CrystEngComm

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Structural framework of biologically active coumarin derivatives. Crystal structures and Hirshfeld surface analysis

Magdalena Malecka,*a ${ }^{a}$ Elzbieta Budzisz ${ }^{b}$
Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX
DOI: 10.1039/b000000x

Abstract

A series of three biologically active coumarin derivatives have been synthesised and their crystal structures have been determined from single X-ray analysis. The interactions between molecules were characterised by different synthons and via Hirshfeld surface analysis. The characteristic features of all structures are 2D sheets of molecules formed by C-H...O hydrogen bonds, which are enhanced by $\pi \ldots \pi$ interactions or C-H...O interactions. Additionally, the lipophilicity parameter $(\log \mathrm{P})$ which describes the compound's ability to go through membranes was compared with respect to different intermolecular interactions. It was found that higher lipophilicity is associated with a larger contribution of C-H... π interactions in the crystal packing.

Introduction

15 Noncovalent molecular interactions such as hydrogen bonds and aromatic $\pi \ldots \pi$ stacking interactions form the basis of the design of the supramolecular arrangement in organic crystals. ${ }^{1}$ The functional substituents such as amino, hydroxyl, carbonyl groups etc. play an important role in the spatial arrangement of
20 the neighbouring molecules, leading to repeated hydrogen bond patterns or supramolecular assemblies. ${ }^{2}$ Therefore, it is useful to study structural features as well as the interplay of noncovalent interactions when building possible supramolecular synthons.
In recent years, the discovery that coumarins have weak ${ }_{25}$ estrogenic activity has resulted in the use of such derivatives as therapeutic agents to prevent the emergence of menopause related diseases, such as osteoporosis, an increased risk of cardiovascular event/ disease and cognitive deficiencies. ${ }^{3}$. Coumarin and its derivatives are an interesting group of compounds with ${ }_{30}$ spasmolytic, antiarrhythmic, cardiotonic, photodynamic ${ }^{4}$ and antitumor properties. ${ }^{5}$ These compounds are widely distributed throughout nature and a lot of them possess useful and diverse biological activities. ${ }^{6}$ Coumarins have been found to have numerous therapeutic applications including phototherapy, as
35 central nervous system stimulants and as selective estrogen receptor modulators. ${ }^{7}$
The coumarins presented here (Fig. 1), originate from the group of derivatives, for which the biological activity has been proven. ${ }^{8}$ In this paper we present the crystal structure of three ${ }_{40}$ coumarins with respect to intermolecular interactions in the crystal lattice, which undoubtedly play an important role in the arrangement of the molecules in the crystal packing.' We investigate crystal packing via the Hirshfeld surface ${ }^{10}$ and the breakdown of corresponding fingerprint plots revealing
${ }_{45}$ significant intermolecular interaction differences between compounds.

Fig. 1 Scheme of investigated compounds
${ }_{50}$ Furthermore, systematic structural studies of biologically active compounds enables the relations between biological activity and unique structural features to be observed. This always supports a design of biologically active compounds. Among many parameters indicative of the biological activity we have focused
${ }_{55}$ on the lipophilicity which is responsible for transport into the cells. ${ }^{11}$ The aim of this paper is to investigate how different interactions and crystal packing are related to lipophilicity.

Experimental section

General procedure for the synthesis of compounds (I), (II), 60 (III).

A methanol solution $(10 \mathrm{~mL})$ containing 1 mmol of methyl ester of 2-methylchromone-3-carboxylic acid (for I), ethyl ester of 2-phenylchromone-3-carboxylic acid (for II) and methyl ester of chromone-3-carboxylic acid (for III) was added to 1 mmol of the ${ }_{65}$ corresponding amine (3,4,5-trimethoxybenzylamine - for I \& II and 1-(3-aminopropyl)imidazole - for III). The reagents were left for 24 hours at room temperature. Next the precipitated solid was filtered off and washed with ethyl ether and dried. The overall reaction is presented in Scheme S1.
${ }_{70}$ The melting points were visually determined using Büchi540 apparatus and are uncorrected. The IR and far-IR spectra were

Cite this: DOI: 10.1039/c0xx00000x
www.rsc.org/xxxxxx

Table 1 Crystallographic parameters for compounds (I), (II) and (III) at 100K

	compound (I)	compound (II)	compound (III)
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}$	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{1} \mathrm{O}_{6}$	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular weight	383.39	445.47	297.31
Size (mm)	$0.04 \times 0.05 \times 0.44$	$0.1 \times 0.1 \times 0.24$	
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2 ${ }_{1}$	P $21 / \mathrm{c}$	P $21 / \mathrm{c}$
$\mathrm{a}[\AA]$	4.683(1)	11.415(1)	8.166(3)
$\mathrm{b}[\AA]$	13.113(1)	15.581(1)	17.642(3)
$\mathrm{c}[\AA]$	14.708(1)	15.059(1)	10.775(4)
$\beta\left[{ }^{\circ}\right]$	90.090(2)	126.999(1)	117.060(2)
$\mathrm{V}\left[\AA^{3}\right]$	905.1(1)	2139.1(2)	1382.3(7)
$\mathrm{Z} / \mathrm{d}_{\mathrm{x}}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	2/1.407	4	4
$\mu\left[\mathrm{mm}^{-1}\right]$	0.104	0.099	0.097
$\lambda[\AA]$	0.71073	0.71073	0.6000
$\max \theta\left[^{\circ}\right]$	26.49	25.00	21.72
No. of measured reflections	7997	14059	54389
No. of unique reflections	3657	3760	2668
$\mathrm{R}_{\text {(int) }}$	0.0357	0.0351	0.0307
No. of observed reflns (I>2 $\sigma(\mathrm{I}$)	2490	2595	2528
Data/restraints/parameters	3657/1/262	3760/0/325	2668/0/203
R_{1} (obsd data)	0.0574	0.0555	0.0366
R_{1} (all data)	0.0337	0.0331	0.0355
Goodness-of-fit on F^{2}	0.800	0.861	1.031
largest difference peak and hole [e/ \AA^{3}]	0.167/-0.145	0.170-0.182	0.269/-0.296

