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template with porous structure. By adjusting the annealed 
temperatures, annealed times and gas flow, the porous GaN 
with different porosities can be achieved. To incorporate the 
porous GaN into the proposed self-separation method, we 
choose the optimal annealed conditions. Then, the HTAP 
template was mounted in a home-made vertical HVPE reactor 
to grow GaN crystals. Ga and NH3 were used as gallium and 
nitrogen sources. HCl gas reacted with liquid Ga at 820 ℃ to 
form GaCl, which was transported to the growth zone of the 
reactor and reacted with NH3 at 1030 ℃  to form the GaN 
deposition on the substrate. N2 was used as the carrier gas. The 
reactor pressure was kept around atmospheric pressure. The 
NH3 flow rate was held in the range 800-1000 mL/min, while 
the HCl flow rate was 10-20 mL/min. The growth rate was 
controlled in the range 10-30 μm/h. The thickness of the GaN 
crystal was about 40 μm. 

Scanning electron microscopy (SEM) images were taken 
with a Hitachi FESEM-4800 field emission microscope 
equipped  
with a Horiba EX-450 energy-dispersive X-ray spectroscopy 
(EDS). Raman spectra of the samples were obtained by the 
LabRAM HR system of Horiba Jobin Yvon at room 
temperature using a 532 nm solid laser as the exciting source. 
Photoluminescence (PL) measurement was carried out at room 
temperature using 325 nm He–Cd lasers as excitation power. 
The crystal quality of the GaN films was characterized by high-
resolution X-ray diffraction (HRXRD) using symmetrical (002) 
and asymmetrical (102) reflections. 

Results and discussion 

Theoretical foundation and design of the HTAP template 

Annealing above a certain temperature can cause GaN 
decomposition11,12. The GaN decomposition reaction has been 
reported by Boris V. L'vov to be as follows16: 

                                

2( ) ( ) (1 ) 0.5GaN s Ga g i N iN   
                      (1)  

Where the interaction parameter i varies from 0 to l, 
depending on the extent to which the nearest nitrogen atoms 
interact with one another at the instant of decomposition. It is 
well-known that Ga has the longest temperature range in the 
liquid phase (from 29.78 to 2403℃)17. Therefore, Ga vapor 
easily turns to liquid in a short time. Liquid Ga may participate 
as a catalyst in the vaporization process by dissolving Ga and 
disrupting its rigid wurtzite crystal structure18. The critical 
temperature of the GaN decomposition beginning depended on 
the annealing conditions (pressure, ambient gas) and the as-
grown material properties (surface morphology, film polarity). 
Jacob et al.19 measured the decomposition of GaN in different 
gases and found a value of initial decomposition temperature 
970 ℃ in Ar/N2 and 600℃ in H2. Rebey et al. found that GaN 
was stable even when annealed in N2 at a temperature as high 
as 1050 ℃ 20. Bchetnia et al. observed that annealing at 
temperature above 1100 ℃ causes the decomposition of GaN 
layers in N2 atmosphere at atmospheric pressure21. In the case 
of the GaN film with a pre-deposited liquid Ga droplet, 
noticeable decomposition started after annealing at 720 ℃ for 
15min in flowing Ar+H2 at 1 bar. The surface got rougher and 
small holes appeared near the Ga-GaN boundary22. 
Microhexagonal pits with average radii of 20 μm were observed 
on the annealed GaN surface in H2 atmosphere at 1030℃ for 5 

min15. After annealing temperature over 1100 ℃  in N2 
atmosphere, the GaN film began to decompose and it had a 
porous-like surface with a non-uniform distribution of the pore 
size21. 

Y. Oshima et al. proposed a VAS (void-assisted separation) 
technique for separating freestanding GaN from sapphire 
substrates by the assistance of numerous small voids8. In the 
VAS method, a thick GaN layer grown by HVPE was 
spontaneously separated as a result of thermal stress at a 
boundary consisting of numerous voids generated around a thin 
porous TiN layer inserted between the thick GaN layer and the 
base substrate during the cooling process after the growth 
freestanding GaN wafers from sapphire substrates by the 
assistance of numerous small voids. M. G. Mynbaeva et al. 
reported on the fabrication of porous freestanding GaN 
substrates using the anodization technique and on the epitaxial 
growth of GaN films on such substrates5. The threading 
dislocation density was reduced by using the nano-porous 
structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The schematic diagram of GaN crystal grown on the HTAP 
template. 

