CrystEngComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/crystengcomm

Graphical Abstract

Well-defined Mn_2O_3 hollow nanofibers with a smooth wall were successfully fabricated by a single-spinneret electrospinning method. The possible formation mechanism was introduced based on the temperature-dependent experiments.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

CrystEngComm Accepted Manuscript CrystEngComm Accepted Manuscript

Fabrication and formation mechanism of Mn2O3 hollow nanofibers by single-spinneret electrospinning

Guorui Yang,*^a* **Wei Yan, ****a,b* **Jianan Wang^a and Honghui Yang****^a*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

 $Mn₂O₃$ hollow nanofibers ($Mn₂O₃$ HNs) have been prepared by direct annealing of electrospun polyvinylpyrrolidone (PVP)/manganese acetate composite nanofibers. The morphology, crystal structure and compositions of the Mn_2O_3 HNs were investigated by using the scanning electronmicroscopy (SEM), transmission electron microscopy (TEM), the X-ray diffraction (XRD), energy dispersive X-ray

¹⁰spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), respectively. The results indicated that composite nanofibers after calcined at high temperature still remain fibrous morphology with a fascinating hollow structure. The resultant HNs are $Mn₂O₃$ with high purity. The temperature-dependent experiments were carried out to monitor the evolution process of Mn_2O_3 HNs. The well-defined Mn_2O_3 HNs is the end product of the reversed crystallization during the annealing process.

¹⁵**1. Introduction**

In past decades, great efforts have been devoted to the fabrication and characterization of nanosized materials as well as devices assembled from them. Functional one dimensional (1D) nanostructures such as nanorods, nanowirs, nanofibers, nanotubes 20 and so on,¹⁻⁵ are of particular interest with respect to their potential in a wealth of applications that include gas sensor, $6, 7$ optoelectronic materials, catalyst, $9-11$ energy store, $12-14$ etc. Among different shapes of 1D nanostructures, nanotubes with modulated compositions have the advantages of large specific 25 surface areas, 15 anisotropic properties and the unique hollow structure feature,¹⁶ which are the desirable properties for applications such as Li-ion batteries,¹⁷ dye-sensitized solar cells,¹⁸ photocatalytic catalysts¹⁹ and sensors.²⁰ Since the first discovery of the carbon nanotubes, 21 many procedures including 30 self-assembly,²² templates directed process,^{23, 24} hydrothermal,²⁵ chemical vapor deposition 26 and co-electrospinning²⁷ have been reported for the preparation of 1D nanotubes. However, these methods often suffer from tedious procedures, templates and catalysts. The template process has been widely used to produce ³⁵hollow nanostructures. Nevertheless, the resultant materials were

- limited by the morphology and structure of the templates. Moreover, the introduction of template may case heterogeneous impurities and increases manufacture $\cos t$ ²⁸ self-assembly method was proven to be an effective route to fabrication of
- ⁴⁰nano- to micro tubules, notwithstanding the length of the obtained tubules is usually in the micro- or submicroscale, and the formation of tubular structures is always incidental.²⁹ It is urgently important to develop a straightforward method with features of facility, versatility and economic cost to synthesize 1D 45 nanotubes.
	- As an important member in Manganese oxide family (MnO,

 Mn_3O_4 , Mn_2O_3 , Mn_5O_8 and MnO_2), Mn_2O_3 exhibits distinctive chemical and physical properties. It has been widely explored as an environment-friendly catalyst to remove carbon monoxide and 50 nitrogen oxide from waste gas, $30, 31$ the inexpensive precursor for producing soft magnetic materials, the promising absorbent for water treatment^{32, 33} and the efficient electrode material of rechargeable lithium batteries. $34, 35$ Therefore, great efforts have been paid to the synthesis of $Mn₂O₃$ with different morphologies ⁵⁵ranging from one- to three-dimensional structures including rods, wires, cubes, octahedral, hollow structures, etc. $35-40$ It has been reported that the properties of nanomaterials depend on not only their chemical components, but also their structures, morphologies, dimensions and size distributions.⁴¹ Hence, ω controlled preparation of Mn_2O_3 with desired morphology, shape, and size may induce fascinating properties and wider applications. Previous researchers have claimed that the capacity retention of Mn_2O_3 material is generally very poor, when it was used as an anode material for lithium ion batteries.^{34, 42} In 65 contrast, straw-sheaf-shaped Mn_2O_3 had an outstanding performance in the capacity retention.⁴³ Despite these successes, the morphology controlled synthesis of Mn_2O_3 hollow nanofibers is still a great challenge and highly desirable.