${ }^{a}$ Footnote text.
recorded on FT-IR-8400S Shimadzu in KBr pellets. The 1 H NMR spectra were recorded on a Varian Gemini $200 \mathrm{BB}, \mathrm{CDCl} 3$, 5200 MHz . The EI-MS data were determined using a Finnigan Matt 95 mass spectrometer. Satisfactory elemental analyses (within $\pm 0.4 \%$ of the calculated values) were obtained for the new compounds in the Microanalytical Laboratory of the Department of Bioorganic Chemistry (Medical University, Lodz) using 10 a Perkin Elmer PE 2400 CHNS analyser.
Compound (I) m.p $=193.2-197.3^{\circ} \mathrm{C} \operatorname{IR}(\mathrm{KBr})\left[\mathrm{cm}^{-1}\right]: 3443 \mathrm{v}(\mathrm{N}-$ H), $3003 \mathrm{v}(\mathrm{C}-\mathrm{H}), 1703 \mathrm{v}(\mathrm{C}=\mathrm{O}), 1614 \mathrm{v}(\mathrm{N}=\mathrm{C}), 1597,1576$ v (aromat.), 1512, 1468δ (aromat.), $1134 \mathrm{v}(\mathrm{C}-\mathrm{O}-\mathrm{C}), 1003 \mathrm{v}(\mathrm{O}-\mathrm{C})$, $957 \tau\left(\mathrm{C}_{\text {Ar. }}-\mathrm{H}\right), 760,715 \gamma\left(\mathrm{C}_{\text {Ar. }}-\mathrm{H}\right.$, out-of-plane $) 434 \gamma(\mathrm{C}=\mathrm{O})$.
${ }_{15}$ Elemental Analysis $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}(383.39 \mathrm{~g} / \mathrm{mol})$ Calc. C $65.79, \mathrm{H}$ 5.52, N 3.65. Found. C 65.60, H 5.33, N 3.66 \%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \delta \mathrm{ppm}\right) 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.66(2 \mathrm{H}$, d, $\left.\mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.42\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{5}\right.$ aromat), $6.96(2 \mathrm{H}$, $\mathrm{s}, \mathrm{H}_{2}, \mathrm{~m}_{6}$ aromat.), $7.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.45\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{t}, \mathrm{H}_{6}\right.$, ${ }_{20} \mathrm{H}_{7}$), $14.54(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.
Compound (II) m.p $=150.4-151.5^{\circ} \mathrm{C} \operatorname{IR}(\mathrm{KBr})\left[\mathrm{cm}^{-1}\right]:(\mathrm{C}-\mathrm{O}-\mathrm{C})$, $\left[\mathrm{cm}^{-1}\right] 3067 \mathrm{v}(\mathrm{C}-\mathrm{H}), 1723 \mathrm{v}(\mathrm{C}=\mathrm{O}), 1605 \mathrm{v}(\mathrm{N}=\mathrm{C}), 1592,1560$ v (aromat.), $1504,1465 \delta$ (aromat.), $1125 \mathrm{v}(\mathrm{C}-\mathrm{O}-\mathrm{C}), 1013 \mathrm{v}(\mathrm{O}-$ C), $942 \tau\left(\mathrm{C}_{\text {Ar. }}-\mathrm{H}\right), 764,706 \gamma\left(\mathrm{C}_{\text {Ar. }}-\mathrm{H}\right.$, out-of-plane $), 464 \gamma(\mathrm{C}=\mathrm{O})$. ${ }_{25}$ Elemental Analysis $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6}(445.46 \mathrm{~g} / \mathrm{mol})$ Calc. C 70.10 , H 5.20, N 3.14. Found. C 70.14, H 4.91, N 3.27%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \delta \mathrm{ppm}\right) 3.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 6.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}, 6^{\prime}\right), 6.98\left(2 \mathrm{H}, 2 \mathrm{xt}, \mathrm{H}_{6,7}\right), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.8.2 \mathrm{~Hz}, \mathrm{H}_{5 \text { aromat }}\right), 7.52\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3^{\prime \prime}, 4^{\prime}, 5^{י}}\right), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}$,
$\left.{ }_{30} \mathrm{H}_{8}\right), 8.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}_{2^{\prime}, 6^{\prime}}\right), 9.91(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$
Compound (III) m.p $=164.6-165.6^{\circ} \mathrm{C} \operatorname{IR}(\mathrm{KBr})\left[\mathrm{cm}^{-1}\right]: 3139 \mathrm{v}(\mathrm{N}-$ H), $2930 \mathrm{v}(\mathrm{C}-\mathrm{H}), 1713 \mathrm{v}(\mathrm{C}=\mathrm{O}), 1635 \mathrm{v}(\mathrm{N}=\mathrm{C}), 1595,1562$ v (aromat.), 1464δ (aromat.), 1128, $1102 \mathrm{v}(\mathrm{C}-\mathrm{O}-\mathrm{C}), 1082 \mathrm{v}(\mathrm{O}-\mathrm{C})$, $1028 \tau\left(\mathrm{C}_{\text {Ar. }}-\mathrm{H}\right), 753 \tau\left(\mathrm{C}_{\text {Ar. }}-\mathrm{H}\right.$, out-of-plane $), 671 \omega(\mathrm{~N}-\mathrm{H}), 445$ ${ }_{35} \gamma(\mathrm{C}=\mathrm{O})$. Elemental Analysis $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}(297.11 \mathrm{~g} / \mathrm{mol})$ Calc. C $64.64, \mathrm{H} 5.09, \mathrm{~N} 14.13$. Found. C $64.43, \mathrm{H} 4.19, \mathrm{~N} 14.27 \% .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} \delta \mathrm{ppm}\right) 2.03\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.25\left(2 \mathrm{H}, 2 \mathrm{xt}, \mathrm{CH}_{2}\right), 3.38$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 6.51(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \equiv \mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{H}), 7.08(2 \mathrm{H}$, $\left.2 \mathrm{xt}, \mathrm{H}_{6,7}\right), 7.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}_{5}\right.$ aromat), $7.54(2 \mathrm{H}, 2 \mathrm{xd}$, $\left.{ }_{40} \mathrm{H}_{4}, 5^{\prime}\right), 7.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{H}_{8}\right), 12.71(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

Data collection, structure solution and refinement

Data for compound I and II were measured from single crystals using an Oxford Diffraction Xcalibur CCD diffractometer at $\mathrm{T}=100$ (2) K with monochromatic $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073$
${ }_{45} \AA$). Data reduction was perfomed using CrysAlis software. ${ }^{12}$ Data were corrected for Lorentz and polarisation effects; absorption correction was not applied.
Diffraction data for compound III were collected at the F1 beamline of storage ring DORIS III at HASYLAB/DESY in ${ }_{50}$ Hamburg. The beamline is equipped with a Huber 4-circle diffractometer with MARCCD 165. The temperature was maintained at $100(1) \mathrm{K}$ and the wavelength was ($\lambda=0.6000 \AA$). The integration, data reduction and scaling of diffracted intensities were performed using the XDS package version ${ }_{55}$ 2009. ${ }^{13}$ At this point intensities were corrected for oblique
incidence of X-rays on the detector surface. ${ }^{14}$

