellow. 

Table 1. Crystal data and structural refinement for TMU-8 and TMU-9. 

Identification code TMU-8 TMU-9 

Empirical formula C70H78Cd2N14O16 C24H16CdN2O5 

Formula weight 
1596.26 524.79 

Crystal system 
Triclinic 

Monoclinic 

Space group 
P1 

C2/c 

Unit cell dimensions 
a = 9.0720(18) Å a = 15.5064(10) Å 

 
b = 13.140(3) Å b = 11.7116(8) Å 

 
c = 30.700(6) Å c = 29.7359(19) Å 

 
α = 92.72(3)° α = 90.00° 

 
β = 90.20(3)° β = 103.6011(12)° 

 
γ = 90.01(3)° γ = 90.00° 

Cell volume, Å3 3655.5(13) 
5248.7(6) 

Z value 2 
8 

Density (calc.) (g.cm-3) 
1.450 1.328 

Absorption coefficient 
0.657 mm-1 0.864 mm-1 

F(000) 
1640 2096 

θ range for data collection 
1.66 to 27.12° 2.20 to 29.00° 

Reflections 
collected/unique 42584/14836 

[R(int) = 0.0359] 
6967/6967 [R(int) = 
0.0000] 

Max. and min. 
transmission 0.9679 and 0.8273 0.926 and 0.867 

Data/restraints/parameters 
14836/0/931 6967/0/290 

Goodness-of-fit on F2 
1.158 0.914 

Final R indices 
(I>2.00σ(I)) R1 = 0.0872, wR2 = 

0.2533 
R1 = 0.0333, wR2 = 
0.0698 

R indices (all data) R1 = 0.0953, wR2 = 
0.2594 

R1 = 0.0567, wR2 = 
0.0742 

Largest diff. Peak, hole 
2.426 and -2.272 e.Å-3 0.627 and -0.791 e.Å-3 

The structure of TMU-9 is built up from a binuclear 
cadmium(II) unit, Cd2(CO2)4N4, in which both metal centres are 
seven coordinated to five O atoms (O1, O2, 2 × O3, and O5) 
from four adjacent oba ligands and two N atoms (N1 and N2) 
from two 4,4'-bipy ligands (Fig. 5a). Similar to TMU-8, oba 
ligands adopt chelating and chelating-bridging coordination 
modes. As in TMU-8, the orientation of the non-linear (C–O–C 
= 120.2°) dicarboxylate oba ligands around the Cd2 units leads 

to the formation of 2D layers pillared by 4,4'-bipy ligands to 
yield a 3D framework (Fig. 5b). TMU-9 contains narrow 
channels running along a- and b-axes (aperture size 8.2 × 1.6 Å 
and 10.9 × 2.9 Å, respectively, taking into account the van der 
Waals radii; 27.8% void space per unit cell)57 (Fig. 5c and d). 

 
Fig. 5 Views of TMU-9, (a) Ball and stick representation of the binuclear Cd2 
unit. (b) Layers of Cd(II)-oba (in red) pillared by 4,4ʹ-bipy (in blue) in TMU-9 
along the a axis. (c) and (d) Representation of pores along a and b directions. 
Hydrogen atoms and DMF molecules are omitted for clarity. 

To examine the thermal stability of these MOFs 
thermogravimetric analyses (TGA) were carried out between 25 
and 600 °C. Thermogravimetric analysis (TGA) of TMU-8 and 
TMU-9 revealed a weight loss in the temperature range of 50-
260 °C (18.5%, expected: 18.1%) and 100−290 °C (11.2%, 
expected: 12.2%), respectively, attributed to the loss of guest 
DMF molecules (Fig. 6). TMU-8 and TMU-9 are thermally 
stable up to 260°C and 290 °C, above which they begin to 
decompose. The TGA curves of mechanosynthesized TMU-8 
and TMU-9 show a plateau in the range of 30 to 260 ºC and 30 
to 290 ºC respectively, revealing that their pore channels were 
devoid of any guest molecules (Fig. 6). Above these 
temperatures the MOFs begin to decompose. 

 
Fig. 6 Thermogravimetric profiles of TMU-8 (a) and of TMU-9 (b) isolated by 
either conventional heating or mechanosynthesis. 

Removal efficiency of these MOFs in presence of 50 ppm CR 
aqueous solution was investigated (Fig. 7). The absorption 
spectra show that the maximum percent removal of CR is 
roughly 97.3% (97.3 mg/g, 112.7 g/mol) and 92% (92 mg/g, 
48.3 g/mol) for 25 and 60 min in TMU-8 and TMU-9, 
respectively. On the other hand, there is a large change in the 
CR concentration in a shorter time with the TMU-8 MOF. This 
observation can be attributed to larger pore size and void space 
of TMU-8. 
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Table 2. Selected Bond Lengths (Å) and Angles (°) of TMU-8. 

