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Exploring anatase TiO2 with superior photocatalytic activity is of great value and challenging.  3D 
hierarchical anatase TiO2 with a high percentage of exposed {001}S facets has been successfully 
synthesized through a simple one-pot solvothermal strategy in presence of ammonium fluoride and 
ethylene glycol solution. It was found both NH4F and ethylene glycol played an essential role in directing 10 

3D hierarchical structure with exposed {001} facets.  Characterization by SEM, TEM, XRD, and TG 
endorsed a plausible proposed formation mechanism of “nucleation-aggregation-recrystallization”. The 
product was proved exhibiting superior photocatalytic activity under the synergistic effect of improved 
light-harvesting ability and higher reactivity of exposed {001} facets. 

1 Introduction 15 

Titanium dioxide (TiO2), as one of the most promising 
semiconductors, has been extensively and deeply studied due to 
its high catalytic activity, long-term stability and great versatility 
in various fields, such as photocatalysis, photovoltaic cells, 
sensors, Li-ion battery materials and so on.1-7 It has been found 20 

that application efficiency of TiO2 depends strongly on the shape, 
size and exposed facets.8-10 Therefore, controllable synthesis of 
TiO2 of different morphologies and specific exposed facets has 
drawn more and more attention to make better use of the prepared 
products.11-14 Recently, both theoretical and experimental studies 25 

of anatase TiO2 show that the metastable {001} facets are more 
reactive compared to other facets.15,16 Unfortunately, most 
common and easily synthesized anatase TiO2 crystals are 
dominated by the thermodynamically stable {101} facets, which 
make up more than 94% of the total surface area.17 High 30 

reactivity makes the synthesis of {001} facets dominated anatase 
crystals a significant challenge because these high energy facets 
shrink and disappear quickly during crystal growth to minimize 
the Gibbs energy. Only recently, a pioneering work by Yang et al. 
introduced a method to synthesize TiO2 single microcrystals with 35 

47% exposed {001} facets by using TiF4 as the raw material and 
hydrofluoric acid as the morphology controlling reagent.15 Since 
then, many studies have been conducted to synthesize anatase 
TiO2 of different structures (e.g. nanoparticles, nanorods, micro-
/nano sheets, and nanotubes) with exposed {001} facets.18-23 40 

However, most of these synthesized anatase TiO2 are crystals of 
two-dimensionality with poor light harvesting ability, only a few 
attempts have been made toward obtaining three-dimensional 
microsize superstructures constructed by nanoscale primary 
subunits. In addition, to our knowledge, specific surfactants or 45 

other structure-directing reagents like toxic etching HF are 
usually applied to fulfil the synthetic process.12,15,24 Hence, it is 
still a great challenge to explore more facile and greener method 
to synthesize anatase TiO2 with hierarchical structures and high 
percentage of exposed {001} facets. In this work, we aimed at 50 

presenting a convenient procedure for synthesis of 3D 
hierarchical titania superstructures (3DHTS) constructed by 
microscale nanosheets, which were further orderly built by 
nanoscale subunits with exposed {001} facets. What is more, no 
surfactant or other structure-directing reagents were used. 55 

Photocatalytic experiment was also performed to demonstrate the 
superior photo-degradation towards organic-dye Rhodamine B. 

2 Experimental 

2.1 Materials synthesis 

In a typical experimental procedure, 20 mmol NH4F was added 60 

into 5 mL deionized water and was magnetically stirred until 
completely dissolved, followed by addition of 50 mL ethylene 
glycol (EG). After string for 15 min, 5 mmol TiOSO4 (Sigma-
Aldrich Corp (No.495379)) was added into the solution and 
magnetically stirred for 10 min. Then, the mixture solution was 65 

transferred into a 100 mL Teflon pot and sealed tightly in a 
stainless steel autoclave and heated to 200 oC with an increase 
rate of 3 oC min-1. After 12 hrs’ solvothermal treatment at 200 oC, 
the autoclave was removed from the oven and cooled in the air to 
room temperature. Then, the products were washed with absolute 70 

ethanol and distilled water 3 times, respectively. The white 
precipitates were collected and vacuum dried at 80 oC overnight 
and kept in a desiccator for further use. A portion of the white 
powder was then calcined in a Muffle furnace at 450 oC for 1.5 h 
with a ramping rate of 5 oC min-1. The samples were then cooled 75 

to room temperature and kept in a desiccator for characterization 
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which features convenient control and absence of surfactant or 
other structure-directing reagents. F ions accompanied with 
heterolytically dissociated EG retarded the growth of TiO2 along 
[001] direction. As-synthesized 3DHTS was constructed by 2D 
microscale nanosheets which were further composed of 1D 5 

nanoscale rice-grain like “bricks” and possessed high percentage 
of exposed high energy {001} facets. This unique structure not 
only results in porous texture supplying diffusion paths for 
pollutants and the degradation outcomes to travel through the 
material, but also improves light harvesting ability through multi-10 

reflection. Thus, the synergistic effect of these features endows 
the prepared 3DHTS with superior photocatalytic activity. 
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