Fig. 2 An ORTEP view and atom numbering scheme of compound (I), (II) and (III) with displacement ellipsoids at the 30\% probability level. Hydrogen atoms are shown as small spheres of arbitrary radii
${ }_{5}$ All structures were solved by direct methods with SHELXS97 ${ }^{15}$ and further refined on F^{2} using SHELXL97. ${ }^{15}$ A full matrix leastsquares refinement procedure was used. The methoxy group in compound II was disordered over two positions in ratio 0.533(4):0.466(4). Non-hydrogen atoms were anisotropically
${ }_{10}$ refined. The positions of hydrogen atoms (excluding atom H1) were calculated from known geometry and treated as riding, where the isotropic displacement parameters of these hydrogen atoms were fixed as a multiple of the equivalent isotropic thermal parameters of the parent atoms. For atom H1 the position was
15 located on the Fourier difference map and refined with isotropic thermal parameters. Further experimental details and crystallographic data are presented in Table 1 and in the ESI. \dagger

Hirshfeld surface analysis

The Hirshfeld surfaces ${ }^{10}$ were generated using Crystal Explorer ${ }_{20} 3.0^{16}$ based on results from X-ray studies. In Crystal Explorer, the internal consistency is important when comparing structures; therefore, bond lengths to hydrogen atoms were normalised to standard neutron values $(\mathrm{C}-\mathrm{H}=1.083 \AA, \mathrm{O}-\mathrm{H}=0.983 \AA, \mathrm{~N}-\mathrm{H}=$ $1.009 \AA$). ${ }^{17}$ The normalised contact distance ($\mathrm{d}_{\text {norm }}$) based on both ${ }_{25} \mathrm{~d}_{\mathrm{e}}$ (the distance from a point on the surface to the nearest atom outside the surface) and d_{i} (the distance from a point on the surface to the nearest atom inside the surface) and van der Waals radii of the atom, given by equation (1) enables identification of the regions of particular importance to intermolecular ${ }_{30}$ interactions. ${ }^{18}$ The value of the $\mathrm{d}_{\text {norm }}$ is negative (red colour) or positive (blue colour) when intermolecular contacts are shorter or longer than van der Waals separations, respectively.
$d_{\text {norm }}=\frac{d_{i}-r_{i}^{\text {viW }}}{r_{i}^{\text {VIW }}}+\frac{d_{E}-r_{i}^{\text {VdW }}}{r_{i}^{\text {VIW }}}$ (eq1)

Lipophilicity analysis

${ }_{35}$ Lipophilicity is an indicator, which inform whether the molecule can easily pass through membranes or other barriers in our body or not. It is postulated that the more lipophilic the molecule is, the easier it goes through membranes due to stronger interactions with fatty acids of the lipid bilayer. ${ }^{19}$ The lipophilicity can be ${ }_{40}$ described as $\log P$ - the logarithm of the partition coefficient P . The coefficient P is defined as the ratio of the concentration of a substance in a non-polar phase to its concentration in the aqueous phase at thermodynamic equilibrium. The higher the polarity of the biologically active compound and the smaller the value of \log ${ }_{45} \mathrm{P}$ is, the less able the compound is to penetrate lipid membranes. In order to determine $\log P$, the accepted standard solution is water as the polar phase and n-octanol as the non-polar phase. This system corresponds with the most polar and non-polar phase in a living organism. The value of $\log \mathrm{P}$ has a significant impact ${ }_{50}$ on the fate of the drug in the body. In the literature, there are two methods for determining this parameter: experimental (direct and indirect) and theoretical ones. ${ }^{19}$ In this paper, we determined the lipophilicity for all compounds using the RP-TLC in the DMF/water solution. ${ }^{20}$ A compound is lipophilic if its $\log \mathrm{P}$ value ${ }_{55}$ is higher than 0 . Results presented in Table 2 demonstrate that all compounds possess good lipophilicity.

Table 2 Lipophilicity index (logP) for all compounds

	$\log \mathbf{P}$
compound (I)	2.71 ± 0.63
compound (II)	4.07 ± 0.73
compound (III)	3.17 ± 0.74

The highest $\log P$ value was observed for compound (II) and ${ }_{60}$ decreased in compounds (III) and (I), respectively. However, as lipophilicity is a sum of many parameters more advanced research is needed to be sure whether tested compounds are able

Fig. 3 a) Formation of 2D supramolecular network in (I) generated through C6-H6_..O37 ${ }^{\mathrm{i}}$ and $\mathrm{C} 34-\mathrm{H} 34 \ldots \mathrm{O} 2^{\mathrm{ii}}$ hydrogen bonds b) Formation of the 2D sheet in 1 generated through $\mathrm{C} 38-\mathrm{H} 38 \ldots \mathrm{O} 4^{\mathrm{iii}}$ hydrogen bond c) Formation of two ribbons generated through $\pi . . . \pi$ stacking interactions between pyrane and benzene ring propagating along the [100] direction (compound I). H atoms are omitted for clarity
to pass through cell membranes. In order to obtain a theoretical value of $\log \mathrm{P}$, the program ALOGPs 2.1^{21} was used.

Results and discussion

Crystal structural description

10 The presented structures consist of a coumarin ring with (trimethoxy-benzylimino)-ethyl, (phenyl-trimethoxy-benzylimino)-methyl, and (imidazol-ethylimino)-methyl group substituted at position 3, for compounds (I), (II) and (III), respectively (Fig. 2). The coumarin backbone is planar and forms
15 the following dihedral angles with substituents at atom C3: 85.7 ${ }^{\circ}$, 83.2° and 57.7°, for (I), (II) and (III), respectively.

