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Silk Fibroin-Mediated Biominerlization of Calcium 
Carbonate at the Air/Water Interface 

Wei Hao,a David Porter,b Xianting Wang a and Zhengzhong Shao＊a  

The synthesis of calcium carbonate (CaCO3) with different morphologies and polymorphs at the 
air/water interface has been reported in previous work, while the influence of the structure of 
macromolecular additives on this type of mineralization is rarely investigated. Regenerated silk fibroin 
(RSF) from the Bombyx mori silkworm silk is analogous to the main protein contained in naturally 
formed nacre, which can form complex structures at the air/water interface due to the multi-block 
amphipathy. This study demonstrates how a range of CaCO3 structures with a variety of different 
morphologies and polymorphs were obtained at the air/water interface mediated by RSF. The precursor 
stabilizing ability of RSF allows the crystals to grow directly from amorphous calcium carbonate (ACC), 
which is observed by time-dependent experiments. The structures of RSF that exist at the interface 
determine the final morphologies and polymorphs of the crystals, which can be influenced by the 
concentrations of ([RSF] and [Ca2+]) and the molecular weight of RSF. Thermodynamically metastable 
aragonite phase may be mediated by β-sheets of RSF formed at low concentrations, while stable calcite 
can be generated by the RSF amorphous structure at high concentrations. The synergy between RSF and 
CaCO3 at the interface can provide a way to understand the function of organic materials involved in the 
biomineralization process, and can be applied to manipulate the structures of synthetic hybrid materials. 
 

 

 

 

 

Introduction 

Calcium carbonate (CaCO3) is one of the most abundant minerals 
in nature, used as a structural or protective material. The preparation 
of highly regulated CaCO3 with fine structures under ambient 
conditions has attracted much attention.1, 2 During the 
biomineralization process, both the water-soluble fraction and the 
insoluble matrix of organic materials are considered to play essential 
roles.3 For example, the soluble acid glycoproteins combining with 
silk fibroin-like proteins with regular β-sheet structure have a strong 
influence on the morphology and lattice structure of minerals, while 
insoluble β-chitin serves as a nucleation surface and template in 
mollusk shell nacre.4 Therefore, to mimic the biomineralization 
phenomena of natural organisms in vitro, the design and preparation 
of organic matrices (soluble and insoluble) is an active and fertile 
area of research. Insoluble templates such as rigid solid matrices 
(fibre, membrane, scaffold),5 self-assembled monolayers,6 and 
Langmuir-Blodgett (LB) films at the air/water interface1, 7-9 can all 
guide inorganic crystal morphology into remarkable forms.  

Amphiphilic molecules can self-assemble at an air/water interface, 
whose conformation is different from that in the bulk solution. Thus 
they can be used to produce asymmetric inorganic particles or films,7, 

8, 10, 11 and the chain length can affect crystallization.11 Particularly, 
various proteins can form more complex films at the air/water 
interface due to the high molecular weight and/or muti-block 

hydrophilic/hydrophobic segments. The structure and morphology of 
the protein self-assembled film depend on many factors; for example, 
concentration of the bulk solution, temperature and molecular 
weight.12, 13 However, much previous work has focused on the 
solution-phase mineralization mediated by proteins, while the 
influence of the self-assembled film structures on templated 
crystallization at the interface still need to be studied. 

Regenerated Bombyx mori silk fibroin (RSF) is similar to silk 
fibroin-like proteins in nacre, both in the amino acid composition 
and secondary structure.14 Work in our laboratory has shown that 
RSF dominated by β-sheet conformation in solution presents a 
strong preference for the formation of the aragonite phase of 
CaCO3.

