CrystEngComm

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Cocrystallization of Pyrogallol[4]arenes with 1-(2-pyridylazo)-2naphthol

Constance R. Pfeiffer, ${ }^{,}$Drew A. Fowler, ${ }^{a}$ Simon Teat, ${ }^{b}$ and Jerry L. Atwood* ${ }^{a}$
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract

Cocrystallizations of pyrogallol[4]arenes and 1-(2-pyridylazo)-2-naphthol (PAN) are investigated herein in order to determine the effect of aliphatic tail-length and solvent on crystal packing, probe orientation, and pyrogallol[4]arene bowl-shape. It is seen that solvent affects the final ratio of PAN to pyrogallol[4]arene, while aliphatic tail-length influences the crystal packing, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, and 10 overall hydrogen bonding. With an aliphatic tail-length of one carbon atom, there is an atypical bilayer structure. As the aliphatic tail-length increases, the resulting cocrystals have the characteristic bilayer structure as well as an increased number of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and decreased hydrogen bonding with the PAN molecules.

Introduction

Pyrogallol[4]arenes are a subset of the calixarene family of macrocycles. They have four aromatic groups joined together by -CHR- linkers to form a bowl-shaped molecule. Along the upperrim of the molecule are twelve hydroxyl groups and at the lower rim, where the aromatic groups join together, are four aliphatic
${ }_{20}$ tail groups of a specific length. Herein, pyrogallol[4]arenes will be abbreviated as $\operatorname{PgC}_{\mathrm{x}}$ where x is the number of carbon atoms in the tail group. The ability of the upper-rim hydroxyl groups to participate in hydrogen bonding and the flexibility of the bowl allow pyrogallol[4]arenes to exhibit diverse structural chemistry.
${ }_{25}$ The pyrogallol[4]arenes have been shown to form dimeric and hexameric assemblies along with nanotubes. ${ }^{1}$ Metal ions, such as $\mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$, and Ni^{2+}, have also been found to replace the hydroxyl hydrogen atoms at the upper rim, thereby seaming the dimeric or hexameric assemblies with metal ions. ${ }^{2}$
30 Due to their conical shape, pyrogallol[4]arenes have a cavity that is ideal for host-guest interactions. ${ }^{3}$ A variety of guests from small inorganic molecules to drug molecules to ionic liquids, have been found to insert into this cavity. ${ }^{4,5,6}$ This ability to act as a host along with its flexibility and affinity towards hydrogen ${ }_{35}$ bonding make pyrogallol[4]arenes an ideal candidate for cocrystallizations.
Fluorescent probes are worthwhile candidates for cocrystallization with pyrogallol[4]arenes. Currently, there is little information about the chemical environment inside the
${ }_{40}$ pyrogallol[4]arene cavity. Cocrystallizing pyrogallol[4]arenes with fluorescent probes may lead to useful information about the conformational limitations and guest movement with and inside the pyrogallol[4]arene cavity. ${ }^{7}$ A few fluorescent probes have been cocrystallized with pyrogallol[4]arenes, but only one study
${ }_{45}$ has been done to map the effects of the probe, solvent, and pyrogallol[4]arene aliphatic tail-length on properties of the
resulting cocrystals such as the architecture, crystal packing, probe environment, and pyrogallol[4]arene bowl-shape. ${ }^{8}$

Herein, the fluorescent probe chosen for cocrystallization with so pyrogallol[4]arenes is 1-(2-pyridylazo)-2-naphthol (PAN). PAN is a fluorescent probe that has been shown to complex with an variety of metal ions. PAN has been encapsulated in cellulose in order to detect mercury in aqueous samples. ${ }^{9}$ Further, PAN has been bound to carbon nanotubes and used to detect lead and ${ }_{55}$ palladium, and PAN has been used in organic drop microextraction for detecting rare earth elements such as lanthanum, europium, and ytterbium in organic matter. ${ }^{10,11}$ PAN has also been used to separate metals ions such as Hg^{2+} and Zn^{2+}. ${ }^{2}$
${ }_{60}$ It has clearly been demonstrated that crystal architecture is determined by intermolecular interactions. ${ }^{13}$ The aim of the research herein is to uncover the trends that arise from "finetuning" the intermolecular interactions of the pyrogallol[4]arenes cocrystallized with the PAN molecule in order to develop a better ${ }_{65}$ understanding of the such interactions (see Fig. 1).
(a)

1-(2-pyridylazo)-2-naphthol

$\mathrm{PgC}_{\mathrm{x}}$

Fig. 1 Schematic structures of (a) 1-(2-pyridylazo)-2 naphthol (PAN) and (b) pyrogallol[4]arene.

Experimental

70 All reagents and solvents were obtained commercially and were
used without further purification. $\mathrm{PgC}_{1}, \mathrm{PgC}_{2}, \mathrm{PgC}_{3}$, and $\mathrm{PgC}_{3} \mathrm{OH}$ were synthesized using a modified method previously described by Gerkensmeier et al. ${ }^{14}$

All PAN cocrystals were crystallized by the same method. In a ${ }_{5}$ given molar ratio and solvent, PAN and $\mathrm{PgC}_{\mathrm{x}}$ were dissolved and mixed together in a $1: 1$ molar ratio (1.3:1 for cocrystal 8) (see Table 1). They were then sonicated for thirty minutes and left to slowly evaporate to produce orange, prism-shaped or plateshaped crystals.

10 Table 1-Amounts of PgC_{x} and PAN used and solvent used for each cocrystal

Cocrystal	$\mathbf{P g C}_{\mathbf{x}}$	Grams of $\mathbf{P g C}_{\mathbf{x}} \mathbf{P A N}$	Solvent	Solvent Amount $(\mathbf{m L})$
1	PgC_{1}	$0.1: 0.0409$	Methanol	15
2	PgC_{1}	$0.1: 0.0409$	Ethanol	10
3	PgC_{1}	$0.1: 0.0409$	Isopropanol	15
4	PgC_{1}	$0.1: 0.0409$	Acetonitrile	20
5	PgC_{2}	$0.05: 0.0187$	Methanol	10
6	PgC_{2}	$0.05: 0.0187$	Ethanol/water	$10 / 1$
7	PgC_{2}	$0.05: 0.0187$	Acetonitrile	15
8	PgC_{3}	$1.5: 0.0692$	Methanol	10
9	PgC_{3}	$0.1: 0.0346$	Ethanol	15
10	PgC_{3}	$0.1: 0.0346$	Isopropanol	15
11	PgC_{3}	$0.05: 0.0173$	Acetonitrile	10
12	$\mathrm{PgC}_{3} \mathrm{OH}$	$0.05: 0.0318$	Methanol	15

Single crystal X-ray data for cocrystals 3, 10, and $\mathbf{1 2}$ was collected at the ALS using a Bruker Apex II CCD diffractometer 15 with synchrotron radiation, $\lambda=0.77490 \AA$. Single crystal X-ray data for cocrystal 2 was collected at 173 K on a Bruker Apex II CCD diffractometer, using a $\mathrm{CuK} \alpha$ radiation source ($1.54178 \AA$). Single crystal X-ray data for all other cocrystals was collected at 173 K on a Bruker Apex II CCD diffractometer, using a $\mathrm{MoK} \alpha$ ${ }_{20}$ radiation source ($0.71073 \AA$).

Results

Unless otherwise noted, all cocrystals are composed of hydrogen bonded, bilayer structures (see Fig. 2). Additionally, all hydrogen bonding involving the pyrogallol[4]arene involves only the ${ }_{25}$ hydroxyl groups on the upper-rim on the pyrogallol[4]arene or else is noted. Furthermore, all PAN molecules have an intramolecular hydrogen bond donated from the bridge $-\mathrm{N}-\mathrm{H}$ group to the oxygen atom.

One of the properties examined is the orientation of the PAN ${ }_{30}$ molecule. If the probe is outside the bowl of the pyrogallol[4]arene, the probe is said to be exo. When part of the

Fig. 2 Typical bilayer structure of pyrogallol[4]arenes.

35
Fig. 3 Distances across the bowl of the pyrogallol[4]arene.
probe is inside the bowl of the pyrogallol[4]arene, the probe is considered to be endo. Unless otherwise noted, the pyridine part of the PAN molecule is the part of the molecule which is located ${ }_{40}$ inside the bowl of the pyrogallol[4]arene. A second metric that is analyzed is the cross-sectional distance within the bowl of the pyrogallol[4]arene, the distance between opposing, middle carbon atoms of the upper-rim (see Fig. 3). This metric is significant because it describes the shape of the pyrogallol[4]arene bowl. A ${ }_{45}$ bowl is referred to as conical with $\mathrm{C}_{4 \mathrm{v}}$ symmetry if the crosssectional distances are equal; a bowl is referred to as pinched with $\mathrm{C}_{2 \mathrm{v}}$ symmetry if the cross-sectional distances differ by at least $0.75 \AA$.