A common feature of the studied derivatives is an intramolecular hydrogen bond which forms an extra sixmembered ring producing a graph set motif of $\mathrm{S}(6) .{ }^{22}$ The 20 strength of intramolecular hydrogen bond is decreasing for (I), (II) and (III) with lengthening the N...O distances and decreasing angles $<\mathrm{N}-\mathrm{H} . . . \mathrm{O}$. It seems that steric effect influences on the geometry of hydrogen bonds. On the other hand, the bond distances within the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}-\mathrm{H}$ conjugated bond ring ${ }_{25}$ systems (Table 3) indicate that these interactions can be classified as resonance-assisted hydrogen bonds (RAHB), proposed by Gilli. ${ }^{23}$ The phenomenon of RAHBs may be described by the contribution of two tautomeric forms connected with the process of the proton transfer reaction: $\mathrm{O} / \mathrm{N}-\mathrm{H} \ldots \mathrm{O} \leftrightarrow \mathrm{O} / \mathrm{N} \ldots \mathrm{H}-\mathrm{O}$ for ${ }_{30}$ homonuclear and heteronuclear systems. It was stated that for RAHBs a π-electron delocalization within the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{O} / \mathrm{N}-\mathrm{H}$ keto-enol/amine chelate ring has been observed. The most characteristic feature for RAHBs of heteronuclear systems is: the equalisation of the lengths of the bonds C4-C3 (formally single) 35 and C3 $=\mathrm{C} 31$ (formally double) and shortening of the C31-N1 bond and lengthening of $\mathrm{C} 4=\mathrm{O} 4$ bonds with respect to other corresponding bonds that are not involved in the hydrogen
bond. ${ }^{24}$ As can be observed in Table 3, the formally single bond C4-C3 appears shorter, the double C3=C31 bond appears longer, 40 the $\mathrm{C} 4=\mathrm{O} 4$ bond is lengthened and $\mathrm{C} 31-\mathrm{N} 1$ is shortened with respect to reference values. ${ }^{25}$ This suggests that the π-electron delocalisation effect is strongest for compound (I) and (II). Further geometrical parameters for intramolecular hydrogen bond distances, especially $\mathrm{H} 1 \ldots \mathrm{O} 4$ and $\mathrm{N} 1 \ldots \mathrm{O} 4$ (Table 4), confirmed ${ }_{45}$ this and are with agreement with original concept proposed by Gilli. ${ }^{23}$

It is worth mentioning, that the concept of resonance-assisted hydrogen bonds is still under ongoing discussion, ${ }^{26}$ however, in the case of other coumarin derivatives, the experimental charge ${ }_{50}$ density studies and application of source function ${ }^{27}$ confirmed the existence of RAHBs for coumarin systems. ${ }^{28}$

Table 3 Bond distances (\AA) within hydrogen-bonding ring for the resonance assisted hydrogen bonds

	$\mathrm{C} 4=\mathrm{O} 4$	$\mathrm{C} 4-\mathrm{C} 3$	$\mathrm{C} 3=\mathrm{C} 31$	$\mathrm{C} 31-\mathrm{N} 1$
compound (I)	$1.255(2)$	$1.435(2)$	$1.438(2)$	$1.313(2)$
compound(II)	$1.255(2)$	$1.436(2)$	$1.428(2)$	$1.319(2)$
compound (III)	$1.248(2)$	$1.446(2)$	$1.409(2)$	$1.310(2)$

55
The solid-state structures of all compounds include a combination of $\mathrm{N}-\mathrm{H} . . . \mathrm{N}, \mathrm{C}-\mathrm{H} . . . \mathrm{O}, \mathrm{C}-\mathrm{H} . . . \pi$ and $\pi \ldots \pi$ stacking interactions. It is interesting to consider the substructures generated by each type of hydrogen bonds acting individually and the combination of all ${ }_{60}$ hydrogen bonds building the three-dimensional framework. The geometric parameters for hydrogen bonds in all structures are given in Table 4. In (I) the C6 and C34 atoms act as a donors in $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ hydrogen bonds with $\mathrm{O} 37^{\mathrm{i}}[(\mathrm{i}):-\mathrm{x},-1 / 2+\mathrm{y}, 1-\mathrm{z}]$ and $\mathrm{O} 2^{\mathrm{ii}}$ [(ii): $1-x, 1 / 2+y, 2-z]$. These two interactions form chains $C(13)$

Cite this: DOI: 10.1039/c0xx00000x
www.rsc.org/XXXXXX ARTICLE TYPE

Table 4 Geometrical parameters (in $\AA,{ }^{\circ}$) for intra- and intermolecular hydrogen bonds; which in the Hirshfeld surface corresponds to $\mathrm{H} . . \mathrm{O}$ contacts and are marked as $1 a, 1 a *$ (intramolecular hydrogen bond)

	d(D-H)	d(H...A)	d(D...A)	<D-H...A	symmetry
compound (I)					
N1-H1...O4	0.99(2)	1.66(2)	2.531(2)	143(2)	
C6-H6...O37 ${ }^{\text {i }}$	0.95	2.36	3.302(3)	170	-x, -1/2+y, 1-z
C34-H34...O2 ${ }^{\text {ii }}$	0.95	2.48	3.419(2)	170	$1-x, 1 / 2+y, 2-z$
C38-H38...O4 ${ }^{\text {iii }}$	0.95	2.47	3.403(2)	168	$-1+x, y, z$
compound (II)					
N1-H1...O4	0.94(2)	1.74(2)	2.561(2)	144(1)	
C7-H7...O37 ${ }^{\text {iv }}$	0.95	2.46	3.375(2)	161	$1-x, 1-y,-z$
C371-H37C...O2 ${ }^{\text {v }}$	0.98	2.43	3.259(2)	142	$1+x, y, 1+z$
compound (III)					
N1-H1...O4	0.94(2)	2.11(2)	2.761(2)	125(2)	
N1-H1...N3 ${ }^{\text {vi }}$	0.94(2)	2.29(2)	3.047(2)	137(2)	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$
C35-H35...O4 $4^{\text {vii }}$	0.95	2.53	3.152(2)	124	$-1+x, y, z$
C33-H33A...O1 ${ }^{\text {viii }}$	0.99	2.55	3.442(2)	149	-x, -y, -z
C36-H36...O2 ${ }^{\text {ix }}$	0.95	2.45	3.089(2)	124	-x, $1 / 2+y, 1 / 2-z$

${ }^{a}$ Footnote text.