Electrospinning was regarded as a cost effective and flexible 70 platform for 1D nanostructures preparing, and several typical 1D nanostructures (solid, hollow, belt and porous) have been facilely prepared in previous work.^{44, 45} By controlling the precursory components and processing parameters, the morphology, size, structure and composition of the eletrospun products can be 75 conveniently tuned in a wide range.¹⁶ In recent years, a variety of HNs were successfully obtained by electrospinning that can be classified into three major methods which are inclusive of TUFT (Tubes by Fibers Templates) process,⁴⁶ coaxial electrospinning route⁴⁷ and single-nozzle co-electrospinning technique.^{28, 4}

However, these three methods are less than satisfactory. For instance, different coating processes involved in TUFT process such as chemical vapor deposition and atomic layer deposition, make high demand on apparatus and result in a multistep ⁵ process.⁴⁹ Coaxial electrospinning is affected by many factors, such as miscibility or immiscibility of the pair of solutions,

- viscosity ratio, interfacial tension and so forth. As a result, it is difficult to achieve good concentricity of the core and shell materials in the electrospun fibers.⁵⁰ For single-nozzle co-
- 10 electrospinning one must choose two different appropriate polymers to form phase separation.³ Using one-pot singlespinneret electrospinng to prepare HNs will be an ideal solution which can avoid the disadvantages as mentioned above. To date, numerous hollow fibers with different compositions such as
- 15 Fe_2O_3 ⁵¹ SnO₂,^{10, 52} TiO₂,^{15, 53} NiO₂⁵⁴ CoFe₂O₄,⁵⁵ ZnO-SnO₂⁵⁶ etc. have been fabricated by the one-pot single-spinneret electrospinng method. To the best of our knowledge, no one has reported the detailed study on the synthesis of Mn_2O_3 HNs as well as the possible formation mechanism.
- ²⁰Motivated by the above concerns, for the first time we proposed a one-pot single-spinneret electrospinning technique to prepare $Mn₂O₃$ HNs. Compared with other methods, neither a coating procedure nor a special spinner is required, HNs could be fabricated by simply annealing composite fibers. The
- ²⁵temperature-dependent experiments were carried out to monitor the evolution process of the Mn_2O_3 HNs. Also, based on the experimental observations, a possible formation mechanism of the Mn_2O_3 HNs was also proposed.

2. Experiment

2.1. Preparation of Mn2O³ ³⁰**hollow nanofibers**

Poly (vinyl pyrrolidone) (PVP, Mw = 13 000 00), manganese acetate $(Mn(CH_3COO)_2 \cdot 4H_2O)$ and mixture of methyl alcohol and acetic acid (weight ratio 4:1) were mixed together followed by vigorous stirring for 6 h. 10 mL of the precursor

³⁵solution was loaded into a syringe with a stainless steel needle which was connected to a high-voltage supply. A voltage of 12 kV was used to the spinneret. A sheet of aluminum foil was used as the collector and it was placed 12 cm away from the needle. The as-spun fibers were calcined at 600 ºC for 4 h.

⁴⁰**2.2. Characterization.**

The morphologies of the products were examined using SEM (JEOL JSM 6700F field emission instrument) and EDS was performed on JEOL JSM 6460. TEM, high revolution TEM (HRTEM) and selected area electron diffraction (SAED) images

- ⁴⁵were obtained by a JEOL JEM2100 instrument. XRD (X'pert MPD Pro (PANalytical Co.) diffractmeter using Cu-Kα radiation (40 kV, 40 mA)) analyses were carried out. The elemental information was studied using the XPS measurement (Axis Ultra, Kratos (UK) at monochromatic Al Kα radiation (150 W, 15 kV
- ⁵⁰and 1486.6 eV). The thermogravimetric analysis (TG) was carried out on a Perki Elemer TGA-7 at a heating rate of 5 $^{\circ}$ C min^{-1} in air.