Cocrystal 1

${ }_{50}$ The asymmetric unit of cocrystal $\mathbf{1}$ contains three PAN molecules, one PgC_{1} molecule, one methanol molecule, and one water molecule (see Fig. 4). One of the PAN molecules is endo, while the other two are exo (one aligned with the PgC_{1} molecule and the other slightly angled). The cross-sectional distances are ${ }_{55} 6.77 \AA$ and $9.40 \AA$, which means the bowl of the PgC_{1} molecule is pinched (nonsymmetrical). PgC_{1} molecules are packed in a bilayer-like structure. However, unlike a typical bilayer structure, adjacent PgC_{1} molecules are not orientated in the same direction. A group of two PgC_{1} molecules (one oriented with the

Fig. 4 Asymmetric unit of cocrystal 1,
$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{12} \cdot 3 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$. Hydrogen atoms and solvent molecules are removed for clarity.
(a)

(c)

Fig. 5 Packing of cocrystal 1 (a) one unit of PgC_{1} packing with PAN molecules removed for clarity, (b) packing of PgC_{1} with PAN molecules along the a-axis, and (c) along the c-axis.
${ }_{5}$ bowl in one direction and the second one directly underneath with the bowl oriented in the opposite direction) is rotated about 30° from the adjacent group of PgC_{1} molecules (see Fig. 5). A PAN molecule is inside the bowl of each PgC_{1} molecule, as well as on each side of the exterior of each PgC_{1} molecule. Within the 10 structure, there is a complex hydrogen bonding network. In total there are fourteen hydrogen bonds, and the hydroxyl groups of the PgC_{1} molecule participates in fourteen (1.86-2.20 \AA ($\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{A})$, 115.9-162.2 ${ }^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})$). Six of these are intermolecular hydrogen bonds while two are intermolecular hydrogen bonds 15 between hydroxyl groups of adjacent PgC_{1} molecules. There is one hydrogen bond donated from a hydroxyl group to a methanol molecule, two hydrogen bonds donated from hydroxyl groups to oxygen atoms of the PAN molecules, and three hydrogen bonds donated from hydroxyl groups to nitrogen atoms of the PAN 20 molecules on the pyridine group. Both the endo PAN molecule and the aligned exo PAN molecule have two hydrogen bonds: one hydrogen bond donated from a hydroxyl group to the nitrogen atom in the pyridine group of the PAN molecule ($1.93 \AA$ $(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 145.2^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}) ; 1.99 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 151.8^{\circ}(\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N})$), and one hydrogen bond donated from a hydroxyl group to the oxygen atom ($1.89 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 162.2^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}) ; 2.00 \AA$ $\left.(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 158.1^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$. The third PAN molecule only has one hydrogen bond; a hydrogen bond from a hydroxyl group donated to the nitrogen atom of the pyridine group ($1.99 \AA$ ($\mathrm{O}-$
$\left.{ }_{30} \mathrm{H} \cdots \mathrm{N}\right), 147.2^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{N})$). Also found throughout the structure is $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the aryl groups (centroids) of the PgC_{1} molecule and the hydrogen atoms from the pyridine group on the endo PAN molecule ($2.75 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \cdot \pi\right), 156.1^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)$; $\left.2.89 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 148.7^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$.

${ }_{35}$ Cocrystal 2

Within the asymmetric unit of cocrystal 2 there are three PAN molecules, two PgC_{1} molecules, and four ethanol molecules (see Fig. 6). Analogous to cocrystal 1, one PAN molecule is endo to each PgC_{1} bowl and the other PAN molecule is exo and is

40 oriented along the upper-rim of one of the PgC_{1} molecules. Arrangement of the exo PAN molecules differs from cocrystal 1, in that the exo PAN molecules are oriented along two opposing upper-rims of the PgC_{1} molecule. The cross-sectional distances are $6.62 \AA$ and $9.48 \AA$ for one PgC_{1} molecule and $6.62 \AA$ and
${ }_{45} 9.56 \AA$ for the second PgC_{1} molecule. Similar to cocrystal $\mathbf{1}$, the macrocycles do not pack in the typically bilayer arrangement. The pairs of macrocycles (a pair consisting of a top and bottom macrocycle) are rotated from each other at 80° (see Fig. 7). There is an extensive hydrogen bonding network in the lattice
${ }_{50}$ consisting of fifteen hydrogen bonds for the first PgC_{1} molecule and sixteen hydrogen bonds for the second PgC_{1} molecule (1.85$2.21 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 114.3-172.3^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}) ;(1.83-2.22 \AA(\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{A}), 115.0-162.8^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})$, respectively). The first PgC_{1} molecule has five intramolecular hydrogen bonds between upper-
${ }_{55}$ rim hydroxyl groups, and four intermolecular hydrogen bonds between hydroxyl groups of adjacent PgC_{1} molecules. There are also two hydrogen atoms donating to one PAN molecule: one hydrogen atom donating to the nitrogen atom of the pyridine group, and one hydrogen atom donating to the oxygen atom.
${ }_{60}$ Additionally, two hydroxyl oxygen atoms are accepting hydrogen atoms from two ethanol molecules and four hydroxyl hydrogen atoms are donating to four ethanol oxygen atoms. For the second PgC_{1} molecule, the hydrogen bonding scheme changes. There are six intramolecular hydrogen bonds and six intermolecular
${ }_{65}$ hydrogen bonds. Furthermore, there is hydrogen bonding to two separate PAN molecules each hydrogen bonding with hydroxyl hydrogen atoms donating to the nitrogen atom in the pyridine group and the oxygen atom. Unlike the first PgC_{1} molecule, the second one does not hydrogen bond with solvent molecules. Each 70 of the three PAN molecules have the same hydrogen bonding scheme, hydrogen bonding to only one PgC_{1} molecule, and participating in two hydrogen bonds and both are the hydrogen bonds discussed previously, PgC_{1} hydroxyl hydrogen atoms

Fig. 6 Asymmetric unit of cocrystal 2,
$2 \mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{12} \cdot 3 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot 4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Hydrogen atoms and solvent molecules are removed for clarity.
(a)

Fig. 7 Crystal packing of cocrystal 2 with (a) one unit of PgC_{1} molecules and PAN molecules removed for clarity and (b) packing with PAN molecules (blue).

5 donating to the nitrogen atom of the pyridine group and the oxygen atom (1.83-2.04 $\left.\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 141.5-162.8^{\circ}\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{A}\right)\right)$. In addition to the hydrogen bonding of the hydroxyl group and the PAN molecule, the ethanol molecules are participating in hydrogen bonding. Five ethanol molecules hydrogen bond to 10 each other and two PgC_{1} molecules (that do not hydrogen bonding to each other), forming a bridge between the two PgC_{1} molecules (1.92-2.04 $\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$, 133.3-171.0 ${ }^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$). As well as $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, there are also $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions throughout the cocrystal network. For the first PgC_{1} 15 molecule, two aromatic group are each $\mathrm{C}-\mathrm{H} \cdots \pi$ interacting with both a hydrogen atom on the pyridine group of an endo PAN molecule ($2.87 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 150.1^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right) ; 2.94 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)$, $\left.147.1^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)\right)$ and also with a hydrogen atom on a naphthalene group of an exo PAN molecule ($2.57 \AA(\mathrm{C}-\mathrm{H} \cdots \pi)$, $\left.20163.7^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi) ; 2.84 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 142.9^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$. Another aromatic group is $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interacting with the hydrogen atom on the tail of an adjacent PgC_{1} molecule ($2.86 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 135.0^{\circ}$ $(\mathrm{C}-\mathrm{H} \cdots \pi)$). The second PgC_{1} molecule has fewer $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions than the first molecule: one $\mathrm{C}-\mathrm{H} \cdots \pi$ from a hydrogen
${ }_{25}$ atom on an endo PAN molecule's pyridine group to an aromatic group, and one from an tertiary hydrogen atom on an adjacent PgC_{1} molecule to a centroid ($2.83 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 156.7^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)$; $2.89 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 156.7^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)$).

Cocrystal 3

Fig. 8 Asymmetric unit of cocrystal 3, $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot 3 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$. Hydrogen atoms and solvent molecules are removed for clarity.

Contained in the asymmetric unit of cocrystal 3 are two PAN molecules, one PgC_{1} molecule, and three isopropanol molecules
${ }_{35}$ (see Fig. 8). One of the PAN molecules is endo with the other PAN molecule exo and oriented along one of the upper-rims of the PgC_{1} bowl. The bowl of the PgC_{1} molecule is pinched, crosssectional distances being $6.20 \AA$ and $10.24 \AA$. Similar to cocrystals $\mathbf{1}$ and 2, cocrystal $\mathbf{3}$ is an altered bilayer structure.
${ }_{40}$ Whereas the typical bilayer structure has individual $\mathrm{PgC}_{\mathrm{x}}$ molecules forming the units, cocrystal 3 consists of two PgC_{1} molecules creating a pair that acts as a single unit. Along top of the PgC_{1} bowl there are four PAN molecules; one endo, two oriented along the upper-rim, and one adjacent to an exo PAN 45 molecule oriented around the upper-rim. They are all oriented with the pyridine groups all at the same end, but each PAN molecule is in a different direction than the one next to it. The

Fig. 9 (a) One unit of the packing motif along the a-axis and (b) along the ${ }_{50} \quad b$-axis. There is a total of four PAN molecules (blue and green). Blue PAN molecules are oriented in one direction and green PAN molecules in a second direction. (c) The packing of the PgC_{1} molecules with the PAN molecules removed for clarity. All hydrogen atoms and solvent molecules are removed for clarity.
two PAN molecules oriented with the upper-rims have the oxygen atom pointed down to the hydroxyl groups of the PgC_{1} molecule while the other two PAN molecules have the oxygen atom pointed up away from the PgC_{1} molecule's hydroxyl groups 5 (see Fig. 9). As with the previous structures, there is an extensive hydrogen bonding network. There are a total of fourteen hydrogen bonds (1.74-2.20 $\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 115.1-171.0^{\circ}(\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{A})$). Three of these are intramolecular hydrogen bonds between the hydroxyl groups. Four hydrogen bonds are ${ }_{10}$ intermolecular hydrogen bonding between hydroxyl groups of adjacent PgC_{1} molecules. There are four hydrogen bonds donated from hydroxyl hydrogen atoms to PAN molecules, two hydrogen atoms donating to oxygen atoms, and two hydrogen atoms donating to the nitrogen atom of the pyridine group. The final 15 three hydrogen bonds involve isopropanol molecules. Two hydroxyl hydrogen atoms donated to two isopropanol oxygen atoms and one hydroxyl oxygen atom accepts a hydrogen bond from a hydroxyl hydrogen atom on an isopropanol molecule. Unlike previous cocrystals, the solvent does not create a bridge 20 between PgC_{1} molecules. Besides the hydrogen bonding already discussed, the PAN molecule on the upper-rim of the PgC_{1} bowl is participating in one more hydrogen bond; the oxygen atom is accepting an hydrogen bond from a hydroxyl group of an isopropanol molecule's ($1.96 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 162.5^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$).

