# CrystEngComm

## Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/crystengcomm

Cite this: DOI: 10.1039/cxxxxxx

www.rsc.org/crystengcomm

# COMMUNICATION

## Enhanced water stability of a microporous acylamide-functionalized Metal-Organic Framework via interpenetration and methyl decoration<sup>†</sup>

Baishu Zheng,\*<sup>a</sup> Xiu Lin<sup>a</sup>, Zhaoxu Wang,\*<sup>a</sup> Ruirui Yun<sup>b</sup>, Yanpeng Fan<sup>a</sup>, Mingsheng Ding<sup>a</sup>, Xiaolian Hu<sup>a</sup> and Pinggui Yi\*<sup>a</sup>

s Received (in XXXX, XXX) Xth XXXXXXXX 201X, Accepted Xth XXXXXXXX 201X DOI: 10.1039/c0000000x

A microporous acylamide-functionalized MOF with 2-fold interpenetrated and methyl decorated framework (HNUST-4) has been designed and synthesized from  $[Cu_2(COO)_4]$  motifs 10 and a  $C_2$ -symmetric acylamide-linking tetracarboxylate, which exhibits good water stability, permanent porosity, high and selective CO<sub>2</sub> uptake at ambient temperature.

Metal-organic frameworks (MOFs) have become a leading class of porous crystalline materials for potential applications <sup>15</sup> in gas storage<sup>1</sup>, gas separation<sup>2</sup> and catalysis<sup>3</sup>. These applications mainly hinge on two important properties of MOFs: porosity and stability. Currently, remarkable breakthroughs in the construction of MOFs with ultrahigh porosity have been reported and several landmark MOFs <sup>20</sup> display large experimental BET surface area with values

- exceeding  $5000 \text{ m}^2/\text{g.}^4$  However, most of such highly porous MOFs are not robust enough and prone to collapse at humid environments, which greatly hinders their practical gas storage/separation applications. Thus, how to design and
- <sup>25</sup> address porous materials with high hydrostability is one of the key challenges we now face in MOF chemistry, and several strategies are envisaged to achieve this goal: (i) strengthening the metal-ligand coordination bonds by judicious choice of metal ions/clusters and organic ligands (e.g. high oxidation <sup>30</sup> state metals such as Fe<sup>3+</sup>, Cr<sup>3+</sup>, Al<sup>3+</sup> and Zr<sup>4+</sup>, etc for
- <sup>30</sup> state metals such as Fe<sup>+</sup>, CF<sup>+</sup>, AF<sup>+</sup> and ZF<sup>+</sup>, etc for carboxylate-based MOFs<sup>5</sup> and nitrogen-containing linkers such as pyrazole, imidazole and pyridyl-carboxylate, etc for transition-metal based MOFs or ZIFs<sup>6</sup>); (ii) utilizing interpenetration or catenation<sup>7</sup> to narrow the pore size; (iii)
- <sup>35</sup> doping hybrid composites (e.g. carbon nanotubes, heterometal) to the frameworks<sup>8</sup> and (iv) decorating the pores by

hydrophobic groups (e.g. methyl, ethyl ester, etc).<sup>9</sup>

In pursuing new high-performance gas storage/separation materials, we are specially interested in the design and 40 construction of porous MOFs from large multidentate carboxylate ligands with linking polar functional groups (e.g. acylamide, oxalamide, etc.) and dicopper(II) paddlewheel cluster, because such an approach may facilitate the generation of expanded MOFs with high surface area, open 45 copper sites and pre-designed polar functionalities that are all beneficial to improve the gas (especially for CO<sub>2</sub>) adsorption and separation property of materials.<sup>10</sup> To extend our research in this area, herein we report a novel 2-interpenetrated microporous acylamide-functionalized MOF decorated by 50 methyl groups, termed HNUST-4 (HNUST denotes Hunan University of Science and Technology), designed from a nanosized flexible tetracarboxylate 5,5'-[(5-methyl-1,3phenylene)bis(carbonylimino)]diisophthalic acid (MPBD). Interestingly, HNUST-4 represents a rare example of water-55 stable MOFs constructed from paddlewheel SBUs and pure carboxylate ligands, its crystallinity can be sustained even after immersion in boiling water for a day. In addition, HNUST-4 exhibits a moderate BET surface area of 1136  $m^2 \cdot g^{-1}$ , high and selective CO<sub>2</sub> uptake at ambient temperature.



