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Solvent-mediated crystal-to-crystal transformations 
from a cationic homometallic metal-organic 
framework to heterometallic frameworks 

Xinxiong Li, Yaqiong Gong, Huaixia Zhao, Ruihu Wang* 

Two unprecedented heterometallic metal-organic frameworks (MOFs), Ag2(btr)2Cr2O7·0.5H2O 
(1) and Ag9(btr)6(Cr2O7)4·PF6·6H2O (2) [btr = 4,4′-bis(1,2,4-triazole)], were synthesized 
through crystal-to-crystal transformation when a monometallic MOF Ag2(btr)2·2ClO4·3H2O 
was immersed into the aqueous solution of KPF6-K2Cr2O7 and NaBF4-K2Cr2O7, respectively. 
The transformation follows a solvent-mediated anion-induced mechanism through the 
dissolving-reaction-crystallization process. Single-crystal X-ray diffraction analyses reveal that 
both 1 and 2 are three-dimensional structures based on Ag+, Cr2O7

2- and btr. In 1, Cr2O7
2- 

adopts a bidentate bridging mode, and Ag+ ions are linked by Cr2O7
2- and btr into a neutral 

framework. However, Cr2O7
2- in 2 exhibits two types of unprecedented bridging modes through 

bridging four and five Ag+ ions, respectively. Ag+ ions in 2 are bridged by Cr2O7
2- and btr to 

form a cationic framework. The non-coordination anions BF4
-/PF6

- show a structure-directing 
effect during the crystal-to-crystal transformations and can be considered as structure-directing 
agents. The second-harmonic-generation (SHG) measurement shows that 1 is a non-linear 
optical complex. 
 

Introduction 

Recent decades have witnessed considerable progress in metal-
organic frameworks (MOFs) due to their theoretical significance 
and potential applications in adsorption, ion exchange, sensor 
technology, drug delivery and catalysis.1 Considering the existing 
MOFs, one notes that numerous monometallic structures have been 
reported, there has been relatively little progress concerning the 
synthesis of heterometallic MOFs.2 Heterometallic MOFs have 
exhibited a great promise in molecular magnetism, optics and 
electrochemistry because of the charge-transfer properties between 
different metal centers.3 One common methodology for the 
construction of heterometallic MOFs is to introduce two kinds of 
metal cations to react with organic ligands in one system. And a 
series of heterometallic MOFs based on 3d-4f, 4d-4f metal centers 
have been successfully constructed.4  The other method is to 
introduce metal-oxo anions as secondary ligands to bind with metal 
cations. As well known, a few heavy metal-oxo anions, such as 
CrO4

2-, Cr2O7
2- and Mo2O7

2-, can form effective M-O-Cr or M-O-
Mo bonds,5 which provides us new opportunities to construct novel 
heterometallic MOFs by using these metal-oxo anions as secondary 
ligands. The dichromate (Cr2O7

2-) has long been known to bridge 
metal ions forming coordination polymers. Recently, a series of 
heterometallic MOFs based on late transition metal ions and 
Cr2O7

2- have been reported.6-11 However, the chemistry of 
heterometallic MOFs based on Ag+ and Cr2O7

2- is largely 
unexplored, although two 1-D hybrid chains based on Ag+ and 
Cr2O7

2- were presented.12 One possible reason is that Ag+ is a 
strong oxidizing agent and can be easily reduced into silver during 
the reaction process; the other reason may be ascribed to the rapid 

formation of insoluble silver dichromate when Ag+ and Cr2O7
2- are 

simultaneously present in one reaction system. Therefore, the 
exploration of new methods for the synthesis of heterometallic 
MOFs based on Ag+ and Cr2O7

2- still remains a great challenge. 
Recently, there has been a growing interest in crystal-to-

crystal transformation of MOFs because they can provide us 
new chances to obtain unique compounds that cannot be 
obtained by direct reaction.13 What’s more, the structural 
transformation may also bring new functions, such as 
adsorption and magnetic properties, into the resultant 
materials.14 So far, the crystal transformation involving single-
crystal to single-crystal process has been widely studied,15 
however, the transformations through solvent-mediated 
process was less studied.16 Solvent-mediated structural 
transformation usually takes place under mild conditions as a 
result of external stimuli, such as heat, light, solvent 
molecules, anions, metal cations and redox reagents. It is 
noteworthy that in the reported solvent-mediated anion-
induced crystal transformations, the external stimuli was just 
one kind of anion,16,17 the transformation driven by two kinds 
of anions, especially by non-coordinated anions is rare . In this 
work, we report the syntheses of two heterometallic MOFs 
based on Ag+ and Cr2O7

2- through solvent-mediated crystal-to-
crystal transformations from a cationic monometallic MOF. 
By immersing monometallic Ag2(btr)2·2ClO4·3H2O,18 [btr = 
4,4′-bis(1,2,4-triazole)] in aqueous KPF6-K2Cr2O7 and NaBF4-
K2Cr2O7 solution, respectively, yellow crystals of 
Ag2(btr)2Cr2O7·0.5H2O (1) and red crystals of 
Ag9(btr)6(Cr2O7)4·PF6·6H2O (2) were successfully obtained in 
three months, respectively (Scheme 1). It should be mentioned 
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III elemental analyzer. IR spectra were recorded on a PerkinElmer 
Spectrum One FT-IR infrared spectrophotometer. Thermal analyses 
were performed in a dynamic nitrogen atmosphere with a heating 
rate of 10 ºC/min, using a NETZSCH STA449C thermal analyzer. 
Powder XRD patterns were obtained using a Philips X’Pert-MPD 
diffractometer with CuKα radiation (λ = 1.54056 Å). The SHG 
measurements are carried out on the powder samples by the Kurtz-
Perry method at room temperature. Fundamental 1064 nm light was 
generated with a nanosecond pulsed Q-switched Nd:YAG laser. 