25
Fig. 10 Asymmetric unit of cocrystal $4, \mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$. Hydrogen atoms and solvent molecules (except for the endo solvent molecule) are removed for clarity.

Additional hydrogen bonding comes from $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions.
${ }_{30}$ There are three $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions involving the aromatic groups of the PgC_{1} : one from a hydrogen atom on a exo PAN molecule's naphthalene group ($2.81 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 149.1^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)$), and two from two hydrogen atoms on the endo PAN molecule's pyridine group $\left(2.53 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 159.6^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi) ; 2.83 \AA(\mathrm{C}-\right.$ $\left.{ }_{35} \mathrm{H} \cdots \pi\right), 119.2^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)$).

Cocrystal 4

In the asymmetric unit cell, there are two PAN molecules, one PgC_{1} molecule, and two acetonitrile molecules (see Fig. 10). One 40 of the acetonitrile molecules is endo and thus the two PAN molecules are both exo. The bowl-shape is conical with crosssectional distances of $8.45 \AA$ and $8.54 \AA$. Again, there is an

45 Fig. 11 (a) The packing of PgC_{1} with PAN molecules removed for clarity. (b) One unit of the packing motif with PAN molecules (pink and purple). Pink PAN molecules are oriented with the PAN molecule's carbonyl group pointing away from the PgC_{1} bowl and purple PAN molecules are oriented with the PAN molecule's carbonyl group pointing toward the PgC_{1} bowl. (c) View along the c-axis. Blue are PgC_{1} molecules with upper-rims facing up and green are PgC_{1} molecules with upper-rims facing down. All hydrogens are removed for clarity.
atypical bilayer structure (see Fig. 11). The PgC_{1} molecules are stacked inside each other in the same direction to create columns.
These columns are arranged in a line in which there is a column of PgC_{1} molecules all oriented with the upper-rims facing up,
5 then next to it is a column of PgC_{1} molecules all oriented with the carbon tail groups facing up, and then the pattern repeats with a column PgC_{1} molecules all oriented with the upper-rims facing up. To the right and the left of the columns are rows of probe molecules. Each PgC_{1} molecule in the column has four units
10 surrounding it, two on the adjacent to one of the PgC_{1} molecule's aromatic group and two an adjacent aromatic group. Each unit

Fig. 12 Asymmetric unit of cocrystal 5, $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{CH}_{3} \mathrm{OH}$. Hydrogen atoms and solvent molecules are removed for clarity.
consisting of two PAN molecules that are facing opposite directions (one has the carbonyl group pointed towards the PgC_{1} molecule and the second has the carbonyl group pointed away 20 from the PgC_{1} molecule). One unit has the plane containing the PAN molecule parallel to the plane containing both crosssectional distances and the second unit has the plane containing the PAN molecule perpendicular to the plane containing both cross-sectional distances. There are eleven hydrogen bonds in
25 which the hydroxyl groups of the PgC_{1} molecule are participating $\left(1.84-2.18 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 143.6-178.9^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})\right)$. Four hydrogen bonds are intramolecular bonds between the hydroxyl groups on the upper-rim, two hydrogen bonds are intermolecular bonds, one hydrogen bond is donated from the hydroxyl group to an ${ }_{30}$ acetonitrile molecule, two hydrogen bonds are donated from the hydroxyl groups to nitrogen atom in the pyridine group of two PAN molecules, and two hydrogen bonds are donated from the hydroxyl groups to oxygen atoms on two PAN molecules. The two PAN molecules have the same hydrogen bonding scheme: ${ }_{35}$ one hydrogen bond donated from a PgC_{1} hydroxyl group to the nitrogen atom on the pyridine group $\left(1.89 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 155.4^{\circ}\right.$ $\left.(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}) ; 1.98 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 143.6^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{N})\right)$, and one
hydrogen bond donated from a PgC_{1} hydroxyl group to the oxygen atom ($2.01 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 161.0^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}) ; 2.18 \AA(\mathrm{O}-$ $\left.{ }_{40} \mathrm{H} \cdots \mathrm{O}\right), 160.1^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$). Three $\mathrm{C}-\mathrm{H} \cdots \pi$ bonds are also present between the centroids of the PgC_{1} molecule and hydrogen atoms on the endo acetonitrile $\left(2.72-3.04 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 113.4-165.0^{\circ}\right.$ (C-H $\cdots \pi)$).

Cocrystal 5

${ }_{45}$ Within the asymmetric unit cell of cocrystal 5 there are two PAN molecules, one PgC_{2} molecule, and one methanol molecule (see Fig. 12). One of the PAN molecules is endo and the other is exo and oriented along one of the PgC_{2} molecule's upper-rim. Crosssectional distances for cocrystal 5 are $6.69 \AA$ and $9.62 \AA$. The
${ }_{50}$ hydroxyl groups of the PgC_{2} molecule are involved in thirteen hydrogen bonds (1.85-2.15 $\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})$, 132.6-163.1 ${ }^{\circ}$ ($\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{A})$): four intramolecular hydrogen bonds among the upperrim hydroxyl groups, four intermolecular hydrogen bonds to hydroxyl groups of adjacent PgC_{2} molecules, one hydrogen bond
55 donated from a hydroxyl group to a methanol, two hydrogen bonds donated from the hydroxyl groups to the oxygen atom on PAN molecules, one hydrogen bond donated from a hydroxylgroup to a nitrogen atom on the bridge of a PAN molecule, and one hydrogen bond donated from a hydrogen atom
${ }_{60}$ on a PAN molecule to a PgC_{2} hydroxyl group. Each PAN molecule is participating in two hydrogen bonds. They both are have one intermolecular hydrogen bond donated from a PgC_{2} hydroxyl group to the PAN oxygen atom ($1.88 \AA\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}\right)$, $\left.154.4^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}) ; 1.93 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 163.1^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$. The ${ }_{65}$ remaining hydrogen bond for the endo

PAN molecule is donated from a hydrogen atom from the pyridine group to a hydroxyl group ($1.85 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 156.8^{\circ}$ $(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$). The last hydrogen bond is from a hydroxyl group on an exo PAN molecule's donating to the nitrogen atom on the

Fig. 13 Asymmetric unit of cocrystal 6, $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Hydrogen atoms and solvent molecules are removed for clarity.

Fig. 14 Types of hydrogen bonding found in cocrystal 6. Intramolecular hydrogen bonding (dashed green bonds), intermolecular hydrogen bonding (dashed pink bonds), hydrogen bonding with solvent (dashed blue bonds), and hydrogen bonding with a PAN molecule (dashed yellow bond). All hydrogen atoms (unless necessary) are removed for clarity.
${ }_{5}$ PAN's pyridine group ($2.20 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 132.6^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$). In addition to the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, there are three C $\mathrm{H}^{\cdots} \pi$ interactions: two involving the PgC_{2} centroids and hydrogen atoms on the pyridine aromatic ring of an endo PAN's ($2.77 \AA$ $(\mathrm{C}-\mathrm{H} \cdots \pi), 151.0^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi) ;\left(2.97 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 101.1^{\circ}(\mathrm{C}-\right.$ $\mathrm{H} \cdots \pi)$), and one between the exo PAN's pyridine centroid and an aliphatic tail hydrogen atom ($2.84 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 148.8^{\circ}(\mathrm{C}-$ $\mathrm{H} \cdots \pi)$).