3. Results and discussion

3.1. Structures and morphologies of Mn2O³ HNs

Fig.1 (a, b) SEM images of uncalcined $Mn₂O₃$ HNs with different magnifications, (c, d) Mn₂O₃ HNs with different magnifications, (e) EDS spectrum of sample Mn_2O_3 HNs.

Fig. 1a-d show the morphologies of the as-prepared samples at ⁶⁰different magnifications. Fig. 1a and b indicate that the uncalcined fibers possess a smooth surface due to the amorphous nature and align in a random orientation resulting from the bending instability of the spinning jet. 57 The fibers are quite uniform with a diameter of about *ca.* 430 nm. After calcination at 65 600 °C, a well-defined 1D structure was still retained, which indicated that heat treatment do not destroy the fibrous morphology. However, the diameter of fibers drastically shrinks to about 200 nm due to the decomposition of PVP and crystallization of Mn_2O_3 .⁵⁸ Fig. 1d depicts the morphology of the 70 Mn₂O₃ HNs at a higher magnification, clearly indicating a large quantity of tube-like structures. The chemical compositions of the sample was further characterized by EDS. Fig. 1e is the EDS spectrum of the Mn_2O_3 HNs, and it indicates that the obtained HNs were mainly composed of Mn and O.

- ⁷⁵TEM observations were carried out to substantiate more detailed information about the morphology and the crystal structure of the Mn_2O_3 HNs. It can be found from Fig. 2a that Mn_2O_3 HNs have a relatively smooth surface, which is consistent with the SEM results. The strong contrast between the dark edges and the light
- so center further demonstrates that the Mn_2O_3 HNs are all hollow (inset of Fig. 2a), and reveals the well-defined tubular nanostructures with diameters of 200 nm and wall thicknesses of 30 nm. The lattice fringes with spacing of 0.38 nm can be clearly observed in Fig. 2b, which is in agreement with spacing of (211) 85 planes of Mn_2O_3 . The 2D electron diffraction pattern (inset of
- Fig. 2b) indicates that the as-prepared HNs had a single crystalline structure, which may be the reason for the formation of $Mn₂O₃ HNs$ smooth surface. However, we were not able to

identify a

Fig. 2 (a) TEM image of the Mn₂O₃ HNs, inset is lager magnification TEM image. (b) HRTEM image of the $Mn₂O₃$ HNs, inset is the SAED collected from a single hollow nanofiber.

Fig. 3 TG analysis of the $Mn₂O₃$ precursor nanofibers

Fig.5 (a) XPS fully scanned spectra of pristine $Mn₂O$ ₃ HNs; High resolution XPS spectrum for (b) Mn 2p and (c) O 1s.

reasonable explanation for the evolution of the single crystalline structure.

- ¹⁵In order to display the decomposition process of the precursor fibers, TG analysis was carried out. As illustrated in Fig. 3, the TG curve elucidates three obvious weight loss processes. The first mass loss is about 12.4 % before 215 °C, which is resulted from evaporation of acetic acid, methyl alcohol and a little water.
- ²⁰The second obvious weight loss (*ca.*39.0 %) between 215 and 375 °C is mainly ascribed to the decomposition of manganese acetate and a fraction of PVP.¹³ The further weight loss (24.7 %) in the range of 375 and 500 \degree C is due to the degradation of almost of residual PVP.⁵⁹ When the temperature is
- 25 higher than 500 °C, no discernible weight loss was observed indicating that the precursor is converted to Mn_2O_3 HNs completely.
- Crystal structures and phase compositions of the Mn_2O_3 HNs were confirmed by XRD measurements. As observed in Fig. 4,
- 30 all diffraction peaks are well indexed to pure $Mn₂O₃$ with spinel structure (JCPDS No. 41-1442), where the diffraction peaks at 2θ values of 23.1°, 33.0°, 38.3°, 45.2°, 49.3°, 55.2°, 60.6°, 64.2°, 65.8° and 67.5° are ascribed to the reflections of (211), (222), (400), (332), (431), (440), (611), (541), (622) and (631) planes of
- 35 the spinel Mn_2O_3 , respectively. Notably, only characteristic peaks of Mn_2O_3 existed in the sample, and no peak from the impurities such as MnO and Mn_3O_4 could be detected, indicating that the HNs are Mn_2O_3 with high purity.
- The chemical compositions and electronic structures of the $40 \text{ Mn}_2\text{O}_3$ HNs were analyzed by XPS. Fig. 5a exhibits the survey spectrum, from which it can be clearly observed that the peaks of Mn and O coexist in Mn_2O_3 nanofibers. This result is well witnessed by the outcomes of EDS and XRD. The high-resolution XPS spectra of Mn 2p and O1s are showed in Fig. 5b and c,
- ⁴⁵respectively. The Mn 2p orbital region (Fig. 5b) shows the binding energies of Mn $2p_{1/2}$ and Mn $2p_{3/2}$ peaks at 641.21 eV and 653.21eV, respectively. The splitting energy of 12.0 eV between Mn 2 $p_{3/2}$ and Mn 2 $p_{1/2}$ is a typical value for Mn^{3+ 60} As shown in Fig. 5c, the shape of asymmetric peaks of O 1s 50 spectrum indicate that crystal lattice oxygen $(O_{M-O}$, 529.51 eV) and surface hydroxyl groups $(O_{H-O}, 530.91$ eV) presented simultaneously in the $Mn₂O₃$ HNs ⁴⁴. From this brief analysis, it