 
On the basis of the aforementioned analysis, it can be 

concluded that the voids or porous structure can block 
dislocation, release thermal stresses and assist separate GaN 
from the base substrate. Based on this conclusion, we designed 
and fabricated the HTAP template. Figure 1 shows the 
schematic diagram of GaN crystal grown on a HTAP template. 
A template with a GaN layer of about 5 μm thickness, 
fabricated by MOCVD on a 2 inch c-plane sapphire substrate, 
was employed as the starting substrate. The MGA template was 
annealed at 1100 ℃ for 100 min under N2 flow (2200 sccm). 
This annealing process converted the GaN film into a micron-
porous structure of GaN. A number of voids were formed in the 
MOCVD-grown GaN layer. Then, a 40 μm thick GaN crystal 
was grown on the HTAP template by HVPE. The GaN crystal 
was easily separated from the HTAP template after taking the 
sample out of the reactor. 

Growth result and discussion 

Figure 2(a) shows the surface morphology of the annealed 
HTAP template. Figure 2(b) shows the cross-section SEM 
images of the annealed HTAP template. The images show that 
the MOCVD-GaN layer turned into a micron-porous structure. 
Some holes easily penetrate through the MOCVD-GaN layer 
and reach the sapphire substrate. The Al2O3 in some holes was 
confirmed by EDS (Figure 2(c)). 
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Figure 2(a).  SEM image of the surface of the annealed HTAP 

template. Figure 2(b).  Cross-section SEM image of the annealed HTAP 
template. Figure 2(c). The EDS results of the HTAP template. 
Spectrum 1 was the EDS result of holes in the HTAP template. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3(a)-(c) Cross-section SEM image of the GaN crystal grown 

on the HTAP template. (d) SEM image of GaN crystal separation from 
the HTAP template. SEM images of (e) the GaN backside and (f) the 
surface of the base substrate. 

 
Figure 3(a)-(c) show the cross-section SEM images of the 

GaN crystal grown on the HTAP template. After HVPE-GaN 
growth, some voids were filled with the coalesced GaN. 
However, some voids also can be observed between the HVPE 
grown GaN and sapphire substrate. Figure 3(d) shows the SEM 
image of GaN crystal separated from the HTAP template. The 
GaN cyrstal grown on HTAP template was self-separated 
without any cracks after cooling down. Figure 3 (e)-(f) show 
the SEM images of the backside of the GaN and the upper 
surface of the base substrate, respectively. It can be seen that 
the porous structure remained on the backside of the GaN and 
the upper surface of the base substrate. This shows that 
separation occurred at the interface of the thick GaN crystal and 
the porous, suggesting that the porous structure make an 
essential contribution to the separation process.  

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Digital camera image of the lift-off GaN crystal produced 
using the HTAP template. 
 

Figure 4 shows a digital camera image of the free-standing 
GaN crystal produced by using the HTAP template. The GaN 
crystal was completely separated from the sapphire substrate. 
The size of the GaN crystal could be enlarged if larger 
templates were used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. HRXRD rocking curves of HVPE GaN crystals on the 
HTAP template and the MGA template: (a) (002) ω-scans and (b) (102) 
ω-scans. 

 
The quality of the self-separation GaN crystals were 

characterized by HRXRD rocking curves. Figure 5 depicts the 
ω-scans spectra of (002) symmetry planes and (102) asymmetry 
planes of the GaN film grown using the HTAP and MGA 
template. The FWHM of the (002) peak is 234 arcseconds for 
the GaN crystals grown on the HTAP template and 479 
arcseconds for those grown on the MGA template. Meanwhile, 
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the FWHM of the (102) peak is 277 and 432 arcseconds for the 
GaN crystals grown on the HTAP and the MGA templates, 
respectively. It is well known that the FWHM of the HRXRD 
rocking curve for asymmetrical (102) plane is directly related to 
the reliability of the structural quality since (102) FWHM is 
related with all TDs, including pure edge-, screw- and mixed-
dislocations23. Based on the HRXRD results, it is exhibited that 
all types of dislocations were reduced by using the HTAP 
template. The dislocation density ρ can be calculated by the 
following formula24: 

ߩ	 ൌ 2ߚ

4.35ൈܾ2
                         (2) 