Cocrystal 6

The asymmetric unit of cocrystal 6 contains two PAN molecules
15 (one endo and one exo), one PgC_{2} molecule, and one water molecule (see Fig. 13). One of the aliphatic tails of the PgC_{2} molecule is disordered over two positions which are modeled at 87% and 13% occupancies. The bowl of the PgC_{2} molecule is pinched with cross-sectional distances of $6.71 \AA$ and $9.59 \AA$.
${ }_{20}$ There are sixteen hydrogen bonds that the PgC_{2} molecule is involved in (1.81-2.81 $\left.\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 132.3-168.6^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})\right)$ (see Fig. 14). Of the sixteen hydrogen bonds, four are intramolecular hydrogen bonds between the upper-rim hydroxyl groups, two are hydrogen bonds donated to hydroxyl groups of adjacent PgC_{2}
${ }_{25}$ molecules, two are hydrogen bonds donated from hydroxyl groups of adjacent PgC_{2} molecules, one is a hydrogen bond donated to a PAN molecule's nitrogen in the pyridine group, one is a hydrogen bond donated to a nitrogen atom on the bridge of the PAN molecule, two are hydrogen bonds donated to a PAN ${ }_{30}$ molecule's oxygen atom, one is a hydrogen bond donated from a hydrogen on the pyridine group of the PAN molecule, one is a hydrogen bond donated to an oxygen atom of a water molecule, and two are hydrogen bonds donated from the hydrogen atoms of
the water molecules. Due to the nature of the hydrogen bonding, ${ }_{35}$ the water molecules act as bridges between PgC_{2} molecules. The two PAN molecules have different hydrogen bonding schemes. Both PAN molecules have intermolecular hydrogen bonding with a hydroxyl hydrogen atom of the PgC_{2} molecule donating to the oxygen atoms of the PAN molecules ($1.85 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 162.5^{\circ}$ $\left.40(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}) ; 1.86 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 154.9^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$. In addition to these two hydrogen bonds, one of the PAN molecules also has a hydrogen bond donated from a PgC_{2} hydroxyl group to the nitrogen atom in the pyridine group of the PAN molecule ($2.15 \AA$ $(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 132.3^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{N})$). The second PAN molecule has two ${ }_{45}$ more hydrogen bonds: one hydrogen bond donated from a hydroxyl group of a PgC_{2} molecule to the bridge nitrogen atom of the PAN molecule ($2.21 \AA\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{N}\right), 138.9^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{N})$) and one hydrogen bond donated from a hydrogen on the pyridine group of the PAN molecule to the hydroxyl group of the PgC_{2} molecule ${ }_{50}\left(1.81 \AA(\mathrm{C}-\mathrm{H} \cdots \mathrm{O}), 157.6^{\circ}(\mathrm{C}-\mathrm{H} \cdots \mathrm{O})\right)$. All three, the PgC_{2} molecule and two probes, participate in $\mathrm{C}-\mathrm{H} \cdots \pi$ bonding. The PgC_{2} molecule participates in two $\mathrm{C}-\mathrm{H} \cdots \pi$ bonds both donated from hydrogen on the pyridine group of an endo PAN molecule $\left(2.74 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 149.2^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi) ; 2.98 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 99.1^{\circ}(\mathrm{C}-\right.$ $\left.{ }_{55} \mathrm{H} \cdots \pi\right)$). With one of the PAN molecules, one of the hydrogen atoms on an aliphatic chain of a PgC_{2} molecule is donating to the centroid of the pyridine ($2.76 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 150.3^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)$). The second PAN molecules has $\mathrm{C}-\mathrm{H} \cdots \pi$ bonding also donated from one of the hydrogen atoms of the aliphatic tail of the PgC_{2} ${ }_{60}$ molecule, but donated to the centroid of the naphthalene phenyl group without the oxygen of the PAN molecule ($2.97 \AA$ (C$\left.\mathrm{H}^{\cdots} \pi\right), 148.3^{\circ}(\mathrm{C}-40 \mathrm{H} \cdots \pi)$).

Fig. 15 Asymmetric unit of cocrystal 7, $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{12} \cdot 1 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3}$ in (a) stick representation, (b) space-filled PAN molecule, and (c) space-filled PAN and PgC_{2} molecules. Hydrogen atoms and solvent molecules are removed for clarity.

Cocrystal 7

The asymmetric unit of cocrystal 7 contains one endo PAN molecule and one PgC_{2} molecule (see Fig. 15). Unlike the other cocrystals, cocrystal 7 does not contain any solvent. The bowl of 10 cocrystal 7 is pinched with cross-sectional distances $7.25 \AA$ and $9.30 \AA$. There are eleven hydrogen bonds throughout the system $\left(1.91-2.20 \quad \AA \quad(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), \quad 134.2-170.4^{\circ} \quad(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})\right)$: four intramolecular hydrogen bonds between hydroxyl groups, six intermolecular bonds between adjacent hydroxyl groups of the
${ }_{15} \mathrm{PgC}_{2}$ molecules, and one hydrogen bond donated from the hydroxyl hydrogen atom to the PAN molecule's oxygen atom. Both the PgC_{2} molecule and the PAN molecule have $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The hydrogen atoms on the pyridine group of the endo PAN molecule are $\mathrm{C}-\mathrm{H} \cdots \pi$ interacting with two centroids of 20 the PgC_{2} molecule $\left(2.53 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 143.0^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right.$; $(2.65 \AA$ $(\mathrm{C}-\mathrm{H} \cdots \pi), 124.2(\mathrm{C}-\mathrm{H} \cdots \pi))$. Two of the tail hydrogen atoms of the PgC_{2} molecule are $\mathrm{C}-\mathrm{H} \cdots \pi$ interacting with the aromatic groups of the PAN molecule, each to a different aromatic group of the naphthalene group $\left(2.75 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 146.7^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)\right.$; $25\left(3.00 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 142.8^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)\right)$.

Fig. 16 Asymmetric unit of cocrystal 8, $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot 1.5 \mathrm{CH}_{3} \mathrm{OH} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$. Hydrogen atoms and solvent 30 molecules are removed for clarity.

Cocrystal 8

The asymmetric unit of cocrystal 8 contains two PAN molecules (one endo and one exo), one PgC_{3} molecule, one and one-half methanol molecules, and one and one-half water molecules (see
${ }_{35}$ Fig. 16). One methanol and one water molecule are disordered over the same position and each are modeled at 50% occupancy. It is a bilayer structure and the bowl of the PgC_{3} molecule is slightly pinched, with cross-sectional distances $6.97 \AA$ and $9.45 \AA$ (see Fig. 17). Thirteen hydrogen bonds involve the PgC_{3} 40 molecule (1.92-2.20 $\left.\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 134.2-170.4^{\circ}\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{A}\right)\right)$. Four of these are intramolecular hydrogen bonds around the upper-rim of the PgC_{3} molecule, and two are intermolecular hydrogen bonds to hydroxyl groups on adjacent PgC_{3} molecules. Six hydrogen bonds involve solvent molecules; four in which hydroxyl

Fig. 17 (a) Packing of cocrystal 8 in stick representation and (b) with PAN molecules in space-filled representation. Hydrogen atoms are removed for clarity.
hydrogen atoms donate to water oxygen atoms and one in which ${ }_{50}$ a water's hydrogen atom donates to a hydroxyl group. The hydrogen bonding involving the solvent water causes the water to act like a bridge, joining adjacent PgC_{3} molecules together through hydrogen bonding. There is also one hydrogen bond from one hydroxyl hydrogen atom donating to a nitrogen atom in the ${ }_{55}$ pyridine group of a PAN molecule. Both PAN molecules are involved in different hydrogen bonding schemes. One of the PAN molecules has hydrogen bond donated from a water hydrogen atom to the oxygen atom of the PAN molecule ($1.92 \AA$ ($\mathrm{O}-$ $\left.\mathrm{H} \cdots \mathrm{A}), 159.5^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{A}\right)\right)$. The other hydrogen bond is the one ${ }_{60}$ already discussed previous in which there is hydrogen bonding to the pyridine group from a hydroxyl group of a PgC_{3} molecule $\left(2.06 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 160.4^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})\right)$. The PgC_{3} molecule has quite a few $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The hydrogen atoms on the pyridine group of the endo PAN molecule $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interacts with ${ }_{65}$ three of the aromatic groups of the PgC_{3} molecule (2.55-2.88 \AA $(\mathrm{C}-\mathrm{H} \cdots \pi)$, 112.2-160.3 $(\mathrm{C}-\mathrm{H} \cdots \pi)$). There is also a $\mathrm{C}-\mathrm{H}^{\circ} \cdots \pi$ interaction between a hydrogen atom on the naphthalene group of an exo PAN molecule to one PgC_{3} aromatic group ($2.85 \AA$ (C-

Fig. 18 Asymmetric unit of cocrystal 9,
$\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Hydrogen atoms and solvent molecules are removed for clarity.
$\left.{ }_{5} \mathrm{H}^{\cdots} \pi\right)$, $\left.167.1^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$. Finally, there is a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction from a hydrogen atom on a PgC_{3} tail to the naphthalene aromatic group, without any attached groups, of the PAN that is hydrogen bonding through the pyridine group.