Fig. 1 The crystal structure of HNUST-4. a-c) different cages in the crystal structure; d-e) single and 2-interpenetrated network viewed from b and c axis, respectively. Cu, blue-green; C, black; O, red; N, blue. Water molecules and H atoms have been omitted for clarity.

<sup>&</sup>lt;sup>a</sup> Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China. E-mail: zbaishu@163.com; hnust\_chem@163.com; yipinggui@sohu.com.

<sup>&</sup>lt;sup>b</sup> College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.

<sup>&</sup>lt;sup>†</sup> Electronic supplementary information (ESI) available: Experimental details, TGA plots, heat adsorption of  $H_2$ ,  $CO_2$  and  $CH_4$ , sorption selectivity calculations. CCDC 1006012. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x/

Solvothermal reaction of MPBD and  $Cu(NO_3)_2 \cdot 3H_2O$  in DMF/ethanol/H<sub>2</sub>O (5:3:2 in volume) at 75 °C for 48 hours afforded pale blue block crystals of HNUST-4. HNUST-4 crystallizes in space group *I4/mmm* and the framework s consists of  $[Cu_2(COO)_4]$  paddlewheels linked by MPBD<sup>4-</sup>

- ligands. MPBD<sup>4-</sup> exhibits two crystallographically independent conformations (*syn-* and *anti-*) and the carbonyl moiety of acylamide group is disordered over two positions with equal probability (Fig. S1). Similar to the isostructural
- <sup>10</sup> PMOF-3 and analogues<sup>11</sup>, the overall structure of HNUST-4 exhibits 2-fold interpenetration and each single framework can be viewed as the packing of three types of cages in 3D space (Fig. 1a-c): Cage A is a cuboctahedron composed of twenty-four isophthalate units and twelve paddlewheels with a
- <sup>15</sup> diameter of 1.2 nm. Cage B, a tetragonal prismatic junctionlike cage about 1.3 nm in diameter, is formed from four paddlewheels and four *anti*-MPBD<sup>4-</sup> linkers. Cage C is also a tetragonal prismatic junction-like cage of about 0.8 nm diameter, surrounded by four *syn*-MPBD<sup>4-</sup> and two
- <sup>20</sup> paddlewheels. Each cage A is connected to six neighboring cages A via two cages B and four cages C to form a 3D framework with a simple cubic network topology, in which there exists large 1D rounded-like channel along the c axis with a diameter of about 3.0 nm (Fig. S1). Notably, this <sup>25</sup> channel is further filled by cage A from the other
- interpenetrating framework due to the large void sapce, despite that the channel has been occupied by methyl groups, resulting in a 2-fold interpenetrated structure (Fig. 1e) of HNUST-4 with a total potential solvent accessible volume of 30 about 53.6 % upon removal of guest molecules calculated by
- PLATON<sup>12</sup>.



Fig. 2 Powder X-ray diffraction patterns of HNUST-4, showing the framework stability upon treatment at different conditions.

- <sup>35</sup> To assess the framework stability of HNUST-4, both the thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements have been performed. The TGA curve indicates that HNUST-4 can be thermally stable up to 300 °C (Fig. S3). In addition, as shown in Fig. 2, the
- <sup>40</sup> PXRD patterns of HNUST-4 demonstrate that the single crystal is representative of the pure bulk sample, and the framework can be retained after removal of guest molecules. Most interestingly, HNUST-4 exhibits good water stablity and