is realistic to propose that pure $Mn₂O₃$ HNs were successfully

synthesized in this work. **3.2. Formation mechanism of the Mn2O³** ⁵⁵**HNs**

TEM observations (Fig. 6) and XRD measurements (Fig. 7) were purposely carried out to unveil that how Mn_2O_3 HNs evolve during heat treatment. Representative TEM images of the asmade fibers calcined at 200 $^{\circ}$ C are displayed in Fig. 6a and b. The ⁶⁰morphology of the sample is nearly the same with the precursor fibers except that there exists many tiny particles in the core region of the fibers (Fig. 6b). As noted, a gel layer is formed on the shell layer. The white lines in Fig. 6 indicate the boundaries between the shell layer and the core region. Diffraction peaks 65 appearing at 20 of 18.0° , 28.9° , 32.4° , 36.2° , 58.6° and 59.9° in the XRD pattern (Fig. 7a) are well attributed to those of Mn_3O_4 (JCPDS No. 24-0734), corresponding to its (101), (112), (103),

Fig. 6 TEM images of Mn₂O₃ precursor nanofibers heat treated at various temperatures: 200 °C (a 0and b), 300 °C (c and d), and 400 °C (e and f), 500 $^{\circ}$ C (g and h).

Fig. 7 XRD patterns of Mn₂O₃ precursor nanofibers annealed at different temperatures.

- 10 300 °C. The morphology of the fibers remains unchanged, while the crystallinity of the $Mn₃O₄$ particles pronounced as evidenced by the increase of diffraction peaks intensity. Upon raising the heating temperature to 400 $^{\circ}$ C, the gel layer disappeared; alternatively, a new porous layer constructed by nanoparticles is
- 15 introduced (Fig. 6e and f). It reflects that at this evolution stage, the PVP molecules are subject to a thermal decomposition. The XRD pattern (Fig. 7c) and shows the presence of a new sharp diffraction peak at a 2 θ of 33.0°, corresponding to the (222) facet

Scheme 1 Possible formation mechanism of Mn₂O₃ HNs.

- $_{25}$ calcined at 400 °C. As the temperature increasing, the XRD pattern (Fig. 7d) indicates that two distinct components, Mn_3O_4 and Mn_2O_3 , are cleverly integrated after annealed process at 500 ^oC. The shell layer becomes a well-defined nanotube wall because of the transition from Mn_3O_4 to Mn_2O_3 , as suggested by 30 the decreased intensity of the peaks of Mn_3O_4 from the XRD pattern and the HRTEM images (Fig. S1 b and c). In addition, the fiber core region are resembles a chain of connected nanoparticles (Fig. 6 g and h). Simultaneously, the nanoparticles in fibers become larger due to the higher crystallization temperature.
- 35 When heated to 600 °C, all diffraction peaks belonging to Mn_3O_4 are completely missing, which is ascribed to the ultimate conversion of Mn_3O_4 to Mn_2O_3 .
- Based on the experimental observations, a possible formation mechanism of the Mn_2O_3 HNs is proposed as following and the ⁴⁰overall evolution process of the HNs is displayed in Scheme 1. Firstly, during the electrospinning process, PVP molecular chains were positively charged because the precursor solution was applied with a high-voltage generator. The positively charged PVP molecular chains would migrate to the surface of the jets;⁶¹
- ⁴⁵consequently, a gel shell was formed on the surface of the precursor fibers associated with solvent evaporation and rapid phase separation (scheme 1 step 1). This gel layer plays an important role in maintaining the fibrous structure during the calcination process. The distance between needle and collector ⁵⁰and the solvent factor play important roles during the gel layer formation, further influence the final product morphology. There should be an optimum distance which favours the evaporation of solvent to form gel layer (Fig. S2). Likewise, the solvent should possess a suitable volatile property that guarantees the generation ⁵⁵of the gel layer (Fig. S3). During heat treatment, the gel layer became rigid, which gave rise to a temperature gradient that the core region possessed a higher temperature than the shell layer.¹¹ When the temperature rose above the decomposed point of the