Cocrystal 9

${ }_{10}$ Contained in the asymmetric unit of cocrystal 9 are two PAN molecules (one exo and one endo), one PgC_{3} molecule, one ethanol molecule, and two water molecules (see Fig. 18). Crosssectional distances for the PgC_{3} molecule are $6.77 \AA$ and $9.55 \AA$. The PgC_{3} molecules are arranged in a typical bilayer structure 15 with one PAN molecule in the bowl of each PgC_{3} moiety. Eighteen hydrogen bonds are donated from and to the PgC_{3} molecule (1.88-2.22 $\left.\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 114.5-167.8^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})\right)$ (see Fig. 19). Of these, six hydrogen bonds are intramolecular bonds and four are intermolecular bonds. There is one hydrogen bond

20
Fig. 19 Types of hydrogen bonding found in cocrystal 9. Intramolecular hydrogen bonding (dashed green bonds), hydrogen bonding with solvent (dashed blue bonds), and hydrogen bonding with a PAN molecule (dashed orange bond). All hydrogens (unless necessary) are removed for 25

Fig. 20 Asymmetric unit of cocrystal 10, $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{12} \cdot 2 \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in (a) stick representation, (b) PAN molecules in space-filled representation, and (c) both PgC_{3} and solvent molecules are removed for clarity.
donated from the hydroxyl group to the nitrogen atom on a pyridine group of the PAN molecule. The remaining hydrogen bonds are to solvent molecules and create a bridge between PgC_{3} ${ }_{5}$ molecules. Four hydrogen bonds are formed from hydroxyl hydrogen atoms donating to oxygen atoms of four water molecules, one from a water molecule hydrogen bond donating to a hydroxyl group, and one from a hydroxyl hydrogen atom to an ethanol oxygen atom. The two PAN molecules are involved in ${ }_{40}$ different hydrogen bonding schemes. The endo PAN molecule is hydrogen bonding from a water molecule to the PAN's oxygen atom ($\left.1.82 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 152.1^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$ while the exo PAN molecule has a PgC_{3} hydroxyl group donating to the nitrogen atom of the pyridine group ($12.13 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 157.8^{\circ}(\mathrm{O}-$
$\left.{ }_{45} \mathrm{H}^{\cdots} \mathrm{N}\right)$). As with the other cocrystal systems, there is $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ bonding. Three $\mathrm{C}-\mathrm{H} \cdots \pi$ bonds are from the PgC_{3} centroids to three hydrogen atoms on the pyridine aromatic ring of the endo PAN molecule (2.53-2.89 $\left.\AA(\mathrm{C}-\mathrm{H} \cdots \pi), 108.0-165.1^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$ and one is from hydrogen atom on the naphthalene group of an ${ }_{50}$ exo PAN molecule ($3.03 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 165.2^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)$). The endo PAN molecule does not have any $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonding with PgC_{3} aliphatic tail hydrogen atoms, but the exo PAN molecule has two: one from each centroid of the naphthalene group to a PgC_{3} tail hydrogen atom $(2.77 \AA(\mathrm{C}-$ $\left.\left.{ }_{55} \mathrm{H} \cdots \pi\right), 148.6^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi) ; 2.80 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \cdot \pi\right), 144.5^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$.

Cocrystal 10

Fig. $21 \mathrm{C}-\mathrm{H}_{\cdots} \cdots$ interactions (dashed orange bonds) in cocrystal 10. Hydrogen atoms and solvent molecules are removed for clarity.

In the asymmetric unit cocrystal 10 there are two PAN molecules 5 (one endo and one exo), one PgC_{3} molecule, one isopropanol molecule, and two water molecules (see Fig 20). The crosssectional distances are $6.72 \AA$ and $9.54 \AA$. There is a similar hydrogen bonding network as with the other cocrystals containing PgC_{3}. In total, there are seventeen hydrogen bonds in which the ${ }_{10} \mathrm{PgC}_{3}$ participates (1.72-2.21 $\AA\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{A}\right), 114.5-174.9^{\circ}(\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{A})$). The majority of these hydrogen bonds (six) are intramolecular hydrogen bonds between the upper-rim hydroxyl groups. Four of the hydrogen bonds are intermolecular hydrogen bonds from adjacent hydroxyl groups of PgC_{3} molecules. Six of 15 the hydrogen bonds are hydroxyl hydrogen atoms donating to solvent molecules, four donated from hydroxyl hydrogen atoms to four water oxygen atoms, one donated from a hydroxyl hydrogen atom to an isopropanol oxygen atom, and one donated from one water hydroxyl hydrogen atom to a hydroxyl oxygen ${ }_{20}$ atom of the PgC_{3} molecule. As with the previous cocrystals, the water molecules' hydrogen bonds allow it to act as a bridgebetween PgC_{3} molecules. The final hydrogen bond involves a hydroxyl hydrogen atom donating to a PAN molecule's nitrogen atom in the pyridine group. Both of the PAN
${ }_{25}$ molecules participate in one hydrogen bond. The endo PAN molecule is hydrogen bonding from the hydroxyl hydrogen atom to the nitrogen atom in the pyridine group of the PAN molecule $\left(2.07 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{N}), 158.1^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{N})\right)$. The exo PAN molecule accepts a hydrogen bond from a hydroxyl hydrogen atom of a 30 water molecule ($\left.1.79 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 157.1^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$. That water molecule is also accepting two hydrogen bonds from hydroxyl hydrogen atoms of two PgC_{3} molecules and donating a hydrogen
atom to a third hydroxyl oxygen atom of a PgC_{3} molecule (1.72$\left.1.94 \AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), 145.7-174.9^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$. There is quite an ${ }_{35}$ extensive $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction scheme as well as the hydrogen bonding network (see Fig. 21). There are four $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to the aromatic rings of the PgC_{3} molecule: three from hydrogen atoms on the pyridine aromatic ring of the endo PAN molecule (2.47-2.86 $\AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \cdot \pi\right), 108.9-163.7^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)$),
40 and one from a hydrogen atom on a naphthalene group of an exo PAN molecule ($2.98 \quad \AA(\mathrm{C}-\mathrm{H} \cdots \pi)$, $167.1^{\circ} \quad(\mathrm{C}-\mathrm{H} \cdots \pi)$). Additionally, both of the naphthalene centroids of the endo PAN molecule are $\mathrm{C}-\mathrm{H} \cdots \pi$ interacting with hydrogen atom on the same aliphatic tail (but with different hydrogen atoms) ($2.75 \AA$ ${ }_{45}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 148.2^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right) ; 2.79 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 143.9^{\circ}(\mathrm{C}-$ $\mathrm{H} \cdots \pi)$). The exo PAN molecule is $\mathrm{C}-\mathrm{H} \cdots \pi$ interacting with from an aliphatic tail hydrogen atom of a PgC_{3} molecule to the pyridine centroid ($3.06 \AA\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right), 144.3^{\circ}\left(\mathrm{C}-\mathrm{H}^{\cdots} \pi\right)$).

Cocrystal 11

${ }_{50}$ There is one endo PAN molecule, one PgC_{3}, one acetonitrile, and two water molecules in the asymmetric unit of cocrystal 11 (see Fig. 22). The cross-sectional distances are $6.78 \AA$ and $9.56 \AA$ In total, there are twelve hydrogen bonds in which the PgC_{3} is participating in (1.92-2.21 $\left.\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{A}), 114.8-169.7^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{A})\right)$.
${ }_{55}$ Of the twelve hydrogen bonds, five are intramolecular hydrogen bonds between the hydroxyl groups on the upper-rim, four are intermolecular hydrogen bonds between the hydroxyl groups adjacent PgC_{3} molecules, two are hydroxyl hydrogen atoms donating to water molecules, and one is a hydrogen bond
${ }_{60}$ involving hydrogen atom on the PAN pyridine group donating to the oxygen atom of a hydroxyl group of a PgC_{3} molecule. Once again, the water molecules act as a bridge, connecting PgC_{3} molecules through hydrogen bonding. Additional hydrogen bonding comes from two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions from two PgC_{3} ${ }_{65}$ aromatic centroids to hydrogen atoms on the pyridine group of the endo PAN molecule ($2.78 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 165.5^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)$; $\left.2.84 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 115.2^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$. The PAN molecule also

Fig. 22 Asymmetric unit of cocrystal 11,
$70 \quad \mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{12} \cdot \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Hydrogen atoms and solvent molecules are removed for clarity.
participates in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Two aliphatic tail hydrogen atoms (from two different, adjacent PgC_{3} molecules) are donating to the centroids of the naphthalene group $(2.90 \AA(\mathrm{C}-\mathrm{H} \cdots \pi)$, $\left.149.0^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi) ; 2.98 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 166.3^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$.

${ }_{5}$ Cocrystal 12

Within the asymmetric unit cell of cocrystal $\mathbf{1 2}$ there is one endo PAN molecule, one $\mathrm{PgC}_{3} \mathrm{OH}$ molecule, and one ethanol molecule (see Fig. 23). The bowl is pinched-shaped with cross-sectional distances of $7.67 \AA$ and $9.21 \AA$. In total, there are fifteen 10 hydrogen bonds in which the upper-rim hydroxyl groups are participating in (1.80-2.19 $\AA\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}\right), 148.2-170.4^{\circ}\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}\right)$). There are four intramolecular hydrogen bonds between the upperrim hydroxyl groups, four intermolecular hydrogen bonds between upper-rim hydroxyl groups of adjacent $\mathrm{PgC}_{3} \mathrm{OH}$

15
Fig. 23 Asymmetric unit of cocrystal 12, $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{16} \cdot \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ON}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Hydrogen atoms and solvent molecules are removed for clarity.
molecules, five intermolecular hydrogen bonds between the upper-rim hydroxyl groups to hydroxyl groups at the end of the ${ }_{20}$ carbon tail groups of adjacent $\mathrm{PgC}_{3} \mathrm{OH}$ molecules, one hydrogen bond between an upper-rim hydroxyl hydrogen atom and the nitrogen atom on the pyridine group of the PAN molecule, and one hydrogen bond from an upper-rim hydroxyl hydrogen atom to the bridging nitrogen atom on the same PAN molecule. The ${ }_{25}$ hydroxyl groups on the end of the $\mathrm{PgC}_{3} \mathrm{OH}$ molecule tail groups are also involved in hydrogen bonding (1.72-2.03 $\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$, $\left.132.3-170.4^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})\right)$. There is one intramolecular hydrogen bond between aliphatic tail hydroxyl groups, three intermolecular hydrogen bonds to upper-rim hydroxyl groups on adjacent ${ }_{30} \mathrm{PgC}_{3} \mathrm{OH}$ molecules, two hydrogen bonds to two ethanol molecules, and one hydrogen bond to the oxygen atom of a PAN molecule. The PAN molecule is also involved in hydrogen bonding (1.86-2.10 $\AA(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}), \quad 132.8-170.4^{\circ} \quad(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$). Besides the PAN hydrogen bonding already discussed previously ${ }_{35}$ when describing the hydrogen bonding of the $\mathrm{PgC}_{3} \mathrm{OH}$, there is an intramolecular hydrogen bond between the hydrogen atom on the bridging nitrogen atom and the oxygen atom. In addition to
the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, there are also four $\mathrm{C}-\mathrm{H} \cdots \pi$ bonds. Three are from hydrogen atoms on the pyridine group of 40 the endo PAN molecule to the centroids of the $\mathrm{PgC}_{3} \mathrm{OH}$ molecule (2.44-2.87 $\left.\AA(\mathrm{C}-\mathrm{H} \cdots \pi), 125.5-143.7^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$. The fourth $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ is from the hydrogen atom on the naphthalene group of the PAN molecule (the aromatic group without and groups attached) to the centroid of the pyridine group of a second PAN molecule ${ }_{45}\left(2.97 \AA(\mathrm{C}-\mathrm{H} \cdots \pi), 107.0^{\circ}(\mathrm{C}-\mathrm{H} \cdots \pi)\right)$.

