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La2Ti2O7 nanoplates decorated with Cu2ZnSnS4 
nanoparticles for enhanced visible-light-driven 
photocatalytic activity  

Xiaomeng Tian,a Jingbing Liu, * a   Hao Wang a and Hui Yana  

ABSTRACT: New visible-light-sensitive Cu2ZnSnS4 (CZTS) /La2Ti2O7 hetero-junction photocatalysts have 

been successfully prepared via hydrothermal method and in-situ growth process. The catalyst was 

characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission 

electron microscope (TEM), and ultraviolet–visible–near-infrared (UV–vis–NIR) spectrophotometer. 

CZTS/ La2Ti2O7 exhibited higher photocatalytic activity than pure La2Ti2O7 and CZTS for the 

degradation of RhB under UV and visible light irradiation. The highest efficiency is observed with CZTS/ 

La2Ti2O7 = 0.5. The enhancement of the photocatalytic activity of the CZTS/ La2Ti2O7 hetero-junction 

photocatalyst could be ascribed to its improved light absorption property, high adsorption capacity 

and reduced recombination of the photoexcited electrons and holes during the photocatalytic 

reaction. 

 

Introduction 

Photocatalysis is considered to be a potential route for 
environmentally removing hazardous organic compounds with 
high energy efficiency.1 As visible light accounts for the largest 
proportion of the solar spectrum, while the number of 
photocatalysts working under visible light irradiation is still 
limited,2 so great efforts have been made to develop efficient 
visible light active photocatalysts.3-6 
 
In recent years, composite photocatalysts with two or more 
components have been extensively explored, because it is 
difficult for a single photocatalyst to absorb visible light 
efficiently.7-18 In addition, composite semiconductors can 
significantly reduce the recombination and speed up the 
separation rate of photogenerated charge carriers.  Among 
various composite materials, the p–n hetero-junction structure  
has been demonstrated as an efficient method for separating 
electron and hole pairs,19-30 such as Cu2ZnSnS4/WO3,

31 
Cu2ZnSnS4 /SnO2

32, AgBr/WO3,
33  AgX/Ag3PO4 (X = Cl, Br, 

I),34  AgBr/H2WO4,
35 SnO2/ZnO,36 BiOI/TiO2,

37 
Bi2O3/Bi2WO6.

38 
 
N-type lanthanide titanate (La2Ti2O7), as one of the layered 
compounds, has attracted widespread attention in the field of 
photocatalysis due to its unique layered structure, chemical 
activity and the peculiar electronic structure.39-41 However, 
La2Ti2O7 with large band gap can only exhibit high 
photocatalytic activity under ultraviolet (UV) light. This 
suggests that poor solar efficiency hinders its extensive 
application. Quaternary Cu2ZnSnS4 (CZTS), a direct-transition-
type semiconductor possessing a narrow band gap energy of 

ca.1.5 eV and a large absorption coefficient (>104cm-1), has 
been recently found to be an excellent light energy-harvesting 
candidate for solar cells and photocatalysts.42-44 In addition, 
CZTS consisting solely of nontoxic and inexpensive elements 
exhibits p-type semiconductor behavior.  
 
Considering that CZTS and La2Ti2O7 can be constructed to 
hetero-junction interface because of their matched band 
potentials, we report the design and fabrication of CZTS/ 
La2Ti2O7 hetero-junction photocatalysts by hydrothermal 
method and in-situ growth process. The photocatalytic 
properties of CZTS/La2Ti2O7 composites were investigated 
under both UV and visible light irradiation. Importantly, the 
novel CZTS/La2Ti2O7 hetero-junction photocatalysts show 
broad and enhanced optical absorption from the ultraviolet to 
the visible light region. The photocatalytic mechanism based on 
the relative band positions of two semiconductors is proposed 
as well. 
 

Experimental details 

Sample preparation 

All chemicals were of analytical grade and used without further 
purification. The La2Ti2O7 powders were prepared by 
hydrothermal method. In a representative procedure, the 
equivalent molar quantities (5 mmol) of La(NO3)3•6H2O and 
Ti(SO4)2 were dissolved in deionized water. Then aqueous 
solution containing 2.0 g NaOH was dropped into the above 
solution and meanwhile white precipitation appeared. The 
mixture was stirred for 10 min and then transferred into a 
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Teflon-lined stainless steel autoclave with a capacity of 50 mL, 
maintained at 200℃for 24 h, and subsequently cooled to room 
temperature. The white products were collected after filtration, 
washed with distilled water and ethanol several times and dried 
at 80℃. 
 