manganese acetate, Mn_3O_4 was produced. As a result, Mn_3O_4 tiny

particles preferentially formed in the core region of the fibers (Scheme 1 step 2) due to the relatively higher temperature in fiber core region. As the annealing temperature increasing, the PVP in the gel layer are eliminated by heat treatment (Scheme 1 step 3).

- s Meanwhile, the Mn₃O₄ located near the surface of the precursor fibers was exposed to air, resulting in the formation of Mn_2O_3 tiny particles, whereas most of the Mn_3O_4 inside the fibers was unable to change because of lack of oxygen. As the temperature reached 500 °C, the Mn_3O_4 would serve as crystal precursor for
- $10 \text{ Mn}_2\text{O}_3$ growth and crystallization, which resulted in the formation of heterostructured core/shell fibers with Mn_2O_3 as shell and Mn_3O_4 as core (Scheme 1 step 5). When the sample was further heated up to 600 °C, Mn_3O_4 could be entirely oxidized to Mn_2O_3 from the Mn_2O_3/Mn_3O_4 interface to core region of the
- 15 nanofibers. The Mn_3O_4 continuously migrates to the $Mn_2O_3/$ $Mn₃O₄$ interface as precursor reactant for $Mn₂O₃$ and leave a hollow structure in the core region. Recently, Zhou and coworkers discovered a novel mechanism for a crystal growth process, reversed crystallization.^{63, 64} Such crystallization
- ²⁰mechanism has been generally employed to explain the formation processes of hollow and core/shell structures in several inorganic systems such as zeolites, perovskites, metal oxides, mesoporous silicates and metal.⁶⁵⁻⁶⁷ This reversed crystal growth can be briefly divided into three stages: (I) aggregation of precursor
- ²⁵nanoparticles, (II) surface crystallization, (III) surface-to-core extension of recrystallization. Our work may also obey the reversed crystallization, step 1 and step 2 in scheme 1 are analogous to the aforementioned stage (I), in which the Mn_3O_4 as precursor nanoparticles for Mn_2O_3 are generated and aggregated.
- 30 Step 3-4 represent the stage (II), Mn_2O_3 shell layer start to crystallization on the surface by consuming precursor Mn_3O_4 nanoparticles (Fig. S1 b and c). Obviously, step 4-5 is corresponding to stage (III), surface-to-core extension of recrystallization result in the formation of single-crystal Mn_2O_3
- ³⁵HNs. The present work should provide a meaningful evidence for the reversed crystallization in gaseous phase circumstance rather than the most studied liquid phase environment.

4. Conclusions

- In summary, we have described that Mn_2O_3 HNs could be ⁴⁰directly synthesized via a simple single-needle electrospinning process. Both SEM observations and TEM images confirm that the Mn_2O_3 HNs possess a continuous morphology and a welldefined hollow structure. The diameter of the as-prepared Mn_2O_3 HNs is around 200 nm and the wall thickness is of *ca.* 30 nm. The
- 45 temperature-dependent experiments were carried out to minor the evolution process of Mn_2O_3 HNs. The Mn_3O_4 precursor preferentially crystalized in the core region of the fibers. Subsequently, the PVP was eliminated by the high temperature treatment, meanwhile, the Mn_3O_4 changed to Mn_2O_3 at the
- 50 surface. The core-region Mn_3O_4 migrated to the surface continuously due to the reaction from Mn_3O_4 to Mn_2O_3 . Finally, $Mn₂O₃$ hollow nanofiers were obtained. This work suggests that electrospinning technique offers an additional means to fine tune the phase structure and morphology of 1D nanostructures,
- 55 enabling the fabrication of complex architectures. Metal oxides are widely used in many technologically important fields such as catalysis, sensors, and Li-ion batteries. To achieve optimal

performances, HNs with controlled crystalline structures and spatial distribution of each component are often desired. All these ⁶⁰features make the electrospinning technique an ideal platform for studying the structure-property relationship, which will be

beneficial to the design of high-performance materials such as

catalysts, sensors and electrodes for batteries.