Discussion

Cocrystals containing the PAN molecule, show a wide range of characteristics that appear to be influenced by solvent and aliphatic tail-length. First, aliphatic tail-length plays a significant ${ }_{50}$ role in the resulting architecture of the cocrystal. One of the most significant differences is in the bilayer structure. With PgC_{1}

Table 2 Number of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving $\mathrm{PgC}_{\mathrm{x}}$ molecules and PAN molecules

Cocrystal	PgC $_{\mathbf{x}}$ Endo C-H $\cdots \boldsymbol{\pi}$	PgC $_{\mathbf{x}}$ Exo C-H $\cdots \boldsymbol{\pi}$	PAN 1	PAN 2	PAN 3
1	1	1			
2	1	2	0	0	0
	1	2		0	0
3	2	1	0	0	N/A
4	3	0	0	0	N/A
5	2	0	1	0	N/A
6	2	0	1	1	N/A
7	2	0	2	N/A	N/A
8	3	1	0	1	N/A
9	3	1	0	2	N/A
10	3	1	2	1	N/A
11	1	0	2	N/A	N/A
12	3	0	1	N/A	N/A

${ }_{55}$ molecules, the crystal network is an atypical bilayer structure. The PgC_{1} molecules are angled from each other as in cocrystal $\mathbf{1}$ and $\mathbf{2}$, pack in pairs to form a single unit as in cocrystal $\mathbf{3}$, or pack in columns as in cocrystal 4. Increasing the aliphatic tail-length to two and three carbon atoms, leads to cocrystals packed in the 60 typical bilayer arrangement.

Changing the tail-lengths also causes the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to alter (see Table 2). As the tail-length increases, the amount of $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction to the endo PAN molecules increases. Of thecocrystals involving PgC_{1} (cocrystals 1-4), cocrystals $\mathbf{1}$ and 2 ${ }_{5 s}$ have only one $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction with the endo PAN molecule and cocrystal 3 has two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Additionally, there is at least one $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction to an exo PAN molecule. Increasing the tail-length by one in turn increases the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with the endo PAN molecule by one; all cocrystals 0 containing PgC_{2} (cocrystals 5-7) have two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to the endo PAN molecule. However, unlike the cocrystals with PgC_{1}, there are no $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with exo PAN molecules. Further increasing the tail-length from two carbon atoms to three carbon atoms (cocrystals 8-11) causes the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to 75 the endo PAN molecule to increases to three interactions. Additionally, similar to cocrystal $\mathbf{1}$, there is at least one $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction with an exo PAN molecule.

Not only does increasing the tail-length change the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, it also alters the hydrogen bonding scheme. As the

Table 3 Number of hydrogen bonds between $\mathrm{PgC}_{\mathrm{x}}$ molecules and solvent molecules.
Cocrystal $\left.\begin{array}{cccc}\text { Hydrogen bonds } \\ \text { to solvent } \\ \text { molecules }\end{array} \begin{array}{c}\text { Hydrogen bonds } \\ \text { to water } \\ \text { molecules }\end{array}\right]$ Solvent Bridging
tail-length increases, the presence of hydrogen bonding solvent5 bridging also increases (see Table 3). With cocrystals of PgC_{1} (cocrystals 1-4), the solvent does not act as a bridge between PgC_{1} molecules, except with cocrystal 2. With cocrystals ofPgC ${ }_{2}$ (cocrystals 5-7), cocrystal 5 does not have solvent-bridging, but cocrystal 6 does have it. All of the cocrystals with PgC_{3} ${ }_{10}$ (cocrystals 8-11) have solvent that acts as a bridge between PgC_{3} molecules. Furthermore, with PgC_{3}, there are more than double the amount of hydrogen bonds involving the PgC_{3} hydroxyl groups and water molecules (ca. 5-6 hydrogen bonds) compared to the PgC_{3} hydroxyl groups hydrogen bonding with the main 15 solvent (ca. 1-2 hydrogen bonds). Out of the solvents used, the methanol cocrystals (cocrystals 1, 5, and 8) and acetonitrile cocrystals (cocrystals 4 and 11) have the least number of hydrogen bonds between the solvent and the pyrogallol[4]arenes (ca. 0-1 hydrogen bonds). Another aspect of the hydrogen 20 bonding scheme that alters as the tail-length is increased is the number of hydrogen bonds to the PAN molecules (see Table 4). As the tail-length increases, the number of hydrogen bonds to PAN molecules decreases. With the exception of cocrystal 7, there are four or five hydrogen bonds to PAN molecules with ${ }_{25}$ cocrystals of PgC_{1} and PgC_{2} (cocrystals 1-7). However, when the tail length is increased to three carbon atoms, there is only one hydrogen bond to a PAN molecule (cocrystals 8-11). The hydrogen bonding scheme is a probable explanation for the PgC_{1}

Table 4 Types and number of hydrogen bonds involving $\mathrm{PgC}_{\mathrm{x}}$ molecules.

Cocrystal	Intramolecular Hydrogen Bonds	Intermolecular Hydrogen Bonds	PAN/PgC Hydrogen Bonds	Total Hydrogen Bonds
1	6	2	5	14
2	5	4	2	15
	6	6	4	16
3	3	4	4	14
4	4	2	4	11
5	4	4	4	13
6	4	4	5	16
7	4	6	1	11
8	4	2	1	13
9	6	4	1	18
10	6	4	1	17
11	5	4	1	12
12	4	4	2	22

molecules packing in an atypical bilayer whereas PgC_{2} and PgC_{3} molecules pack in a more typical bilayer arrangement. It seems the PgC_{1} molecules are more likely to hydrogen bond with the PAN molecules than to other PgC_{1} molecules (as a percentage of 35 total bonds, about $25 \%-36 \%$ are hydrogen bonds between PgC_{1} and PAN molecules) whereas it is not the case with the PgC_{2} and PgC_{3} molecules (percentage of total bonds is $5 \%-8 \%$ for PgC_{3}).
Along with influencing the hydrogen bonding scheme, solvent appears to affect the final ratio of PAN to pyrogallol[4]arene in 40 the final structure (see Table 5). In methanol (cocrystals 1, 5, and 8), the ratio of PAN to pyrogallol[4]arene is either $3: 1$ or $2: 1$. With isopropanol as the solvent (cocrystals $\mathbf{3}$ and 10), the ratio is constant at $2: 1$. The ethanol cocrystals (cocrystals 2, 9, and 12) are seen to prefer a lower ratio of PAN to pyrogallol[4]arene with 45 ratios of 1.5:1, 2:1, and 1:1 respectively. Cocrystals with acetonitrile (cocrystals 4 and 11) also appear to favour lower PAN to pyrogallol[4]arene ratios (2:1 and 1:1, respectively). The bowl shape of the pyrogallol[4]arenes remains consistent with the cocrystals. However, only cocrystal 4 has a symmetrical bowl ${ }_{50}$ while the rest are pinched with cross-sectional distances of ca. 6.7 \AA and $9.5 \AA$. Thus, it does not appear that solvent or tail-length affect the shape of the bowl, but rather whether solvent or probe is endo determines the bowl shape.

Table 5 Solvent and the final ratio of PAN to pyrogallol[4]arene

Cocrystal	Solvent	Ratio PAN:PgC
1	Methanol	$3: 1$
2	Ethanol	$1.5: 1$
3	Isopropanol	$2: 1$
4	Acetonitrile	$2: 1$
5	Methanol	$2: 1$
6	Water	$2: 1$
7	No solvent	$1: 1$
8	Methanol	$2: 1$
9	Ethanol	$2: 1$
10	Isopropanol	$2: 1$
11	Acetonitrile	$1: 1$
12	Ethanol	$1: 1$

Conclusion

In summary, twelve cocrystals of PAN and pyrogallol[4]arenes of varying aliphatic tail-length have been examined. The flexibility of the pyrogallol[4]arenes was demonstrated by the ability to ${ }_{60}$ cocrystallize with PAN in different solvent media. Trends arise as to how solvent and aliphatic tail-length influence the final cocrystals. The aliphatic tail-length of the pyrogallol[4]arene molecules is seen to affect several properties, most notably the bilayer architecture, $\mathrm{C}-\mathrm{H}_{\cdots} \pi$ interactions, and hydrogen bonding ${ }_{65}$ scheme. Cocrystals with PgC_{1} pack in an atypical bilayer structure and have the fewest $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions with the endo PAN molecule and the most hydrogen bonds to PAN molecules. As the aliphatic tail-length increases, the bilayer structure becomes more standard, the number of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with
70 the endo PAN molecule increases, and hydrogen bonds to PAN molecules decreases. In contrast, solvent plays a role in the final ratio of PAN to pyrogallol[4]arene. Methanol solvent is seen to yield a higher ratio (3:1 or 2:1) whereas ethanol and acetonitrile yield a lower ratio ($2: 1$ or $1: 1$).