the as-synthesized sample can sustain its crystallinity even 45 when immersed in boiling water for a day. Furthermore, the desolvated HNUST-4, which can be obtained by heating the acetone-exchanged sample under high vacuum at 100 °C for 12 h, also demonstrates framework stability after treatment in water at room temperature. To the best of our knowledge, 50 HNUST-4 thus represents the second example of water stable acylamide-functionalized MOFs constructed from paddlewheel SBUs and pure carboxylate ligands. Another instance, PCN-124 with a self-interpenetrated (3, 36)connected 3D structure recently reported by Zhou group<sup>7b</sup>, 55 also shows moderate water stability at room temperature. The excellent hydrostability of HNUST-4 may be attributed to the interpenetrated framework and incorporated hydrophobic methyl groups, both factors are believed to can effectively enhance the hydrostability of MOFs.<sup>7,9</sup>



Fig. 3 Gas sorption isotherms of HNUST-4 up to 1 bar at different temperatures.

The permanent porosity of desolvated HNUST-4 was examined via low-pressure N<sub>2</sub> adsorption measurements at 77 <sup>65</sup> K. HNUST-4 shows completely reversible type-I adsorption behavior, characteristic of microporous materials with the high limiting N<sub>2</sub> uptakes of 296 cm<sup>3</sup> g<sup>-1</sup> (Fig. 3a). The estimated apparent Brunauer–Emmett–Teller (BET) surface area is 1136 m<sup>2</sup> g<sup>-1</sup> (Langmuir surface area ~ 1284 m<sup>2</sup> g<sup>-1</sup>) and the total pore <sup>70</sup> volume is 0.458 cm<sup>3</sup> g<sup>-1</sup>, which is comparable to the theoretically total framework pore volume (0.536 cm<sup>3</sup> g<sup>-1</sup>) calculated by PLATON. In addition, HNUST-4 possesses a pore-size distribution with the pore sizes centered at 8.6, 9.3 and 11.8 Å, respectively (Fig. S5), consistent with the single crystal data.

The permanent porosity, open copper sites and acylamide functional groups within the hydrostable framework of HNUST-4 prompted us to study its gas adsorption performance, especially that for CO<sub>2</sub> capture and separation (CCS). Thus, low-pressure H<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub> sorption isotherms of HNUST-4 at different temperatures have been measured (Fig. 3). All isotherms are fully reversible and HNUST-4 can adsorb 1.52 and 1.02 wt% (170.3 and 114.6 cm<sup>3</sup> g<sup>-1</sup>) at 77 and 87 K (1 bar) without saturation, s respectively, which is quite close to the performance of MOFs PCN-6' (1.37 wt %)<sup>13a</sup> and HKUST-1 (1.44 wt %)<sup>13b</sup> at 77 K and

- 1 bar. Based on the adsorption isotherms measured at 77 K and 87 K, the zero coverage H<sub>2</sub> adsorption enthalpy ( $Q_{st}$ ) of HNUST-4 is calculated to be 7.0 kJ mol<sup>-1</sup> by the virial method (Fig. S6), comparable with these of MOEs with a method with the 14
- <sup>10</sup> comparable with those of MOFs with exposed metal sites.<sup>14</sup> Noticeably, HNUST-4 exhibits high CO<sub>2</sub> uptakes of 100.9 and 62.9 cm<sup>3</sup> g<sup>-1</sup> under 1 bar at 273 and 298 K, respectively. This CO<sub>2</sub> storage capacity is lower than those of other acylamide-functionalized MOFs such as HNUST-1<sup>10c</sup> (156.4 cm<sup>3</sup> g<sup>-1</sup> at 273
- <sup>15</sup> K and 1 bar), HNUST-3<sup>10d</sup> (168.7 cm<sup>3</sup> g<sup>-1</sup> at 273 K and 1 bar) and PCN-124<sup>7b</sup> (204 cm<sup>3</sup> g<sup>-1</sup> at 273 K and 1 bar) owing to the relatively low BET surface area, but fairly comparable to that of SUN-50<sup>15a</sup> (106 cm<sup>3</sup> g<sup>-1</sup> at 273 K and 1 bar) and PCN-124 analogue Cu<sub>2</sub>L<sup>15b</sup> [63.5 cm<sup>3</sup> g<sup>-1</sup> at 298 K and 1 bar, L = 3,5-
- <sup>20</sup> bis(3,5-dicarboxylphenylethynyl) pyridine], and quite larger than that of the best performing ZIF material ZIF-20<sup>15e-d</sup> (69.8 cm<sup>3</sup> g<sup>-1</sup> at 273 K and 1 bar). In sharp contrast to CO<sub>2</sub>, HNUST-4 can only uptake limited amounts of CH<sub>4</sub> (24.7 and 14.3 cm<sup>3</sup> g<sup>-1</sup>) and N<sub>2</sub> (4.4 and 2.5 m<sup>3</sup> g<sup>-1</sup>) under 1 bar at 273 and 298 K, indicating that
- <sup>25</sup> HNUST-4 has the ability to selectively adsorb CO<sub>2</sub> over CH<sub>4</sub> and N<sub>2</sub>. The CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> adsorption selectivities calculated from the slopes of the isotherms reach up to 6.3 and 29.9 at 273 K, respectively (the values still reach 4.9 and 20.6 at 298 K, Fig. S7), much higher than the corresponding values of most MOFs with <sup>30</sup> high surface area (mainly in the ranges of 3–10 and 10–50 for