Acknowledgment

⁶⁵This work is supported by the Fundamental Research Funds for the Central Universities of China (2011JDGZ15); National Natural Science Foundation for the Youth (No.51308452, No.21307098).

Notes and references

- *a* ⁷⁰*Department of Environmental Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, China. Fax:86 029 82664731; Tel:86 13032912105; E-mail: yanwei@mail.xjtu.edu.cn.*
- *b State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.*
- ⁷⁵*†Electronic Supplementary Information (ESI) available: HRTEM images of Mn2O3 percursor nanofibers calcined at 400 ^oC and 500^oC, SEM micrographs of Mn2O3 with different capillary-collector distances. See DOI: 10.1039/b000000x/*
- ⁸⁰1. H. Y. Chen, T. L. Zhang, J. Fan, D. B. Kuang and C. Y. Su, ACS Appl. Mater. Interfaces, 2013, **5**, 9205-9211.
- 2. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, *Nano Lett.*, 2011, **11**, 3026-3033.
- 3. G. Zhang, H. Duan, B. Lu and Z. Xu, *Nanoscale*, 2013, **5**, 5801- ⁸⁵5808.
- 4. Z.-X. Yang, P. Zhang, W. Zhong, Y. Deng, C.-T. Au and Y.-W. Du, *CrystEngComm*, 2012, **14**, 4298-4305.
- 5. X. Meng, D.-W. Shin, S. M. Yu, J. H. Jung, H. I. Kim, H. M. Lee, Y.-H. Han, V. Bhoraskar and J.-B. Yoo, *CrystEngComm*, 2011, **13**, ⁹⁰3021-3029.
- 6. C. Zhao, G. Zhang, W. Han, J. Fu, Y. He, Z. Zhang and E. Xie, *CrystEngComm*, 2013, **15**, 6491-6497.
- 7. T. Maiyalagan, J. Sundaramurthy, P. S. Kumar, P. Kannan, M. Opallo and S. Ramakrishna, *Analyst*, 2013, **138**, 1779-1786.
- ⁹⁵8. C. Peng, G. Li, D. Geng, M. Shang, Z. Hou and J. Lin, *Mater. Res. Bull.*, 2012, **47**, 3592-3599.
- 9. S. S. Lee, H. Bai, Z. Liu and D. D. Sun, *Appl. Catal. B*, 2013, **140- 141**, 68-81.
- 10. X. Wang, H. Fan and P. Ren, *Catal. Commun.*, 2013, **31**, 37-41.
- ¹⁰⁰11. G. Yang, W. Yan, Q. Zhang, S. Shen and S. Ding, *Nanoscale*, 2013, **5**, 12432-12439.
	- 12. Y. L. Cheah, V. Aravindan and S. Madhavi, *ACS Appl. Mater. Interfaces*, 2013, **5**, 3475-3480.
	- 13. L. Lang and Z. Xu, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1698-1703.
- ¹⁰⁵14. S.-H. Choi, D. Hwang, D.-Y. Kim, Y. Kervella, P. Maldivi, S.-Y. Jang, R. Demadrille and I.-D. Kim, *Adv. Funct. Mater.*, 2013, **23**, 3146-3155.
	- 15. Y. Cheng, W. Huang, Y. Zhang, L. Zhu, Y. Liu, X. Fan and X. Cao, *CrystEngComm*, 2010, **12**, 2256-2260.
- ¹¹⁰16. G. Dong, X. Xiao, M. Peng, Z. Ma, S. Ye, D. Chen, H. Qin, G. Deng, Q. Liang and J. Qiu, *RSC Adv.*, 2012, **2**, 2773-2782.
	- 17. J. Wang, Y. Yu, L. Gu, C. Wang, K. Tang and J. Maier, *Nanoscale*, 2013, **5**, 2647-2650.
- 18. X. Wang, G. He, H. Fong and Z. Zhu, *J. Phys. Chem. C*, 2013, **117**, 115 1641-1646.
	- 19. C. Zhu, Y. Li, Q. Su, B. Lu, J. Pan, J. Zhang, E. Xie and W. Lan, *J. Alloys Compd.*, 2013, **575**, 333-338.
	- 20. C. Zhao, G. Zhang, W. Han, J. Fu, Y. He, Z. Zhang and E. Xie, *CrystEngComm*, 2013, **15**, 6491.
- ¹²⁰21. S. lijima, *Nature*, 1991, **354**, 56-58.