Acknowledgements

JLA thanks NSF for funding this research. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under 5 contract no. DE-AC02-05CH11231.

Supplementary Information

Single crystal X-ray crystallographic information files (CIF) are available for all cocrystals. Crystallographic information files are also available from the Cambridge Crystallographic Data Center (CCDC) upon request (http://www.ccdc.cam.ac.uk, CCDC deposition numbers 1002494-1002500; 1002506-1002510).

Notes and references

${ }^{a}$ Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States. Fax: +1 573882
15 2754; Tel: +1 573882 8374;AtwoodJ@missouri.edu
${ }^{b}$ Advanced Light Source, 1 Cyclotron Road, MS6R2100, Berkeley, California, USA. Fax: +1 510486 4773; Tel: +1 510486 7745; E-mail: sjteat@lbl.gov

\dagger Crystallographic data -

${ }_{20}$ Cocrystal 1: $\mathrm{C}_{78} \mathrm{H}_{71} \mathrm{O}_{17} \mathrm{~N}_{9}, M=1406.44$, orange prism, $\mathrm{a}=22.950(4) \AA$, b $=14.573(5) \AA, \mathrm{c}=17.549(5) \AA, \beta=104.677(2)^{\circ}$, space group $C 2 / c, V=$ $13469(5) \AA^{3}, Z=8, D_{\mathrm{c}}=1.39 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=5904, \mathrm{MoK} \alpha$ radiation, $\lambda=$ $0.71073 \AA, T=100 \mathrm{~K}, 15605$ reflections collected. Final GooF $=0.990$, $R 1=0.062, w R 2=0.126, R$ indices based on reflections with I 25 (refinement on F^{2}), 956 parameters, no restraints. Lp and absorption corrections applied, $\mu=0.099 \mathrm{~mm}^{-1}$.
Cocrystal 2: $\mathrm{C}_{117} \mathrm{H}_{121} \mathrm{O}_{31} \mathrm{~N}_{9}, M=2149.23$, orange plate, $\mathrm{a}=17.5240$ (4) $\AA, b=17.9622(4) \AA, c=18.5524(4) \AA, \alpha=99.369(1)^{\circ}, \beta=100.579(1)^{\circ}$, $\gamma=110.010(1)^{\circ}$, space group $P-1, V=5230.5(2) \AA^{3}, Z=2, D_{\mathrm{c}}=1.37$
${ }_{30} \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=2268$, CuK α radiation, $\lambda=1.54178 \AA, T=100 \mathrm{~K}, 18823$ reflections collected. Final GooF $=1.066, R 1=0.056, w R 2=0.173, R$ indices based on reflections with I (refinement on F^{2}), 1479 parameters, 36 restraints. Lp and absorption corrections applied, $\mu=0.825 \mathrm{~mm}^{-1}$.
Cocrystal 3: $\mathrm{C}_{71} \mathrm{H}_{78} \mathrm{O}_{17} \mathrm{~N}_{6}, M=1287.39$, orange plate, $\mathrm{a}=29.924(1) \AA, \mathrm{b}$ $35=19.7720(7) \AA, \mathrm{c}=23.7677(9) \AA, \beta=116.033(2)^{\circ}$, space group $C 2 / c, V$ $=12635.5(8) \AA^{3}, Z=8, D_{\mathrm{c}}=1.35 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=5456$, synchrotron radiation, $\lambda=0.77490 \AA, T=100 \mathrm{~K}, 11646$ reflections collected. Final $G o o F=1.047, R 1=0.057, w R 2=0.156, R$ indices based on reflections with I (refinement on F^{2}), 859 parameters, no restraints. Lp and 40 absorption corrections applied, $\mu=0.108 \mathrm{~mm}^{-1}$.

Cocrystal 4: $\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{O}_{14} \mathrm{~N}_{8}, M=1189.22$, orange plate, $\mathrm{a}=7.3273(6) \AA$, b $=16.733(1) \AA, \mathrm{c}=23.611(3) \AA, \alpha=85.742(2)^{\circ}, \beta=83.946(2)^{\circ}, \gamma=$ $86.963(2)^{\circ}$, space group $P-1, V=2867.7(6) \AA^{3}, Z=2, D_{\mathrm{c}}=1.38 \mathrm{~g} / \mathrm{cm}^{3}$, $F_{000}=1248, \mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, \quad T=100 \mathrm{~K}, \quad 12730$ 45 reflections collected. Final GooF $=0.986, R 1=0.046, w R 2=0.098, R$ indices based on reflections with I (refinement on F^{2}), 811 parameters, no restraints. Lp and absorption corrections applied, $\mu=0.098 \mathrm{~mm}^{-1}$.
Cocrystal 5: $\mathrm{C}_{67} \mathrm{H}_{66} \mathrm{O}_{15} \mathrm{~N}_{6}, M=1195.26$, orange plate, $\mathrm{a}=12.646(1) \AA, \mathrm{b}$ $=15.636(2) \AA, \mathrm{c}=16.887(2) \AA, \alpha=64.978(2)^{\circ}, \beta=81.891(2)^{\circ}, \gamma=$ ${ }_{50} 68.093(2)^{\circ}$, space group $P-1, V=2806.9(6) \AA^{3}, Z=2, D_{\mathrm{c}}=1.41 \mathrm{~g} / \mathrm{cm}^{3}$, $F_{000}=1260, \mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, \quad T=100 \mathrm{~K}, \quad 10865$ reflections collected. Final GooF $=1.023, R 1=0.058, w R 2=0.151, R$ indices based on reflections with I (refinement on F^{2}), 809 parameters, 6 restraints. Lp and absorption corrections applied, $\mu=0.101 \mathrm{~mm}^{-1}$.
55 Cocrystal 6: $\mathrm{C}_{66} \mathrm{H}_{64} \mathrm{O}_{15} \mathrm{~N}_{6}, M=1181.23$, orange prism, $\mathrm{a}=12.576(1) \AA, \mathrm{b}$ $=15.566(2) \AA, \mathrm{c}=16.818(2) \AA, \alpha=65.345(2)^{\circ}, \beta=82.005(2)^{\circ}, \gamma=$ $68.245(2)^{\circ}$, space group $P-1, V=2778.6(6) \AA^{3}, Z=2, D_{\mathrm{c}}=1.41 \mathrm{~g} / \mathrm{cm}^{3}$, $F_{000}=1244, \mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, \quad T=100 \mathrm{~K}, \quad 10579$ reflections collected. Final GooF $=1.041, R 1=0.061, w R 2=0.141, R$ 60 indices based on reflections with I (refinement on F^{2}), 813 parameters, no restraints. Lp and absorption corrections applied, $\mu=0.101 \mathrm{~mm}^{-1}$.
Cocrystal 7: $\mathrm{C}_{51} \mathrm{H}_{51} \mathrm{O}_{13} \mathrm{~N}_{3}, M=4322.2$, orange plate, $\mathrm{a}=15.986(3) \AA, \mathrm{b}=$ 13.950(3) $\AA, \mathrm{c}=19.675(4) \AA, \beta=99.924(3)^{\circ}$, space group $P 2{ }_{1} / c, V=$ $4322(1) \AA^{3}, Z=4, D_{\mathrm{c}}=1.41 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1928$, $\mathrm{MoK} \alpha$ radiation, $\lambda=$
${ }_{65} 0.71073 \AA, T=100 \mathrm{~K}, 6713$ reflections collected. Final $G o o F=1.017$, $R 1=0.049, w R 2=0.11, R$ indices based on reflections with I (refinement on F^{2}), 617 parameters, 4 restraints. Lp and absorption corrections applied, $\mu=0.102 \mathrm{~mm}^{-1}$.
Cocrystal 8: $\mathrm{C}_{71.5} \mathrm{H}_{79} \mathrm{O}_{17} \mathrm{~N}_{6}, M=1294.41$, orange plate, $\mathrm{a}=12.453(3) \AA$,
$70 \mathrm{~b}=15.858(3) \AA, \mathrm{c}=19.087(6) \AA, \alpha=110.506(4)^{\circ}, \beta=94.181(4)^{\circ}, \gamma=$ $110.339(3)^{\circ}$, space group $P-1, V=3228.1(14) \AA^{3}, Z=2, D_{\mathrm{c}}=1.33 \mathrm{~g} / \mathrm{cm}^{3}$, $F_{000}=1372, \mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, \quad T=100 \mathrm{~K}, \quad 14230$ reflections collected. Final GooF $=1.067, R 1=0.068, w R 2=0.178, R$ indices based on reflections with I (refinement on F^{2}), 913 parameters, 49 5 restraints. Lp and absorption corrections applied, $\mu=0.096 \mathrm{~mm}^{-1}$.
Cocrystal 9: $\mathrm{C}_{72} \mathrm{H}_{80} \mathrm{O}_{17} \mathrm{~N}_{6}, M=1301.42$, orange prism, $\mathrm{a}=12.657(1) \AA, \mathrm{b}$ $=15.762(1) \AA, \mathrm{c}=18.771(2) \AA, \alpha=109.665(1)^{\circ}, \beta=92.113(1)^{\circ}, \gamma=$ $111.920(1)^{\circ}$, space group $P-1, V=3214.3(5) \AA^{3}, Z=2, D_{\mathrm{c}}=1.35 \mathrm{~g} / \mathrm{cm}^{3}$, $F_{000}=1380, \mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, \quad T=100 \mathrm{~K}, 13987$
80 reflections collected. Final GooF $=1.047, R 1=0.048, w R 2=0.123, R$ indices based on reflections with I (refinement on F^{2}), 889 parameters, 46 restraints. Lp and absorption corrections applied, $\mu=0.096 \mathrm{~mm}^{-1}$.
Cocrystal 10: $\mathrm{C}_{73} \mathrm{H}_{82} \mathrm{O}_{17} \mathrm{~N}_{6}, M=1315.45$, orange plate, $\mathrm{a}=12.618(3) \AA$, $\mathrm{b}=15.758(3) \AA, \mathrm{c}=18.702(4) \AA, \alpha=109.763(3)^{\circ}, \beta=92.291(3)^{\circ}, \gamma=$
$85112.029(3)^{\circ}$, space group $P-1, V=3184$.(1) $\AA^{3}, Z=2, D_{\mathrm{c}}=1.37 \mathrm{~g} / \mathrm{cm}^{3}$, $F_{000}=1396$, synchrotron radiation, $\lambda=0.77490 \AA, T=100 \mathrm{~K}, 13007$ reflections collected. Final GooF $=1.036, R 1=0.062, w R 2=0.167, R$ indices based on reflections with I (refinement on F^{2}), 887 parameters, 1 restraints. Lp and absorption corrections applied, $\mu=0.109 \mathrm{~mm}^{-1}$.
${ }_{90}$ Cocrystal 11: $\mathrm{C}_{57} \mathrm{H}_{66} \mathrm{O}_{15} \mathrm{~N}_{4}, M=1047.14$, orange plate, $\mathrm{a}=18.733(2) \AA$, $\mathrm{b}=12.849(1) \AA, \mathrm{c}=22.432(2) \AA, \beta=106.873(1)^{\circ}$, space group $P 2_{1} / c, V$ $=5166.7(9) \AA^{3}, Z=4, D_{\mathrm{c}}=1.346 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=2224$, MoK α radiation, λ $=0.71073 \AA, T=100 \mathrm{~K}, 11637$ reflections collected. Final GooF $=$ 1.031, R1 $=0.060, w R 2=0.147, R$ indices based on reflections with I 5 (refinement on F^{2}), 700 parameters, no restraints. Lp and absorption corrections applied, $\mu=0.098 \mathrm{~mm}^{-1}$.
Cocrystal 12: $\mathrm{C}_{57} \mathrm{H}_{65} \mathrm{O}_{18} \mathrm{~N}_{3}, M=1080.12$, orange prism, $\mathrm{a}=11.849(1) \AA$, $\mathrm{b}=12.75(1) \AA, \mathrm{c}=18.287(2) \AA, \alpha=84.294(2)^{\circ}, \beta=85.839(2)^{\circ}, \gamma=$ $63.720(2)^{\circ}$, space group $P-1, V=2463.5(5) \AA^{3}, Z=2, D_{\mathrm{c}}=1.46 \mathrm{~g} / \mathrm{cm}^{3}$, ${ }_{100} F_{000}=1144$, synchrotron radiation, $\lambda=0.77490 \AA, T=100 \mathrm{~K}, \quad 13132$ reflections collected. Final GooF $=1.039, R 1=0.063, w R 2=0.165, R$ indices based on reflections with I (refinement on F^{2}), 759 parameters, 2 restraints. Lp and absorption corrections applied, $\mu=0.131 \mathrm{~mm}^{-1}$.