TMU-8 
Cd1—O1 2.277(6) O1—Cd1—N1 93.8(2) O9—Cd2—N5 93.4(2) 

Cd1—O2 2.711 O6—Cd1—N1 92.9(2) O4#3—Cd2—N5 93.1(2) 

Cd1—O6 2.301(6) O1—Cd1—O2# 126.7(2) O9—Cd2—O10#4 127.4(2) 

Cd1—N1 2.313(7) O6—Cd1—O2#1 87.1(2) O4#3—Cd2—O10#4 86.4(2) 

Cd1—O2#1 2.338(7) N1—Cd1—O2#1 85.5(3) N5—Cd2—O10#4 85.4(3) 

Cd1—N4#2 2.355(7) O1—Cd1—N4#2 88.5(2) O9—Cd2—N8#5 88.9(2) 

Cd1—O7 2.493(6) O6—Cd1—N4#2 87.9(2) O4#3—Cd2—N8#5 87.9(2) 

Cd2—O9 2.279(6) N1—Cd1—N4#2 174.6(3) N5—Cd2—N8#5 174.3(3) 

Cd2—O4#3 2.299(6) O2#1—Cd1—N4#2 89.2(3) O10#4—Cd2—N8#5 89.1(3) 

Cd2—N5 2.315(7) O1—Cd1—O7 90.9(2) O9—Cd2—O5#3 90.8(2) 

Cd2—O10#4 2.327(7) O6—Cd1—O7 55.1(2) O4#3—Cd2—O5#3 55.1(2) 

Cd2—N8#5 2.348(8) N1—Cd1—O7 101.1(2) N5—Cd2—O5#3 101.1(2) 

Cd2—O5#3 2.494(6) O2#1—Cd1—O7 141.6(2) O10#4—Cd2—O5#3 141.1(2) 

Cd2—O10 2.718 N4#2—Cd1—O7 83.7(2) C8—O3—C5  119.6(7) 

O1—Cd1—O6 146.0(2) O9—Cd2—O4#3 145.9(2) C22—O8—C19  119.7(7) 

Symmetry transformations used to generate equivalent atoms for TMU-8: #1 1-x, 1-y, 1-z; #2 -1+x, 1+y, z; #3 x, y, -1+z; # 4 2-x, 1-y, -z; #5 1+x, 1+y, z; #6 x, 
y, 1+z; #7 1+x, -1+y, z; #8 -1+x, -1+y, z. 

Table 3. Selected Bond Lengths (Å) and Angles (°) of TMU-9 

TMU-9 

Cd(1)-O(3)  2.2980(18) O(3)-Cd(1)-N(2) 83.47(7) O(5)-Cd(1)-O(1) 83.34(6) 

Cd(1)-N(2)  2.310(2) O(3)-Cd(1)-O(5) 125.13(6) N(1)-Cd(1)-O(1) 87.57(7) 

Cd(1)-O(5)  2.3275(18) N(2)-Cd(1)-O(5) 97.91(7) O(3)-Cd(1)-O(2) 96.42(6) 

Cd(1)-N(1)  2.337(2) O(3)-Cd(1)-N(1) 89.14(7) N(2)-Cd(1)-O(2) 85.49(8) 

Cd(1)-O(1)  2.3784(18) N(2)-Cd(1)-N(1) 172.56(7) O(5)-Cd(1)-O(2) 138.45(6) 

Cd(1)-O(2)  2.3881(17) O(5)-Cd(1)-N(1) 87.08(7) N(1)-Cd(1)-O(2) 94.45(7) 

Cd(1)-O(3)  2.670 O(3)-Cd(1)-O(1) 151.13(6) O(1)-Cd(1)-O(2) 55.32(6) 

  
N(2)-Cd(1)-O(1) 98.45(7) C(10)-O(4)-C(13) 120.2(2) 

Symmetry transformations used to generate equivalent atoms for TMU-9: #1 -x+1,y,-z-1/2, #2 -x+3/2,-y+1/2,-z, #3 x,y+1,z, #4 x,y-1,z. 
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In order to know the kinetics of removal of CR in the solutions 
suspended on TMU-8 and TMU-9, different kinds of kinetics 
orders are attempted expressing the reaction kinetics (Fig. 7c 
and Table 4). Each correlation coefficient was calculated from 
the kinetics equation, where R0, R1 and R2 represent the 
correlation coefficients of zero, first and second order rate 
equations, respectively (Table 4). Comparison between these 
correlation coefficients shows that R1 has the best correlation 
for two MOFs. Therefore, it is suggested that the removal of 
CR in the solutions suspended on MOFs belongs to first order 
reaction kinetics. Also, K1 value for TMU-8 is higher than that 
for TMU-9 so this MOF has higher activity for removing CR. 
Toxicity of Cd released by these MOFs, which were immersed 
in water for 10 days was measured by ICP study. The 
concentrations of Cd2+ in water were 100 and 30 ppb for TMU-
8 and TMU-9, respectively. This may be attributed to release of 
unreacted metal ions that may be trapped in MOFs frameworks. 
 

 
Fig. 7 Absorption spectra of a 50 ppm CR in presence of (a) TMU-8 and (b) 
TMU-9. (c) Reaction kinetics of CR removal. 

Table 4. Kinetics equation of CR removal. 

MOFs Order(s) K1(min-1) R0 R1 R2 

TMU-8 ln (C0/C)=0.1271t-0.3981 0.1271 0.7281 0.953 0.7287 

TMU-9 ln (C0/C)= 0.0365t+0.0353 0.0365 0.8142 0.9858 0.842 

Conclusions 
Two new MOFs, [Cd2(oba)2(4-bpdb)2]n·(DMF)x (TMU-8) and 
[Cd(oba)(4,4'-bipy)]n·(DMF)y (TMU-9) were successfully 
synthesized via mechanochemical grinding of N-donor ligands 
with Cd(II) and H2oba then analysed by X-ray crystallography. 
Single-crystal X-ray data show that TMU-8 and TMU-9 
possess different structural topologies and different pore sizes. 
These two new MOFs can be synthesized easily, rapidly and in 
an environmentally friendly manner within 25 min via 
mechanosynthesis. These MOFs show high removal efficiency 
and first order reaction kinetics in presence of 50 ppm congo 
red solution. 
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