Page 7 of 7 **CrystEngComm**

90

- 22. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy and D. Mihailovic, *Science*, 2001, **292**, 479- 481.
- 23. W. Chen, R. Rakhi and H. Alshareef, *J. . Mater. Chem. A*, 2013, **1**, ⁵3315-3324.
- 24. S. Cho, D.-H. Kim, B.-S. Lee, J. Jung, W.-R. Yu, S.-H. Hong and S. Lee, *Sens. Actuators B* 2012, **162**, 300-306.
- 25. H.-H. Ou and S.-L. Lo, *Sep. Purif. Technol.*, 2007, **58**, 179-191.
- 26. Z.-h. Hu, S.-m. Dong, J.-b. Hu, Z. Wang, B. Lu, J.-s. Yang, Q.-g. Li, ¹⁰B. Wu, L. Gao and X.-y. Zhang, *Carbon*, 2013, **52**, 624.
- 27. D. Li and Y. Xia, *Nano Lett.*, 2004, **4**, 933-938.
- 28. W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. Lu, X. Li, W. Lan and E. Xie, *J. Mater. Chem.*, 2010, **20**, 9068-9072.
- ¹⁵29. S. Zhan, D. Chen, X. Jiao and C. Tao, *J. Phys. Chem. B*, 2006, **110**, 11199-11204.
	- 30. C. Zhang, L. Han, W. Liu, H. Yang, X. Zhang, X. Liu and Y. Yang, *CrystEngComm*, 2013, **15**, 5150-5155.
- 31. J. Xu, Y.-Q. Deng, Y. Luo, W. Mao, X.-J. Yang and Y.-F. Han, *J.* ²⁰*Catal.*, 2013, **300**, 225-234.
- 32. J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu and Y. Qian, *Eur. J. Inorg. Chem.*, 2010, **2010**, 1172-1176.
- 33. E. Saputra, S. Muhammad, H. Sun, H.-M. Ang, M. O. Tadé and S. Wang, *Appl. Catal. B*, 2013, **142-143**, 729-735.
- ²⁵34. Y. Deng, Z. Li, Z. Shi, H. Xu, F. Peng and G. Chen, *RSC Adv.*, 2012, **2**, 4645-4647.
	- 35. L. Hu, Y. Sun, F. Zhang and Q. Chen, *J. Alloys Compd.*, 2013, **576**, 86-92.
- 36. Q. Javed, F. P. Wang, M. Y. Rafique, A. M. Toufiq, Q. S. Li, H. ³⁰Mahmood and W. Khan, *Nanotechnology*, 2012, **23**, 415603.
- 37. J. Cao, Q. Mao and Y. Qian, *J. Solid State Chem.*, 2012, **191**, 10-14.
- 38. Y. G. Zhang, J. Chen, B. J. Huang and D. P. Li, *Adv. Mater. Res.*, 2011, **233**, 2252-2257.
- 39. J. Cao, Y. Zhu, K. Bao, L. Shi, S. Liu and Y. Qian, *J. of Phys. Chem.* ³⁵*C*, 2009, **113**, 17755-17760.
- 40. W.-N. Li, L. Zhang, S. Sithambaram, J. Yuan, X.-F. Shen, M. Aindow and S. L. Suib, *J. of Phys. Chem. C*, 2007, **111**, 14694- 14697.
- 41. J. Wang, G. Zhu, L. Deng, L. Kang, Z. Hao and Z. Liu, ⁴⁰*CrystEngComm*, 2012, **14**, 8253-8260.
- 42. X. Fang, X. Lu, X. Guo, Y. Mao, Y.-S. Hu, J. Wang, Z. Wang, F. Wu, H. Liu and L. Chen, *Electrochem. Commun.*, 2010, **12**, 1520- 1523.
- 43. Y. Qiu, G.-L. Xu, K. Yan, H. Sun, J. Xiao, S. Yang, S.-G. Sun, L. Jin and H. Deng, *J. Mater. Chem.*, 2011, **21**, 6346-6353.