105 1. (a) M. Busi, M. Laurenti, G. G. Condorelli, A. Motta, M. Favazza, I. L. Fragalà, M. Montalti, L. Prodi and E. Dalcanale, Chem. Eur. J., 2007, 13, 6891-6898; (b) S. J. Dalgarno, G. W. V. Cave and J. L. Atwood, Angew. Chem. Int. Ed., 2006, 45, 570-574; (c) O. V. Kulikov, M. M. Daschbach, C. R. Yamnitz, N. Rath and G. W. Gokel, Chem. Commun., 2009, 7497-7499; (d) R. Pinalli, V. Cristini, V. Sottili, S. Geremia, M. Campagnolo, A. Caneschi and E. Dalcanale, J. Am. Chem. Soc., 2004, 126, 6516-6517.
2. (a) S. J. Dalgarno, N. P. Power, J. E. Warren and J. L. Atwood, Chem. Comтии., 2008, 1539-1541; (b) S. J. Dalgarno, N. P. Power and J. L. Atwood, Coord. Chem. Rev., 2008, 252, 825-841; (c) P. Jin, S. J. Dalgarno and J. L. Atwood, Coord. Chem. Rev., 2010, 254, 1760-1768; (d) P. Jin, S. J. Dalgarno, J. E. Warren, S. J. Teat and J. L. Atwood, Chem. Commun., 2009, 3348-3350; (e) R. M. McKinlay, G. W. V. Cave and J. L. Atwood, Proc. Nat. Acad. Sci., 2005, 102, 5944-5948; (f) R. M. McKinlay, P. K. Thallapally and J. L. Atwood, Chem. Commun., 2006, 2956-2958; (g) R. M. McKinlay, P. K. Thallapally, G. W. V. Cave and J. L. Atwood, Angew. Chem. Int. Ed., 2005, 44, 5733-5736; (h) N. P. Power, S. J. Dalgarno and J. L. Atwood, Angew. Chem. Int. Ed., 2007, 46, 8601-8604.
125 3. S. J. Dalgarno, N. P. Power and J. L. Atwood, Chem, Commun., 2007, 3447-3449.
4. (a) A. V. Mossine, H. Kumari, D. A. Fowler, A. K. Maerz, S. R. Kline, C. L. Barnes and J. L. Atwood, Isr. J. Chem., 2011, 51, 840842; (b) A. V. Mossine, H. Kumari, D. A. Fowler, A. Shih, S. R. Kline, C. L. Barnes and J. L. Atwood, Chem. Eur. J., 2012, 18, 10258-10260,
5. (a) D. A. Fowler, J. Tian, C. L. Barnes, S. J. Teat and J. L. Atwood, CrystEngComm, 2011, 13, 1446-1449; (b) H. Kumari, J. Zhang, L. Erra, L. J. Barbour, C. A. Deakyne and J. L. Atwood, CrystEngComm, 2013, 15, 4045-4048.
6. (a) D. A. Fowler, J. L. Atwood and G. A. Baker, Chem. Commun., 2013, 49, 1802-1804; (b) D. A. Fowler, S. J. Teat, G. A. Baker and J. L. Atwood, Chem. Commun., 2012, 48, 5262-5264; (c) D. A. Fowler, C. R. Pfeiffer, S. J. Teat, C. M. Beavers, G. A. Baker, and J. L.

5 Atwood, CrystEngComm, 2014, 16, 6010-6022; (d) D. A. Fowler, C. R. Pfeiffer, S. J. Teat, G. A. Baker, and J. L. Atwood, Cryst. Growth Des, 2014, 14, 4199-4204.
7. E. S. Barrett, T. J. Dale and J. Rebek, Jr., J. Am. Chem. Soc., 2007, 129, 3818-3819.
10 8. (a) S. J. Dalgarno, D. B. Bassil, S. A. Tucker and J. L. Atwood, Angew. Chem. Int. Ed. 2006, 45, 7019-7022; (b) S. J. Dalgarno, S. A. Tucker, D. B. Bassil and J. L. Atwood, Science, 2005, 309, 20372039; (c) K. K. Kline, D. A. Fowler, S. A. Tucker and J. L. Atwood, Chem. Eur. J., 2011. (d) C. R. Pfeiffer, D. A. Fowler, and J. L. Atwood, Cryst. Growth Des. 2014, 14, 4205-4213.
9. J. H. Poplin, R. P. Swatloski, J. D. Holbrey, S. K. Spear, A. Metlen, M. Gratzel, M. K. Nazeeruddin and R. D. Rogers, Chem. Commun., 2007, 2025-2027.
10. (a) A. Mohadesi, Z. Motallebi and A. Salmanipour, Analyst, 2010,

20 135, 1686-1690; (b) N. Tavakkoli, S. Habibollahi and M. Keshavarzianpour, Desal. Water Treat., 2013, 52, 350-356.
11. S. Chen, X. Cheng, Y. He, S. Zhu and D. Lu, Microchim. Acta, 2013, 180, 1479-1486.
12. S. Nabi, A. Alim, A. Islam and M. Amjad, J. Sep. Sci., 2005, 28, 25 2463-2467.
13. P. Bombicz, T. Gruber, C. Fischer, E. Weber and A. Kalman, CrystEngComm, 2014.
14. T. Gerkensmeier, W. Iwanek, C. Agena, R. Fröhlich, S. Kotila, C. Näther and J. Mattay, Eur. J. Org. Chem., 1999, 19, 2257-2262.