15 RSF is a hydrophilic/hydrophobic partitioning molecule, 
which can separate its hydrophilic and hydrophobic residues on 
opposite sides of the interface when it adsorbed at an air/water 
interface.16, 17 Yang et al have studied the behaviour of RSF at the 
air/water interface and found that the dynamic surface tension and 
structure of RSF are dependent on the solution concentration.12 In 
this paper, we focus on the effect of concentration of ([RSF] and 
[Ca2+]), and RSF molecular weight on CaCO3 templating in an 
ammonium carbonate diffusion system. A continuous change in the 
polymorphs and morphology of the final CaCO3 products could be 
linked with the structure of RSF adsorbed layers at the air/water 
interface. Time-dependent observations are used to reveal the 
crystallization process mediated by RSF. Based on these results, we 
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suggest a possible mechanism for the mineralization at the air/water 
interface. 

Experimental Section 

Materials and Preparation of Regenerated Silk Fibroin 
Solution. RSF aqueous solutions were prepared from natural 
Bombyx mori silkworm cocoons. To obtain RSF with varied 
molecular weights, we used different degumming methods following 
established procedures.18 The silk cocoons were first treated with 0.5 
wt% Na2CO3 or NaHCO3 boiling solution to remove sericin and the 
degummed silk then dissolved in 9.5 mol/L LiBr aqueous solution. 
After being filtered, the RSF/inorganic solvents were dialyzed 
against deionized water for 72 h to remove inorganic ions. The 
dialyzed solutions were then clarified by spinning in a centrifuge at 
6000 rpm for about 8 min. The supernatant with about 4 wt% (w/w) 
of RSF was collected and stored at 4 °C. Different concentration 
solutions were prepared at room temperature. The molecular weights 
were tested by rheological measurements, described in detail 
elsewhere.19 The labels and preparation processes of different RSF 
solutions are summarized in Table 1. 

Table 1 Labels and preparation of different RSF solutions 

Label Mw (kDa) Mw/Mn Degumming process 
Dissolving 

reagent 

RSF-185 185 1.05 NaHCO3 for 60 min LiBr 

RSF-83 83 1.95 Na2CO3 for 45 min LiBr 

RSF-36 36 1.58 Na2CO3 for 180 min LiBr 

Crystallization of CaCO3. In preparation, the glass substrates 
and beakers were subjected to ultrasound in ethanol and deionized 
water (DIW) for 30 min, further soaked in H2O-HNO3(65 wt%)-
H2O2(1:1:1, v/v/v) solution, then rinsed with DIW and finally dried 
in an oven at 80 C. Mineralization was carried out in a 10 mL 
beaker containing a mixture solution of an appropriate amount of 
RSF (RSF-83 was employed if no further noted) solution in the 
range of 0.0001 wt% to 2 wt% and CaCl2 solution in the range of 1 
mM to 10 mM. The beaker was covered by parafilm with six 
pinholes and then transferred into a large closed desiccator (about 
6.5 L). 3 g of freshly crushed ammonium carbonate was put in 
another 10 mL beaker covered with parafilm with 6 pinholes, and 
placed into the desiccator for releasing CO2. The mineralization 
temperature was around 25 C. After an assigned time, a glass 
substrate or copper grid was used to carefully collect the CaCO3 
particles produced at the air/water interface. The obtained CaCO3 
particles were dried in air for further characterization. For Laser 
Confocal Fluorescence Micrograph characterization, the particles 
were washed by DIW and obtained by centrifuging. This process 
was repeated 3 times and the sediments were dried in air before 
observation. 

Characterization. The morphologies of the CaCO3 particles were 
observed with a TS 5136MM scanning electron microscope (SEM) 
at 20 KV after sputtered with gold (about 5 nm to 20 nm of the 
thickness). High-magnification images were obtained on an S-4800 
FE-SEM at 1 KV. Transmission electron microscopy (TEM), high-
resolution transmission electron microscopy (HRTEM) images, 
selective area electron diffraction (SAED) patterns and Electron 
diffraction (EDX) were obtained on a JEM-2100F operated at 200 
KV. The polymorphs of CaCO3 were detected on a Renishaw inVia 
Reflex Raman spectrometer equipped with a Leica 2500 optical 
microscope and 633 nm Helium/Neon laser, CCD detector. Visual 
observations were performed by polarized optical microscopy 
(Olympus BX61). Fluorescence observations were performed by 

Laser confocal fluorescence microscopy (Olympus FV 1000), the 
excitation wavelength was 405 nm.  