- 44. G. Yang, Q. Zhang, W. Chang and W. Yan, *J. Alloys Compd.*, 2013, **580**, 29-36.
- 45. S. Cavaliere, S. Subianto, I. Savych, D. J. Jones and J. Rozière, *Energy Environ.Sci.*, 2011, **4**, 4761-4785.
- ⁵⁰46. S. H. Choi, G. Ankonina, D. Y. Youn, S. G. Oh, J. M. Hong, A. Rothschild and I. D. Kim, *ACS Nano*, 2009, **3**, 2623-2631.
	- 47. X. Zhang, V. Aravindan, P. S. Kumar, H. Liu, J. Sundaramurthy, S. Ramakrishna and S. Madhavi, *Nanoscale*, 2013, **5**, 5973-5980.
- 48. K. Tang, Y. Yu, X. Mu, P. A. van Aken and J. Maier, *Electrochem.* ⁵⁵*Commun.*, 2013, **28**, 54-57.
- 49. J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu and Q. Xue, *CrystEngComm*, 2012, **14**, 5879-5885.
- 50. B. Liu and L. Peng, *J. Alloys Compd.*, 2013, **571**, 145-152.
- 51. S. Chaudhari and M. Srinivasan, *J. Mater. Chem.*, 2012, **22**, 23049- 23056.
- 52. C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan and E. Xie, *Nanoscale*, 2012, **4**, 3475-3481.
- 53. L. Lang, D. Wu and Z. Xu, *Chem. Eur. J*, 2012, **18**, 10661-10668.
- 54. B. Ren, M. Fan, Q. Liu, J. Wang, D. Song and X. Bai, *Electrochim.* ⁶⁵*Acta*, 2013, **92**, 197-204.
- 55. J. Fu, J. Zhang, Y. Peng, J. Zhao, G. Tan, N. J. Mellors, E. Xie and W. Han, *Nanoscale*, 2012, **4**, 3932-3936.
- 56. L. Xu, R. Xing, J. Song, W. Xu and H. Song, *J Mater. Chem. C*, 2013, **1**, 2174-2182.
- ⁷⁰57. G. Yang, W. Chang and W. Yan, *J. Sol-Gel Sci. Technol.*, 2013, **69**, 473-479.
- 58. G. Yang, W. Yan, J. Wang and H. Yang, *Mater. Lett.*, 2014, **122**, 117-120.
- 59. Y. Zhang, J. Li, Q. Li, L. Zhu, X. Liu, X. Zhong, J. Meng and X. ⁷⁵Cao, *J. Colloid Interface Sci.*, 2007, **307**, 567-571.
	- 60. J. G. Kim, S. H. Lee, Y. Kim and W. B. Kim, *ACS Appl. Mater. Interfaces*, 2013, **5**, 11321-11328.
	- 61. J. H. He and Y. Q. Wan, *Polymer*, 2004, **45**, 6731-6734.
- 62. J. Jiang, J. Luo, J. Zhu, X. Huang, J. Liu and T. Yu, *Nanoscale*, 2013, ⁸⁰**5**, 8105-8113.
	- 63. X. Chen, M. Qiao, S. Xie, K. Fan, W. Zhou and H. He, *J. Am. Chem. Soc.*, 2007, **129**, 13305-13312.
- 64. H. Greer, P. S. Wheatley, S. E. Ashbrook, R. E. Morris and W. Zhou, *J. Am. Chem. Soc.*, 2009, **131**, 17986-17992.
- ⁸⁵65. X. Yang, J. Fu, C. Jin, J. Chen, C. Liang, M. Wu and W. Zhou, *J. Am. Chem. Soc.*, 2010, **132**, 14279-14287.
	- 66. H. F. Greer, *Mater. Sci. Technol.*, 2014, **30**, 611-626.
- 67. M. L. Moreira, J. Andrés, V. R. Mastelaro, J. A. Varela and E. Longo, *CrystEngComm*, 2011, **13**, 5818-5824.