Synthesis of Ag2(btr)2Cr2O7·0.5H2O (1) 

As-synthesized Ag2(btr)2·2ClO4·3H2O (37 mg, 0.05 mmol) was 
immersed in an aqueous solution (20 mL) of K2Cr2O7 (0.0025 mol 
L-1), and then NaBF4 (55 mg, 0.5 mmol) was added. The mixture 
was sealed in a 22 mL vial and shaken mildly at room temperature 
for 3 minutes, then left it undisturbed at ambient temperature. 
Orange block crystals suitable for X-ray diffraction were obtained 
after 3 months. Yield 11 mg (30% based on 

Ag2(btr)2·2ClO4·3H2O). IR (KBr, cm-1): 3446(m), 3146(m), 
3101(m), 3082(m), 1637(w), 1496(m), 1384(vw), 1305(w), 
1292(w), 1223(vw), 1087(s), 1063(s), 983(m), 954(vs), 936(vs), 
906(m), 844(s), 769(vs), 611(vs), 576(v). Elemental analysis (%) 
calcd for C8H9N12O7.5Cr2Ag2 (713.01): C 13.47, H 1.27, N 23.58; 
found: C 13.58, H 1.33, N 23.73. 

Synthesis of Ag9(btr)6(Cr2O7)4·PF6·6H2O (2) 

Complex 2 was prepared according to a similar procedure to 
that of 1, excepted for the replacement of NaBF4 by equimolar 
KPF6 (92 mg, 0.5 mmol). Yield 9 mg (25% based on 
Ag2(btr)2·2ClO4·3H2O). IR (KBr, cm-1): 3436(s), 3145(w), 
3133(m), 3101(m), 3082(w), 1629(m), 1496(m), 1384(w), 
1305(m), 1291(m), 1223(vw), 1079(vs), 1063(m), 995(m), 983(m), 
955(vs), 936(vs), 906(m), 885(s), 843(vs), 768(vs), 611(vs), 
562(m), 482(m). Elemental analysis (%) calcd for 
C24H36N36O34Cr8Ag9F6P (2904.69): C 9.92, H 1.25, N 17.36; 
found: C 10.13, H 1.37, N 17.60. 

Table 1 Crystallographic Data for 1 and 2. 

Complex 1 2 

Empirical formula C8H9N12O7.5Cr2Ag2 C24H36N36O34F6PCr8Ag9 
Formula weight (g/mol) 713.01 2904.69 

Crystal system Orthorhombic Triclinic 

Space group Fdd2 P-1 

a (Å) 22.870(5) 12.83740(10) 

b (Å) 34.647(7) 13.000 

c (Å) 9.535(2) 13.2175(5) 

α (°) 90 118.924(8) 

β (°) 90 102.910(15) 

γ (°) 90 99.902(12) 

V (Å3) 7555(3) 1777.59(7) 

Z 16 1 

Dc (g/cm3) 2.507 2.713 

μ(mm-1) 3.231 3.370 

F(000) 5488 1388 

Temperature (K) 298 298 

θ range (°) 2.13~27.50 2.05~27.48 

Reflections measured 6334 19371 

Independent reflections 3910 8078 

Observed reflections 3829 7376 

Goodness-of-fit on F2 1.005 1.068 

Rint 0.0166 0.0154 

R1 (I >2σ(I)) 0.0199 0.0351 

wR2 (I >2σ(I)) 0.0474 0.0898 

a
R1 = ∑||Fo| – |Fc||/∑|Fo|. 

b
wR2 = [∑w(Fo

2
– Fc

2
)
2
/∑w(Fo

2
)
2
]
1/2
; w = 1/[σ

2
(Fo

2
) + (xP)

2
 + yP], P = (Fo

2
  + 2Fc

2
)/3, where x = 0.02950 , y =0 for 1, x = 0.0444, y = 

5.7316 for 2. 

X-Ray Crystallography  

X-ray diffraction data for 1 and 2 were collected on a 
Rigaku Mercury CCD diffractometer with graphite-
monochromated Mo Kα (λ = 0.71073 Å) at room temperature. 
The program SADABS was used for the absorption 
correction. The structures were solved by the direct method 
and refined on F2 by full-matrix least-squares methods using 
the SHELX-97 program package.20 All non-hydrogen atoms 

were refined with anisotropic thermal parameters. The 
positions of hydrogen atoms on the organic ligands were 
generated geometrically and refined using a riding model. 
CCDC 988556-988557 contain the supplementary 
crystallographic data for this paper. The summary of 
crystallographic data and structure refinements for 1 and 2 is 
listed in Table 1. The selected bond lengths and angles of 
complexes 1 and 2 are listed in Table S1 and S2 in the 
Supporting Information, respectively. 
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