The nanocomposite photocatalyst with CZTS were prepared by 
in-situ synthetic process. 1 mmol of pre-prepared La2Ti2O7 was 
dispersed into ethylene glycol, and then the precursor of CZTS 
was prepared by the following method. 1mmol CuCl2 、

0.5mmol ZnCl2、  0.5mmol SnCl2、0.8mmol thioacetamide 
(the CZTS/ La2Ti2O7 molar ratio is thus 0.5:1) was added in 
turn with magnetic stirring. The mixture was exposed to 
ultrasound irradiation in the air for another 30 mins and 
transferred into a 50 mL Teflon-lined stainless steel autoclave. 
The autoclave was heated at 180℃ for 15 h, and then cooled to 
room temperature naturally. After reaction, the resulting 
powders were repeatedly washed by centrifugation and 
decantation with deionized water, and then dried at 80℃ for 6 h. 
In the next procedure, the CZTS/ La2Ti2O7 molar ratio was 
altered to 0.2:1 and 0.8:1 by changing the dosage of CuCl2、

ZnCl2、SnCl2 and thioacetamide. In addition, pure Cu2ZnSnS4 
was prepared under the same condition for comparison. 

 
Fig. 1.The schematic diagram for the formation process of the nanocomposites. 

Characterization 

X-ray powder diffraction (XRD) patterns of the samples were 
recorded on a BRUKER D8 ADVANCE X-ray powder 
diffractometer with Cu Kα radiation (λ = 1.5406 Å). The 
accelerating voltage, emission current, and scanning speed were 
40 kV, 40 mA and 0.2°/s, respectively. The morphologies and 
microstructures of the samples were observed using a Hitachi 
S4800 field emission scanning electron microscope (FESEM) 
and Hitachi-H8100 transmission electron microscope (TEM) 
with an accelerating voltage of 200 kV. Optical absorption 
studies were carried out using an ultraviolet-visible-near-
infrared (UV–vis–NIR) spectrophotometer (Shimadzu UV-
3101PC) using pure BaSO4 pellet as the reference. 

Photocatalytic Activity Tests 

The photocatalytic performance tests were carried out by 
adding 50 mg of photocatalysts into 100 mL of 1.7 × 10-5 mol/L 
Rhodamine B (RhB) solution. The suspension was magnetically 
stirred in dark to establish adsorption/desorption equilibrium. 
Then the suspensions were irradiated under both ultraviolet 
light by using a 400 W high-pressure Hg lamp (λ < 280 nm) or 
visible light by a 500-W tungsten halogen lamp (λ> 400 nm), 
and then 5 mL of solution was taken out every 10 min and 
centrifuged to remove the photocatalyst powders. The 

concentration of RhB solution was determined by measuring 
the absorbance at 554 nm with the UV–vis spectrophotometer. 

Results and discussion 

Powder characterization by XRD and SEM 

The XRD patterns of CZTS/ La2Ti2O7 composites are shown in 
Fig. 2. The diffraction patterns of CZTS and La2Ti2O7 are also 
presented for comparison. In the samples (Fig. 2a–d), the 
characteristic diffraction peaks at 2θ of 29.8°, 32.2°, and 40.0° 
are attributed to La2Ti2O7 with a perovskite structure 
conforming to the P21 space group (JCPDS 70-0903). 
Meanwhile, there are several additional diffraction peaks at 2θ 
of 28.6°, 47.5°, and 56.3°, which can be attributed to (112)、
(220) and (312) crystal planes of the tetragonal CZTS phase 
(JCPDS 26-0575). From Fig. 2b–e, the peaks represented the 
CZTS are becoming stronger and stronger, indicating that the 
content of CZTS is increasing. The other diffraction peaks of 
CZTS in the nanocomposites can not be clearly identified 
because they overlap with the peaks of La2Ti2O7. Moreover, in 
the nanocomposite samples, only the diffraction peaks of CZTS 
and La2Ti2O7 are found, indicating that no other phase appears 
in the experimental procedure. 
 
The morphologies of the products were characterized by SEM 
and TEM (Fig. 3). From Fig. 3a, it can be seen that the 
La2Ti2O7 plates are very thin, with thickness of about 10 nm, 
which is in accordance with our previous results.45 In Fig. 3b, 
the morphology of CZTS is irregular spherical particles of 
about 50 nm. As displayed in Fig. 3c-e, some CZTS 
nanoparticles homogenously disperse on the surfaces of the 
La2Ti2O7 nanosheets, and the size of CZTS decreases to 30 nm 
or so. With the increasing CZTS content, more CZTS 
nanoparticles were dispersed on the surface of La2Ti2O7, which 
formed the hetero-junction structure. But in Fig. 3e, the CZTS 
nanoparticles are so much that they cover the surface of 
La2Ti2O7 nanosheets. To further obtain information about the 
structure of the sample, the CZTS/ La2Ti2O7 with ratio of 0.5 
was characterized by TEM. As shown in Fig. 3f, CZTS 
nanoparticles are tightly coupled on the surface of La2Ti2O7 
even when they are subjected to an ultrasonic treatment. High-
resolution TEM images of the CZTS/ La2Ti2O7 are shown in 
Fig. 2g, the clear lattice fringe indicates the co-existing of 
CZTS and La2Ti2O7, in which the 0.313 nm of lattice spacing is 
closed to the (112)  lattice  planes  of  tetragonal CZTS, while 
the  0.310 nm  of  lattice  spacing  is  corresponding  to  (220)  
lattice  plane  of  perovskite structured La2Ti2O7. 
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