Fig. 4 a) Formation of the 2D sheet in (II) generated through $\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{O} 37^{\mathrm{iv}}$ and $\mathrm{C} 371-\mathrm{H} 371 \ldots \mathrm{O} 2^{v}$ hydrogen bonds b) The $\pi \ldots \pi$ stacking interaction between pyrane and trimethoxybenzene rings in the crystal lattice of (II)
and $C(9)$, respectively. Alternatively two chains are linked into 10 the $\mathrm{R}_{4}{ }^{4}(36)$ ring extended to form an infinite two-dimensional layer on the plane (100) (Fig. 3a). Such layers are connected by $\mathrm{C} 38-\mathrm{H} 38$...O4 $4^{\text {iii }}$ [(iii): $\left.-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ hydrogen bond forming chain $\mathrm{C}(9)$ along the [100] direction (Fig. 3b). This substructure is reinforced by $\pi \ldots \pi$ interactions, which build 2-D ribbons 15 extending along the [100] direction (Fig. 3c, Table 5). In the crystal lattice, one can observe significant C-H... π interactions for donors C351 and C371. The acceptor is a π-electron trimethoxybenzene ring in both cases (Fig. S1). It is worth mentioning, that the aromatic ring ($\mathrm{C} 5-\mathrm{C} 10$) is engaged in a lone ${ }_{20}$ pair... π interaction ($\mathrm{C} 4=\mathrm{O} 4 \ldots \pi$) in the crystal packing of
compound (I) (Fig. S1, Table S1). As demonstrated by Egli and co-workers $\mathrm{C}=\mathrm{O} . . . \pi$ interactions play a crucial role in stabilising biomacromolecules. ${ }^{29}$
In the case of crystal packing of (II), molecules are linked by a ${ }_{25}$ combination of C-H...O, C-H... π and $\pi \ldots \pi$ stacking interactions. The formation of the molecular framework can be described as two different substructures. One substructure is formed by two C$\mathrm{H} . . . \mathrm{O}$ interactions. Hydrogen bonds: $\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{O} 37^{\text {iv }}$ and $\mathrm{C} 371-$ H37C...O2 ${ }^{\mathrm{v}}$; [(iv): $\left.1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z},(\mathrm{v}): 1+\mathrm{x}, \mathrm{y}, 1+\mathrm{z}\right]$ generate one sheet 30 of molecules with two rings, $\mathrm{R}_{2}{ }^{2}(28)$ and $\mathrm{R}_{4}{ }^{4}(20)$, respectively (Fig. 4a, Table 4). These sheets of molecules are linked by $\pi \ldots \pi$ stacking interactions which is observed between pyran and
a)

b)

$\underbrace{c}_{c(11)}$

Fig. 5 a) Formation of the 2D sheet in (III) generated through N1-H1...N3 ${ }^{\text {vi }}, \mathrm{C} 35-\mathrm{H} 35 \ldots \mathrm{O} 4^{\text {vii }}$ and C33-H33...O1 ${ }^{\text {viii }}$ interactions b) Formation of the 1 D chain in (III) generated through C36-H36...O2 ${ }^{\text {ix }}$ hydrogen bonding c) The $\pi \ldots \pi$ stacking interactions between pyrane and benzene rings in the crystal lattice of (III)

5

Table 5 Geometrical parameters $\left(\AA,{ }^{\circ}\right)$ for the $\pi \ldots \pi$ stacking interactions for all derivatives

	$\mathrm{Cg}(\mathrm{I}) . . \mathrm{Cg}(\mathrm{J})$	$\mathrm{Cg}(\mathrm{I}) \ldots$..Perp	$\mathrm{Cg}(\mathrm{J}) . . . \mathrm{Perp}$	α	β	γ	symmetry
compound (I)							
$\mathrm{Cg}(1) \ldots \mathrm{Cg}(2)$	3.8236(12)	3.4397(8)	3.4875(8)	1.73(9)	24.20	25.90	$-1+x, y, z$
compound (II)							
$\mathrm{Cg}(1) \ldots \mathrm{Cg}(3)$	3.8567(9)	3.2075(7)	3.6383(7)	14.37(8)	19.38	33.73	$x, 1 / 2-y,-1 / 2+z$
compound (III)							
$\mathrm{Cg}(1) \ldots \mathrm{Cg}(1)$	$3.9930(16)$	3.4704(5)	3.4703(5)	0	29.64	29.64	1-x, -y, -z
$\mathrm{Cg}(2) \ldots \mathrm{Cg}(2)$	$3.7846(16)$	3.5130(5)	$3.513(5)$	0	21.84	21.84	-x, -y, -1-z

$\mathrm{Cg}(1), \mathrm{Cg}(2), \mathrm{Cg}(3)$ are centroids of pyran ring, benzene ring from coumarin moiety and trimethoxy-benzene ring, respectively; α - refers to the dihedral angle between planes (I) and (J), β - refers to angle between $\operatorname{Cg}(\mathrm{I})--\mathrm{Cg}(\mathrm{J})$ vector and normal to the plane (I) and $\gamma-$ refers to angle between $\mathrm{Cg}(\mathrm{I})--\mathrm{Cg}(\mathrm{J})$ 10 vector and normal to the plane (J)
trimethoxy-benzene rings (Fig. 4b, Table 5). In the crystal packing, further C313-H313 $\ldots \pi$ and C371-H37C $\ldots \pi$ interactions, are also observed, where the π-electron rings are: benzene ring ${ }_{15} \mathrm{C} 5-\mathrm{C} 10$ at $-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z}$ and the phenyl ring C311-C316 at $1+\mathrm{x}$,
$y, 1+z$, respectively. $C-H \ldots \pi$ interactions aggregate two ribbons propagating along the [010] direction (Fig. S2, Table S1).

The crystal packing of (III) seems to be stabilised by a combination of intermolecular $\mathrm{N}-\mathrm{H} . . . \mathrm{N}, \mathrm{C}-\mathrm{H} . . . \mathrm{O}, \mathrm{C}-\mathrm{H} . . . \pi$
hydrogen bonds and $\pi \ldots \pi$ stacking interactions. The N1 atom acts as a donor to $\mathrm{N}{ }^{\text {vi }}$ atom related by symmetry $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$ propagating the $\mathrm{C}(8)$ chain (Fig. 5a). The other chain $\mathrm{C}(11)$ is formed by the $\mathrm{C} 35-\mathrm{H} 35 \ldots \mathrm{O} 4^{\mathrm{vii}}$ interaction [(vii); $\left.-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$. However, both $\mathrm{N} 1-\mathrm{H} 1 \ldots \mathrm{~N}^{\mathrm{vi}}$ and $\mathrm{C} 35-\mathrm{H} 35 \ldots \mathrm{O}{ }^{\text {vii }}$ hydrogen bonds create the $\mathrm{R}_{2}{ }^{2}(9)$ ring (Fig. 5a). Moreover the C33 atom acts as a donor to oxygen atom $\mathrm{Ol}^{\text {viii }}$ [(viii): $\left.-\mathrm{x},-\mathrm{y},-\mathrm{z}\right]$ forming next dimeric ring $\mathrm{R}_{2}{ }^{2}(16)$ (Fig.4a, Table 4). In another substructure the C 36 atom acts as a donor to the $\mathrm{O} 2^{\mathrm{ix}}$ atom in the molecule at $-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$, thus generating a 1 D zig-zag chain along the [001] direction (Fig. 5b). The $\pi \ldots \pi$ stacking interactions are seen in the crystal packing. They occur between parallel pyran rings, and parallel benzene rings (Fig. 5c, Table 5). The other substructure is formed by $\mathrm{C} 7-\mathrm{H} 7 \ldots \pi$ interaction. Atom ${ }_{15} \mathrm{C} 7$ is a donor to π electrons from the imidazole ring at $-\mathrm{x},-1 / 2+\mathrm{y}-$ $1 / 2$-z. (see Fig. S3, Table S1). Moreover π-electrons from imidazole ring are acceptor for lone-pair... π interaction (Fig. S3, Table S1).