Results and Discussion 

RSF is recognized as a multi-block amphiphilic macromolecule, 
thus can adsorb on the surface and change the surface tension.20 

Yang et al.13 used a video-enhanced drop shape tensiometry 
technique to characterize the surface activity, and found the 
equilibrium surface tension of RSF solutions was constant above a 
bulk concentration of 2 wt%, and ascribed this to the formation of 
aggregates in the bulk solution. In the diluted RSF solution (≤ 2 
wt%), the adsorption mechanisms and structure of RSF were 
depending on the bulk concentration. With our system, we measured 
the RSF solution surface tension in different concentrations of CaCl2 

(1 mM, 5 mM and 10 mM) using the Wilhelmy plate method 
(Supporting Information, Figure S1). It was found that increasing the 
concentration of RSF from 0.0002 wt% to 2 wt% in the bulk solution 
can decrease the surface tension at all concentrations of CaCl2, and 
the decline of surface tension is slowed down at higher 
concentrations of RSF, which may be ascribed to the formation of 
aggregates in the bulk solution. This trend is in accordance with 
Yang’s research, and may affect the mineralization process. 
Therefore, RSF solutions with concentration less than 2% were 
selected for the mineralization of CaCO3 as the additive. 

In the controlled mineralization without any additive, the CaCO3 

particles produced at the air/water interface were conventional 
rhombohedral calcite with little vaterite (Figure S2). The addition of 
RSF to the mineralization solution greatly changed the polymorph 
and morphology of the CaCO3 particles. Figure 1 shows how the 
morphologies of CaCO3 particles varied with the concentration of 
RSF and Ca2+. The polymorphs of the particles were detected by 
Raman (Figure S3) and summarized in Table 2.  

The two main crystal polymorphs obtained at the air/water 
interface are calcite and aragonite. In general, large calcite crystals 
could be obtained with relatively high bulk concentrations of RSF 
and Ca2+ (shown in the darker grey areas in Table 2), while aragonite 
particles became the domain polymorph under conditions of low 
bulk component concentrations (displayed with lighter grey in Table 
2). The domain crystal polymorphs showed a gradual transition from 
calcite to aragonite with decreased [RSF] at a fixed Ca2+ 
concentration. The coexisting point of two polymorphs shifted to 
lower RSF concentration with increasing Ca2+ concentration. 

With reducing RSF concentration, the morphology of the calcite 
particles changed from flower-like structures (Figure 2a, 2b) to 
rhombohedral with a stepped indentation upper surface and rounded 
corners (Figure 2c, 2d). When the RSF concentration was extremely 
low, Ca2+ cannot reach the critical nucleation point on the RSF 
chains, which resulted in conventional rhombohedral calcite similar 
to the control experiment, due to thermodynamic stability (Figure 2e, 
2f). Classical crystallization might be dominant in control 
experiments and those of low concentrations of RSF. 

The continuous morphology and polymorph variation can also be 
observed in the aragonite crystals obtained with decreasing RSF 
concentration when [Ca2+] = 1 mM. The two ends of bundle-like 
aragonite, namely the fan-shape sectors, become gradually wider, 
and the final size becomes larger. When further decreasing the RSF 
concentration, the low content of RSF at the air/water interface 
causes the irregular bundle-like aragonite. When increasing Ca2+ 
concentration to 5 mM and 10 mM, both the size and quantity of 
these calcite particles increased at high RSF concentration, and the 
fan-shape sectors of the aragonite become wider. Besides the bundle-
like aragonite morphology, large hemisphere aragonite particles 
were produced at high component concentration, which were printed 
in bold and italic type “A” in Table 2. The size of hemisphere 
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