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Abstract	

A	single‐crystal	structure	determination	on	the	S‐protected	form	of	a	chiral	18‐crown‐6	

derivative	 known	 to	 be	 a	 selective	 catalyst	 for	 thiolysis	 reactions	 of	 amino	 acid	

derivatives	 has	 shown	 the	 molecule	 to	 crystallise	 in	 an	 unsolvated	 form	 where	 the	

macrocyclic	ring	has	a	conformation	in	which	the	dipoles	of	substituent	amide	units	are	

aligned	 parallel.	 The	 resulting	 polar	 entities	 are	 linked	 through	 NH…O	 H‐bonds	 and	

weaker	 interactions	which	can	be	considered	to	result	 in	doubly	hermaphroditic	 links,	

the	 whole	 crystal	 proving	 to	 be	 polar.	 The	 possible	 consequences	 of	 the	 observed	

secondary	 interactions,	 some	 being	 intramolecular,	 are	 considered	 in	 relation	 to	 the	

mechanism	of	catalysis	by	the	isolated	molecule.	

	

Keywords	:	 crown	 ether	;	 chirality	;	 hermaphroditic	 polymerisation	;	 polar	 crystal	;	

catalysis.	

	

	

Introduction	

Catalysis	is	one	of	the	most	fundamental	reflections	of	the	importance	of	supramolecular	

chemistry,	since	the	interactions	of	a	catalyst	with	substrates,	intermediates,	transition	

states	and	products	must	all	be	labile	and	have	as	their	origin	the	numerous	forms	that	

intermolecular	forces	may	take.1	Asymmetric	catalysis	is	a	particularly	important	aspect	

of	this	field,2	in	part	because	of	its	significance	in	the	understanding	of	enzyme	action,3	

and	one	of	the	families	of	molecules	(in	forms	modified	by	the	introduction	of	chirality)	
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long	considered	useful	in	developing	a	detailed	analysis	of	asymmetric	transformations	

is	 that	 of	 the	 crown	 ethers.4,5	 Nonetheless,	 in	 regard	 to	 substrate	 binding	 by	 chiral	

macrocycles	in	general,	there	remains	a	need	for	a	more	profound	understanding	of	the	

operative	factors.6	In	the	belief	that	a	single‐crystal	structure	determination	of	the	chiral	

crown	 ether	 A	 (Figure	 1),	 the	 S‐protected	 form	 of	 a	 highly	 discriminatory	 thiolysis	

catalyst,7	 might	 reveal	 its	 substrate	 binding	 interactions,	 the	 present	 work	 was	

conducted.	The	18‐crown‐6	framework	which	forms	the	core	of	A	has	been	of	particular	

interest	 for	 the	 catalysis	 of	 reactions	 involving	 protonated	 primary	 amines	 (such	 as	

amino	acids)	because	of	the	efficacy	with	which	its	sixfold‐symmetric	conformation	may	

serve	as	a	binding	site	for	RNH3+,	although	it	is	well‐known	that	this	conformation	is	not	

necessarily	 that	 of	 the	 unbound	 ligand.4,5 Interestingly,	 A	 crystallises	 readily	 in	 an	

unsolvated	form,	 i.e.	without	any	form	of	bound	species	present	and	in	a	conformation	

which	is	not	optimal	for	binding	RNH3+	species,	its	structure	illustrating	the	forces	that	

may	be	in	balance	in	complex	formation	and	indicating	a	possible	mechanism	for	guest	

expulsion	from	any	complex. 

	

	

Figure	1	 The	 crown	 ether	 A,	 derived	 from	 R,R‐tartaric	 acid	 and	 with	 side	 chains	

derived	from	R‐cysteine.	

Experimental	

Synthesis	

A	 was	 a	 sample	 available	 from	 earlier	 work7	 and	 was	 crystallised	 for	 the	 X‐ray	

diffraction	measurements	by	slow	evaporation	of	its	solution	in	dichloromethane.	

Crystallography	
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The	 structure	 determination	 was	 performed	 by	 Dr	 Lydia	 Brelot	 at	 the	 Service	 de	

Radiocristallographie	of	the	University	of	Strasbourg.	The	crystals	were	placed	in	oil	and	

a	single	one	selected,	mounted	on	a	glass	fibre	and	placed	in		a	low‐temperature	(173(2)	

K)	nitrogen	 stream.	The	X‐ray	diffraction	data	were	 collected	on	 a	Nonius‐Kappa	CCD	

diffractometer	 using	 graphite‐monochromated	MoK	 radiation	 (	 =	 0.71073	Å)	 and	 a	

«	phi‐scan	»	 scan	mode.	 COLLECT8	 software	 was	 used	 for	 the	 data	 measurement	 and	

DENZO‐SMN9	 for	 the	 processing.	 The	 structure	 was	 solved	 by	 direct	 methods	 using	

SHELXS‐97.10	The	refinement	and	further	calculations	were	carried	out	using	SHELXL‐

97.11	CCDC	997723.	

Crystal	data	:	Triclinic,	 space	 group	 P1,	 a	9.3854(5),	b	14.0773(6),	 c	14.0972(6)	 Å,		

65.540(2),		70.737(2),		79.985(2)	°,	173(2)	K	;	V	1598.95(13)	Å3,	F(000)	672,	Dc	(Z	=	1)	

1.318	 g	 cm‐3,	 Mo	 0.221	 cm‐1,	 specimen	 0.50x0.14x0.04	 mm,	 2max	 55	 °,	Nt	 16352,	N	

11142	(Rint	0.101),	No	8232,	R1	0.072,	wR2	0.168,	S	1.080.	
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crucial	to	the	catalyst	efficiency,	thus	it	is	important	that	some	entasis	may	be	involved	

in	the	initial	substrate	binding	via	the	same	mechanism	as	would	be	involved	in	product	

retention.	A	secondary	factor	influencing	the	accessibility	of	the	active	site	could	be	the	

aggregation	seen	in	the	lattice	of	crystalline	A	which	leads	to	the	doubly	hermaphroditic	

chains.	These	add	to	the	factors	which	have	been	deduced	to	be	important	influences	on	

catalyst	function	on	the	basis	of	substrate	complex	structures.1,18(d)	
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Part of the doubly hermaphroditic chain formed by the crown ether derivative. 
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