Hirshfeld surface

20 The Hirshfeld surface of titled compounds is illustrated in Fig 6 showing the surface that has been mapped over $\mathrm{d}_{\text {norm }}(-0.3$ to $1.3 \AA$), shape index (-1.0 to $1.0 \AA$) and curvedness (-4.0 to 0.4 \AA). The surfaces are shown as transparent to allow the visualisation of a coumarin moiety in a similar orientation for all ${ }_{25}$ structures. The geometric parameters presented in Table 4 are summarised effectively in the deep red spots visible on the $\mathrm{d}_{\text {norm }}$ surfaces, indicative of hydrogen bonds and other weak interactions like H...H contacts. The unusually short normalised O...H distance can be seen in Hirshfeld surfaces as vivid red ${ }_{30}$ spots and are marked as a. The light red spots labelled b are due to H...C interactions. Other visible contacts marked as c correspond to $\mathrm{H} . . . \mathrm{N}$ interactions in structure (III). The C-H...O interactions and intramolecular $\mathrm{N}-\mathrm{H} . . . \mathrm{O}$ hydrogen bond are represented as two spikes in the 2D fingerprint plots (Fig. 7) in
${ }_{35}$ the region $2.1 \AA<\left(\mathrm{d}_{\mathrm{e}}+\mathrm{d}_{\mathrm{i}}\right)<2.6 \AA$ marked as $1 a$ and $1 a^{*}$, respectively. However, the shortest $\mathrm{d}_{\mathrm{e}}+\mathrm{d}_{\mathrm{i}}=2.1 \AA$ is associated with C6-H6...O37 interactions. The proportion of O...H and H...O interactions contains 14.9% and 12.4% of the Hirshfeld surface for molecule (I). Other visible, yet light red spots in the
${ }_{40}$ Hirshfeld surface correspond to C-H... π interactions labelled $l b$. In the 2D fingerprint plot, this interaction is represented as mild spikes, where $\mathrm{d}_{\mathrm{i}}+\mathrm{d}_{\mathrm{e}}$ equals $2.74 \AA$. The proportion of C $\ldots \mathrm{H}$ and H...C interactions is 9.4% and 7.7%, respectively. The dominant interaction in all compounds is H...H interaction, with the values
${ }_{45}$ equal $46 \%, 48 \%$, and 40%, for compounds (I), (II) and (III), respectively. The $\pi \ldots \pi$ interaction is also observed in compound (I) and is visible in the distribution of scattered points in the 2D graph - the region near $1.8 \AA$ on the diagonal. Another characteristic feature of $\pi \ldots \pi$ interactions is the pattern of red and ${ }_{50}$ blue triangles on the shape index. It is also visible on the curvedness surface.
For compound (II), the 2D fingerprint plot has a different shape compared to the fingerprint plot of compound (I) without sharp spikes; however, the contribution of particular interaction ${ }_{55}$ does not differ significantly (Fig. 6 \& 7). The bright red spot labelled $2 a$ is the C371-H37C...O2 ${ }^{v}$ interaction with $\mathrm{d}_{\mathrm{i}}+\mathrm{d}_{\mathrm{e}}$ equalling $2.4 \AA$. Similar to structure (I), the proportion of O...H and $\mathrm{H} . . \mathrm{O}$ interactions is 12.8% and 10.8%. The light red spot

60 Fig. 6 Hirshfeld surfaces mapped with $\mathrm{d}_{\text {norm }}$ (left), shape index (middle) and curves for the presented compounds.For compound (II) the zoom of H...Hinteractions is presented
(2b) on the Hirshfeld surface appears to be due to C-H... π interactions with $\mathrm{d}_{\mathrm{i}}+\mathrm{d}_{\mathrm{e}}=2.8 \AA$ similar to compound(I). The ${ }_{5 s}$ proportion of H...C and C...H interactions varies from 9.7% to 12.8%. The C...C contact on the fingerprint plot is presented as characteristic stacking kite (see last column of Fig. 7), which is mainly attributed to $\pi \ldots \pi$ interaction. On the shape index surface it is reflected by a pattern of red-blue triangles, but not so visible
70 like for compound (I). The C...C contact includes only 3.7% of the Hirshfeld surface with equal d_{i} and $\mathrm{d}_{\mathrm{e}}=1.8 \AA$. The percentage of $\mathrm{H} \ldots \mathrm{H}$ contact is 48% - the maximum among other coumarin derivatives. Additionally, the completely different distribution of scattered points on the fingerprint plot is observed with very short ${ }_{75}$ distance d_{i} and $\mathrm{d}_{\mathrm{e}}=0.8 \AA$. The shortest $\mathrm{H} . . . \mathrm{H}$ distance is visible as the vivid red spot and could be attributed to the contact between disordered hydrogen atoms from methyl group. (Fig. 6). The lowest C...C contact and the highest H...H contact seems to be related to more bulky spatial structure of molecule (II) in ${ }_{80}$ itself.

On the Hirshfeld surface of structure (III) we can distinguish three types of interactions: $3 a$ is associated with H...O contact, $3 b$ represents $\mathrm{H} . . . \mathrm{C}$ contact, while $\mathrm{H} . . . \mathrm{N}$ interaction is labelled $3 c$ (Fig. 6). The intramolecular $\mathrm{N}-\mathrm{H} . . . \mathrm{O}$ interaction and $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ ${ }_{85}$ intermolecular interactions are reflected in the 2D fingerprint plot in the region $2.45 \AA<\left(\mathrm{d}_{\mathrm{i}}+\mathrm{d}_{\mathrm{e}}\right)<2.75 \AA$. The C-H... π interaction is presented by spikes where $\mathrm{d}_{\mathrm{i}}+\mathrm{d}_{\mathrm{e}}$ equals $2.8 \AA$ similar to compound (I) and (II). The other interaction, presented by large bright red spot on the Hirshfeld surface and the longest spikes on 90 the fingerprint plot, is connected with $\mathrm{N} 1-\mathrm{H} 1 \ldots \mathrm{~N} 3^{\text {vi }}$ intermolecular hydrogen bond. Sum of $\mathrm{d}_{\mathrm{i}}+\mathrm{d}_{\mathrm{e}}$ amounts $2.25 \AA$. This kind of hydrogen bond is only observed for structure (III). The C...C contact contribution in the Hirshfeld surface is larger than for compound (I) and (II), however d_{i} and d_{e} equals $1.8 \AA$,

www.rsc.org/xxxxxx

X
Fig. 7 Fingerprint plots of compound (I) - top row, compound (II) - middle row and and compound (III) - bottom row: full (left) and resolved into H...O, H...C, H...H, C...C contacts showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules

5 the same as for compound (I).