 $CO_2/CH_4$  and  $CO_2/N_2$  selectivity at 298 K).<sup>16</sup>

To better understand these observations, the coveragedependent  $Q_{st}$  of HNUST-4 to CO<sub>2</sub> and CH<sub>4</sub> were also calculated by the virial method, from fits of the adsorption isotherms <sup>35</sup> collected at 273 and 298 K. As shown in Fig. S6, the  $Q_{st}$  of CO<sub>2</sub> is 27.2 kJ mol<sup>-1</sup> at the zero coverage, which compares well with the reported data for other acylamide-functionalized MOFs such as  $[Cu_{24}(TPBTM^6)_8]$  (26.3 kJ mol<sup>-1</sup>)<sup>9a</sup>, indicating a strong interaction between CO<sub>2</sub> and HNUST-4. As for CH<sub>4</sub>, HNUST-4

- <sup>40</sup> exhibits a lower  $Q_{st}$  value (18.5 kJ mol<sup>-1</sup>) at zero coverage. The excellent CO<sub>2</sub> adsorption behaviour of HNUST-4 may be attributed to the large dipole moment of the -CONH- groups, which may facilitate strong dipole-quadrupole interactions between the acylamide groups within HNUST-4 and CO<sub>2</sub>.
- <sup>45</sup> In summary, by utilizing a nanosized acylamide-bridging tetracarboxylate (MPBD) as the linker and a copper(II) paddlewheel as the SBU, we have successfully designed and constructed a new microporous acylamide-functionalized MOF (HNUST-4). HNUST-4 possesses 2-fold interpenetrated
- so structure with decorated methyl groups, exhibiting good water-stability, a moderate BET surface area of 1136 m<sup>2</sup> g<sup>-1</sup>, high CO<sub>2</sub> uptake capacity (100.9 and 62.9 cm<sup>3</sup> g<sup>-1</sup> under 1 bar at 273 and 298 K), as well as excellent CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> selectivity at ambient temperature. This work demonstrates
- <sup>55</sup> that the strategy of interpenetration together with hydrophobic methyl decoration is an effective method to enhance the

hydrostability of MOF materials. Ongoing investigations are addressing such water stable acylamide-functionalized MOFs with even higher surface area and pore volume by using larger <sup>60</sup> linkers or highly connected SBUs to further improve the CO<sub>2</sub> uptake and separation property.

This work was supported by National Natural Science Foundation of China (21201062, 21172066), Hunan Provincial Natural Science Foundation of China (14JJ3113, 65 14JJ4045), Scientific Research Fund of Hunan Provincial Education Department (12C0115, 12C0116), and the Open

Project Program of Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education (Hunan University of Science and Technology, LKF1304).