 
Where β is the absolute value of the Burgers vector and b 

stands for the FWHM of the rocking curves. The edge 
dislocation density of GaN on HTAP template is about 4.1×108 
cm-2, less than the value 9.9×108 cm-2 in GaN crystal on MGA 
template, meanwhile screw dislocation density is also reduced 
from 4.6×108 cm-2 to 1.1×108 cm-2. The calculation result also 
shows that GaN crystalline quality of our samples was 
effectively improved by using the HTAP template. The state of 
the art for dislocation density in free-standing HVPE GaN with 
thickness of 5.8 mm was 1.2×106 cm-2.25 High quality GaN 
crystal has dislocation densities an order of magnitude lower 
than our results (107 cm-2). The dislocation density decreased 
with increase of its thickness 26. Growth process is also the key 
factor for growing high quality GaN crystal by HVPE. By 
prolonging the growth time and adjusting growth process, 
lower dislocation density GaN crystal grown on HTAP 
template will be obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6. Raman spectra of the GaN crystals grown on the HTAP 
template and the MGA template. 

 
To measure the strain of GaN crystals, Raman spectra were 

carried out for both GaN on the MGA and HTAP templates. 
Figure 6 shows the Raman spectroscopy of GaN crystals. The 
E2 phonon mode in the Raman scattering process is known to 
be sensitive to the biaxial stress in the crystal. The relaxation of 
residual strain can be measured by the following equation27: 

34.

   (cm-1GPa-1)       (3) 

where σ is the biaxial stress and Δω is the E2 phonon peak 
shift. The E2 (high) phonon frequency of GaN crystals grown 
on the HTAP and MGA templates are 567.83 cm and 568.23 
cm, respectively. This redshift of 0.4 cm-1 corresponds to a 

relaxation of compressive stress by 0.14 GPa. It demonstrated 
that the GaN crystal grown on the HTAP template reduced the 
biaxial stress of epitaxial GaN which could be advantageous for 
the growth of high quality GaN. 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
Figure 7 PL spectra of the GaN crystals grown on the MGA template 

and the HTAP template. 
 
The optical quality of the GaN crystals grown on the HTAP 

template is further characterized by PL and compared to that of 
GaN crystal on MGA template (Figure 7). A sharp and strong 
band edge emission on the MGA and HTAP template is 
observed. Their emission peaks are located at 3.418 eV and 
3.409 eV, respectively. The band edge emission intensity for 
the GaN on HTAP template is about 9 times higher than that on 
MGA template. The yellow luminescence band related to 
defects such as dislocation and impurities that are located at 
around 2.0-2.6 eV is very weak. In addition, the red-shift of 
approximately 9 meV for a band edge emission peak was 
observed. It is known that the band gap energy is affected by 
the residual stress in a semiconductor thin film28. Therefore, 
this red-shift of the band edge emission peak in the GaN crystal 
grown on the HTAP template can be attributed to the relief of 
the compressive stress in GaN crystal and this result is 
complementary to the result of the Raman measurement. The 
PL results indicate that the optical quality of the GaN crystal on 
the HTAP template was improved and the TDs density was 
decreased. 

For the HTAP template, some GaN nucleates selectively at 
the pores by filling the voids inside the pores. Many voids in 
the underlying GaN layer are refilled during the early stages of 
HVPE growth. In this process, bending of dislocations could 
occur through refilling of the voids. As a result, propagation of 
dislocations beyond the voids could be suppressed. Some GaN 
nucleates at the surface and GaN islands of submicrometer size 
form around the voids. Adjacent GaN islands expand and 
coalesce forming mesas, and these mesas extend both vertically 
and laterally on voids, leading eventually to full coalescence. 
The microscale lateral overgrowth of GaN above voids also 
contributes to the reduction of dislocations. When facing 
inclined planes, dislocations are forced to alter orientations by 
image force29,30. Less dislocation will thread to the surface, 
because lots of dislocations bend to become parallel to the 
growth face, and annihilate with each other31. Some of 
dislocations in the HTAP template layer may extend into the 
islands. However, these dislocations toward [0001] is 
suppressed by the bending of dislocations toward the horizontal 
direction because of the growth of faceted islands. 
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Conclusions 

In summary, GaN crystals were grown by HVPE on a HTAP 
template. The HTAP templates with micron-porous structure 
were fabricated by using the high temperature annealing 
process under suitable annealed conditions. With this technique 
numerous voids were generated between the GaN crystal and 
the HTAP template during the growth. And the voids played an 
important role in the separation of GaN crystal from HTAP 
template and the reduction of dislocation density in GaN 
crystals. The microscale lateral overgrowth of GaN above voids 
also contributes to the reduction of dislocations. The results 
demonstrate that the high temperature annealing method is a 
simple and short procedure to fabricate the HTAP templates, 
which serve as an excellent template for high-quality GaN film 
growth. 
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