Contribution of different interactions to Hirshfeld surface for related structures from CSD

The relative contribution of the different interactions to the Hirshfeld surface was calculated for presented compounds as well 10 as for other similar coumarin derivatives available in the Cambridge Structural Database (version 1.15 CSD 2013 release) ${ }^{30}$ including coumarin derivatives determined by us.Error! Bookmark not defined. ${ }^{31}$ A number of structures found is 15 with different substituents on the coumarin moiety 15 (scheme of query used in database search contains coumarin backbone with double bond at atom C3, see Scheme S2).

The dominant interaction in coumarin derivatives is H...H interaction (Fig. 8). The contribution to the Hirshfeld surface is in the range 28% to 50.8% for UPATAH ${ }^{32}$ and PUMJIR ${ }^{33}$. The 20 smallest H...H contribution to the Hirshfeld surface for UPATAH 32 corresponds with evenly distributed other interactions for that structure. The investigation of the crystal packing of UPATAH ${ }^{32}$ displays a characteristic type of layered structure, where molecules lie on planes separated by $3.45 \AA$

25 (Fig. S4). The same tendency is observed for other available Hirshfeld surface analysis of coumarin derivatives. ${ }^{34}$

The $\pi \ldots \pi$ stacking interaction is reflected in the C...C interactions for which a contribution to the Hirshfeld surface vary from 0% to 7.9% for all structures. Among eighteen analysed 30 structures four of them has significantly small contribution 0% to 0.8% since the hetero ring (tetrahydropyran) is not planar for those structures (PUMJIR, ${ }^{33}$ LAPVAB, ${ }^{35}$ RUZXEP, ${ }^{36}$ RUZXAL ${ }^{36}$). However, for the remaining structures the C...C contribution is in the range 1.4% to 7.9% which corresponds with 35 the pattern of red and blue triangles on the shape index surface (Fig. 6). The next significant percentage of the contribution to the Hirshfeld surface is for $\mathrm{O} / \mathrm{N} . . . \mathrm{H}$ contact (green and red colour on Fig. 8) and varies from 17.4% to 37.6%. The contributions of C...H interactions vary from 10.1% to 30.5% in WACWAA ${ }^{37}$ 40 and LAPVAB ${ }^{35}$, respectively. Since the contributions of C...H interactions are related to the lipohilicity index, the more detailed analysis of C...H contribution is presented below.

Lipophilicity index vs C...H contact

It was found that the contribution of $\mathrm{C} \ldots \mathrm{H}$ interactions to the

Fig. 8 Relative contributions of various intermolecular contacts to the Hirshfeld surface area in compound (I), (II) and (III) and other related structures retrieved from the CSD
${ }_{5}$ Hirshfeld surface corresponds with $\log \mathrm{P}$ value. $\log \mathrm{P}$ describes lipophilicity which refers to an ability of molecule to dissolve in non-polar solvents. We compare the $\log \mathrm{P}$ value with the contribution of $\mathrm{C} \ldots \mathrm{H}$ interactions to the Hirshfeld surface for four coumarin derivatives; three presented here and one 10 IXAZIQ 31 for which we determined $\log P$ earlier. ${ }^{8 a}$ Among the four structures the highest $\log \mathrm{P}$ value was reported for compound (II) (4.07%), relating to the highest C...H (22.3%) contribution in the Hirshfeld surface. The lowest $\log \mathrm{P}$ value and lowest $\mathrm{C} \ldots \mathrm{H}$ contribution is observed for compound IXAZIQ (-0.34% and
1512.2%, respectively). For the four structures, we found a tendency when $\log \mathrm{P}$ is decreasing with the percentage of $\mathrm{C} \ldots \mathrm{H}$ contribution to the Hirshfeld surface.

Conclusion

20 Three new coumarin derivatives have been synthesised and determined by X-ray crystallography. Our study has focused on analysis of the crystal structures, interactions and different
structural motifs.
The structural feature of these compounds is the appearance of ${ }_{25}$ two types of motifs: R (rings) and C(chains) formed by weak CH...O hydrogen bonds. In every structure these interactions lead to building the 2D supramolecular network of bonds. In case of crystal structure (II) and (III) the successive 2D sheets of molecules are linked by $\pi \ldots \pi$ interactions, while these are 30 additionally enhanced by C-H...O interactions in crystal structure of (I).
Since, the presented compounds exhibit biological activity, we elucidate the lipophicility parameter (logP) and compare it with respect to different intermolecular interactions. It was seen that 35 the contribution of C...H interactions to the Hirshfeld surface correlates well with $\log P$ value.

Acknowledgements

The high-resolution measurement of compound (III) was carried out within the projects I-20090042EC and I-20110099EC at the 40 light source DORIS III at HASYLAB/DESY, Hamburg,

Germany. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 226716. Financial support from the Medical University of Lodz (grant No ${ }_{5} 503 / 3-066-02 / 503-01$ to E. B. Dr. Lilianna Chęcińska, Dr. Piotr Seliger is gratefully acknowledged for stimulating discussion and technical support. Prof. Joachim Kusz from the University of Silesia is gratefully acknowledged for the X-ray measurements of compound (I) and (II). Miss Małgorzata Telesiewicz is gratefully 10 acknowledged for technical support.

Notes and references

${ }^{a}$ Structural Chemistry and Crystallography Group, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland. Tel: +48 4263557 41; E-mail: 15 malecka@uni.lodz.pl
${ }^{b}$ Department of Cosmetic Raw Materials Chemistry, Medical University of Lodz, Muszyński 1, 90-151 Łódź, Poland. E-mail:
elzbieta.budzisz@umed.lodz.pl
\dagger Electronic Supplementary Information (ESI) available: It contains 20 Scheme S1 (query scheme in the database, Fig. S1-S4, crystallografic data in cif format, for CCDC 990515-990517-See DOI: 10.1039/b000000x/

1 (a) G. R Desiraju, Science 1997, 278, 404.(b) Top. Curr. Chem. Design of Organic Solids; Weber., E.,Ed.; Springer-Verlag: Berlin, $25 \quad$ 1998; 198.
2 G.R. Desiraju, Angew. Chem., Int. Ed. Engl. 1995, 34, 2311. (b) A. Nangia, G. R. Desiraju, Top. Curr. Chem. 1998, 198, 57.
3 T. Usui, Endocrine J. 2006, 53,7.
4 I. Malonov, I. Kostova, T. Netzeva, S. Konastantinov, M. 30 Karaivanova, Arch. Pharm. Pharm. Med. Chem., 2000, 333, 93.