#### 70 Notes and references

<sup>‡</sup> Crystal data for HNUST-4:  $C_{75}H_{38}N_6O_{36}Cu_6$  (guest molecules removed with PLATON SQUEEZE<sup>12</sup>),  $M_r = 1980.41$ , Tetragonal, *I4-mmm*, a = b = 29.627(3) Å, c = 29.627 Å,  $\alpha = \beta = \gamma = 90^\circ$ , V = 26005(4) Å<sup>3</sup>, Z = 8,  $D_c = 1.012$  g cm<sup>-3</sup>, T = 293(2) K, GOF = 1.199 based on  $F^2$ , final  $R_1 = 0.0958$ , 75 w $R_2 = 0.3059$  [for 6539 data  $I > 2\sigma(I)$ ]; CCDC: 1006012.

- (a) B. Xiao, P. S. Wheatley, X. Zhao, A. J. Fletcher, S. Fox, A. G. Rossi, I. L. Megson, S. Bordiga, L. Regli, K. M. Thomas, R. E. Morris, J. Am. Chem. Soc. 2007, **129**, 1203; (b) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature, 2013, **495**, 80.
- (a) O. M. Yaghi, G. M. Li, H. L. Li, *Nature*, 1995, **378**, 703; (b) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko, *J. Am. Chem. Soc.*, 2012, **134**, 3663.
- 3 U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, *J. Mater. Chem.* 2006, **16**, 626.
- 4 (a) K. Koh, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc.,
  2009, 131, 4184; (b) O. K. Farha, I. Eryazici, N. C. Jeong, B. G.
  Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A.
  Ö. Yazaydın, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 15016; (c) H.
  Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O.
  Yazaydın, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science,
- 2010, 329, 424; (d) O. K. Farha, A. özgür Yazayd, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.* 2010, 2, 944; (e) D. Q. Yuan, D. Zhao, D. F. Sun and H.-C. Zhou, *Angew. Chem., Int. Ed.*, 2010, 49, 5357; (e) O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O'Neill, A. A. Sarjeant, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *J. Am. Chem. Soc.*, 2012, 134, 9860.
- (a) A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P.V. Wiper, J. R. Darwent, M. J. Rosseinsky, *Angew. Chem. Int. Ed. Engl.*, 2012, **51**, 7440; (*b*) D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu,
   H.-L. Jiang, Y.-P. Chen, D. Darensbourg, H.-C. Zhou, *J. Am. Chem. Soc.*, 2013, **135**, 17105; (*c*) H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu,
   Z. Wei, Y.-P. Chen, H.-C. Zhou, *J. Am. Chem. Soc.*, 2013, **135**, 13934; (*d*) J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem, R. R. Willis, *J. Am. Chem. Soc.*, 2009, **131**, 15834; (*e*) J.
- H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, *J. Am. Chem. Soc.* 2008, **130**, 13850; (*f*) J. Ehrenmann, S. K. Henninger, C. Janiak, *Eur. J. Inorg. Chem.* 2011, **2011**, 471; (*g*) G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, *Science*, 2005, **309**, 2040.
- <sup>115</sup> 6 (a) A. Demessence, D.M. D'Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc., 2009, **131**, 8784; (b) S. S. Nagarkar, A. K. Chaudhari and S. K. Ghosh, Inorg. Chem., 2012, **51**, 572; (c) H. J. Choi, M. Dincă, A. Dailly, J. R. Long, Energy Environ. Sci., 2010, **3**, 117.