5 (a) T. Patonay, G. Litkei, R. Bognar, J. Erdei, G. Miszti, Pharmazie 1984, 39, 84. (b) U.S. Weber, B. Steffen, C. Sigers, Res. Commun. Mol. Phatol. Pharmacol., 1998, 99, 193.
6 (a) D. Egan, R. O'Kennedy, E. Moran, D. Cox, E. Prosser, R.D. 35 Thornes, Drug Metab. Rev. 1990, 22, 503. (b) M .A. Musa, J. S. Cooperwood, M.Omar, F. Khan, Curr. Med. Chem., 2008, 15, 2664. (c) F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Curr. Med. Chem., 2005, 12, 887.
7 M. Recanatini, A. Cavalli, Bioorg. Med. Chem. 2004, 5, 207.
408 (a) E. Budzisz, E. Brzezińska, U. Krajewska, M. Różalski, Eur. J. Med. Chem. 2003, 38, 597. (b) K. V. Sashidara, S. Avula, K. Sharna, G. R. Palanti, S. R. Bathula, Eur. J. Med. Chem. 2013, 60, 120-127. (c) S. Y. Park, M. Ebihara, Y. Kubota, K. Fuabiki, M. Matsui, Dyes \& Pigments, 2009, 82, 258-267.
459 (a) G. R. Desiraju, Acc. Chem. Res., 2002, 35, 565. (b) G. A. Jeffrey, An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, U.K., 1997. (c) G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, U.K., 1999. (d) G. R. Desiraju, Nature,
50 2001, 412, 397. (e) T. Steiner, Angew. Chem., Int. Ed. 2002, 41, 48.
10 (a) M. A. Spackman, P. G. Byrom, Chem. Phys. Lett. 1997, 267, 215. (b) M. A. Spackman, D. Jayatilaka, CrystEngComm, 2009, 11, 19. (c) M. A. Spackman, J. J. McKinnon, CrystEngComm, 2002, 4, 378. (d) J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. 55 Commun., 2007, 3814. (e) M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm, 2008, 10, 377. (g) F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129. (h) H. F. Clausen, M. S. Chevallier, M. A. Spackman, B. B. Iversen, New J. Chem., 2010, 34, 193.

6011 B. A. Domin, W. B. Mahony, T. P. Zimmerman; Biochem Pharmaco.l; 1991, 42, 147.
12 CrysAlis RED Oxford Diffraction, 2008, Oxford Diffraction Ltd, Yarnton, England.
13 W. Kabsch, J. Appl. Cryst., 1993, 26, 795.
${ }_{65} 14$ S. K. J. Johnas, W. Morgenroth, E. Weckert, Annual Report, HASYLAB/DESY, 2006, 325.
15 G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
16 (a) M. A. Spackman, J. J. McKinnon, CrystEngComm, 2002, 4, 378. (b) M. A. Spackman, D. Jayatilaka, CrystEngComm, 2009, 11, 19. (c) M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm, 2008, 10, 377.
17 F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, International Tables for X-ray Crystallography, 2006, Vol. C, ch. 9.5, 790-811. Amsterdam: Kluwer Academic Publishers.

7518 J. J. McKinnon, M. A. Spackman, A.S. Mitchell, Acta Cryst., 2004, B60, 627.
19 A. Pyka, M. Babuska, M. Zachariasz, Acta Poloniae Pharm.-Drug Research, 2006, 63, 159.
20 K. Mazak, J. Vamos, A. Nemes, A. Racz, B. Noszal, J. Chrom. A, 2003, 996, 195-203.
21 http://www.vcclab.org/lab/alogps/
22 (a) M. C. Etter, Acc. Chem. Res., 1990, 23, 120. (b) J. Bernstein, R. E. Davis, L. Shimoni, N-L. Chang, Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.
8523 (a) P. Gilli, F. Bellucci, V. Ferretti, V. G. Bertolasi, J. Am. Chem. Soc., 1989, 111, 1023. (b) G. Gilli, P. Gilli, J. Mol. Struct., 2000, 552, 1.
24 V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, Acta Cryst., 1994, B50, 617.

9025 F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, 2006, International Tables for X-ray Crystallography, Vol. C, ch. 9.5, pp. 790-811. Amsterdam: Kluwer Academic Publishers.

26 I. Alkorta, J. Elguero, O. Mo, M. Yanez, J. E. del Bene, Mol. Phys. 2004, 102, 2563. (b) I. Alkorta, J. Elguero, O. Mo, M. Yanez, J. E.
95 del Bene, Chem. Phys. Lett., 2005, 411, 411.
27 C. Gatti, F. Cargnoni, L. Bertini, J. Comput. Chem., 2003, 24, 422.
28 (a) M. Małecka, L. Chęcińska, A. Rybarczyk-Pirek, W. Morgenroth, C. Paulmann, C. Acta Cryst., 2010, B66, 687. (b) M. Małecka, L. Chęcińska, C. Paulmann, Struct. Chem., 2012, 23, 801.
10029 M. Egli, S. Sarkhel, Acc. Chem. Res., 2007, 40, 197.
30 Cambridge Crystallographic Data Centre 2011. ConQuest, Version 1.13. CCDC, 12 Union Road, Cambridge, UK; http://www.ccdc.cam.ac.uk/products/csd_system/.
31 M. Małecka, S. J. Grabowski, E. Budzisz, Chem. Phys., 2004, 297, 235.

32 M. Helliwell, D. A. Nasiopoulou, P. A. Harris, A. Kotali, J. A. Joule, Acta Cryst., 2011, E67, o1014.
33 X. Han, X. Lu, Org.Lett., 2010, 12,108.
34 S. K. Seth, D. Sarkar, A. D. Jana, T. Kar, Cryst. Growth Des. 2011, 11, 4837.
35 M. Asad, C.-W. Oo, H. Osman, J. H. Goh, H.-K. Fun, Acta Cryst., 2010, E66, o3129.
36 F. H. Osman, N. M. A. El-Rahman, F. A. El-Samahy, I. S. A. Farag Phosphorus,Sulfur,Silicon,Relat.Elem., 2003, 178, 531.
11537 S. Vijayakumar, S. Murugavel, D. Kannan, M. Bakthadoss, Acta Cryst., 2012, E68, o791.

120

Structural framework of biologically active coumarin derivatives. Crystal structures and Hirshfeld surface analysis

Magdalena Małecka,* Elzbieta Budzisz
Table of Contents entry

The relation between lipophilicity parameter $(\log \mathrm{P})$ and the contribution of $\mathrm{C}-\mathrm{H} \ldots \pi$ interactions to the Hirshfeld surface has been investigated.