25

- 7 (a) H. Jasuja and K. S. Walton, *Dalton Trans.*, 2013, **42**, 15421; (b) J. Park, J.-R. Li, Y.-P. Chen, J. Yu, Z. U. Wang, L.-B. Sun, P. B. Balbuena, H.-C. Zhou, *Chem. Comm.*, 2012, **48**, 9995.
- 8 (a) H. Li, W. Shi, K. Zhao, H. Li, Y. Bing and P. Cheng, *Inorg. Chem.*, 2012, 51, 9200; (b) S. J. Yang, J. Y. Choi, H. K. Chae, J. H. Cho, K. S. Nahm and C. R.Park, *Chem. Mater.*, 2009, 21, 1893; (c) J. Chun, S.h Kang, N. Park, E. J. Park, X. Jin, K.-D. Kim, H. O.Seo, S. M. Lee, H. J. Kim, W. H. Kwon, Y.-K. Park, J. M. Kim, Y. D. Kim and S. U. Son, *J. Am. Chem. Soc.*, 2014, DOI: 10.1021/ja500362w.
- <sup>10</sup> 9 (a) D. Ma, Y. Li, Z. Li, *Chem. Commun.*, 2011, **47**, 7377; (b) T. Wu, L. Shen, M. Luebbers, C. Hu, Q. Chen, Z. Ni, R. I. Masel, *Chem. Commun.*, 2010, **46**, 6120; (c) J. Yang, A. Grzech, F.M. Mulder, T. J. Dingemans, *Chem. Commun.*, 2011, **47**, 5244; (d) J. M. Taylor, R. Vaidhyanathan, S. S. Iremonger and G. K. H. Shimizu, *J. Am. Chem.*
- 15 Soc., 2012, **134**, 14338; (e) T. A. Makal, X. Wang, H.-C. Zhou, Cryst. Growth Des., **2013**, 13, 4760.
- 10 (a) B. S. Zheng, J. F. Bai, J. G. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748; (b) B. S. Zheng, Z. Yang, J. F. Bai, Y. Z. Li and S. H. Li, Chem. Commun., 2012, 48, 7025; (c) B. S.
- Zheng, H. T. Liu, Z. X. Wang, X. Y. Yu, P. G. Yi and J. F. Bai, *CrystEngComm*, 2013, **15**, 3517; (*d*) Z. X. Wang, B. S. Zheng, H. T. Liu, X. Lin, X. Y. Yu, P. G. Yi and R. R. Yu, *Cryst. Growth Des.*, 2013, **13**, 5001; (*e*) L. T. Du, S. L. Yang, L. Xu, H. H. Min and B.

S. Zheng, *CrystEngComm*, 2014, 16, 5520; (f) Z.Y. Lu, H. Xing, R. Sun, J. F. Bai, B. S. Zheng and Y. Z. Li, *Cryst. Growth Des.*, 2012, 12, 1081; (g) J. G. Duan, Z. Yang, J. F. Bai, B. S. Zheng, Y. Z. Li and S. H. Li, *Chem. Commun.*, 2012, 48, 3058.

- 11 (a) J. J. Perry IV, V. Ch. Kravtsov, G. J. McManus and M. J. Zaworotko, J. Am. Chem. Soc., 2007, **129**, 10076; (b) X. F. Liu, M.
- Park, S. Hong, M. Oh, J. W. Yoon, J. S. Chang and M. S. Lah, *Inorg. Chem.*, 2009, **48**, 11507.
- 12 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- 13 (a) S. Q. Ma, D. F. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin, H. C. Zhou, J. Am. Chem. Soc., 2007, 129, 1858; (b) J. Y. Lee, J. Li, J. Jagiello, J. Solid State Chem. 2005, 178, 2527.
- 14 (a) D. J. Collins and H.-C. Zhou, J. Mater. Chem., 2007, 17, 3154; (b)
  L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev., 2009, 38, 1294.
- 15 (a) T. K. Prasad, D. H. Hong, M. P. Suh, Chem. Eur. J. 2010, 16, 14043; (b) P. Zhang, B. Li, Y. Zhao, X. Meng and T. Zhang, Chem.
- Commun., 2011, 47, 7722; (c) H. Hayashi, A. P. Cote, H. Furukawa,
  M. O'Keeffe, O. M. Yaghi, *Nat. Mater.*, 2007, 5, 501; (b) A. Phan, C.
  J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe, O. M.
  Yaghi, *Acc. Chem. Res.*, 2010, 43, 58.
- 16 J.-R. Li, Y. Ma, M. C. Mccarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B.
- 45 Balbuena and H.-C. Zhou, *Coord. Chem. Rev.*, 2011, **255**, 1791.