# CrystEngComm 

Accepted Manuscript



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

## For Table of Contents Use Only

# Five Cd(II) Coordination Polymers Based on 2,3',5,5'-Biphenyl Tetracarboxylic Acid and $\mathbf{N}$-donor Coligands: Syntheses, Structures and Fluorescent Properties 

<br>${ }^{a}$ College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China<br>${ }^{\mathrm{b}}$ College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450052, P. R. China<br>${ }^{c}$ College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China

Five $\mathrm{Cd}(\mathrm{II})$ coordination polymers based on 2,3',5,5'-biphenyl tetracarboxylic acid and different bis(imidazole) ligands have been synthesized under hydrothermal conditions. Structural analyses reveal that the backbone of $\mathrm{H}_{4}$ bptc plays an important role in governing the final structures of these coordination polymers.


[^0]
# Five Cd(II) Coordination Polymers Based on 

# 2,3',5,5'-Biphenyl Tetracarboxylic Acid and N -donor <br> Coligands: Syntheses, Structures and Fluorescent Properties 


#### Abstract

Xin-Hong Chang ${ }^{\text {a }}$, Ying Zhao ${ }^{\text {a,b }}$, Min-Le Han ${ }^{\text {a }}$, Lu-Fang Ma ${ }^{\mathrm{a}, *}$ and Li-Ya Wang ${ }^{\text {a,c* }}$

Received (in XXX, XXX) Xth XXXXXXXXX 2014, Accepted Xth XXXXXXXXX 2014 First published on the web Xth $X X X X X X X X X 2014$ DOI: 10.1039/b000000x

Five $\mathrm{Cd}(\mathrm{II})$ coordination polymers, $\left\{\left[\mathrm{Cd}_{2}(\mathrm{Hbptc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left(1,3-\mathrm{H}_{2} \mathrm{bip}\right)\right\}_{n} \mathbf{( 1 )},\left[\mathrm{Cd}_{2}(\mathrm{bptc})(1,4-\mathrm{bib})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n} \mathbf{( 2 )}$, $\left\{\left[\mathrm{Cd}_{2}(\mathrm{bptc})(\mathrm{bix})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3}),\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{bptc}\right)(\mathrm{bimb})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(4)\right.$ and $\left\{\left[\mathrm{Cd}_{2}(\mathrm{bptc})(\mathrm{tib})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(5)\right.$, where $\mathrm{H}_{4}$ bptc $=2,3^{\prime}, 5,5^{\prime}$-biphenyl tetracarboxylic acid, 1,3-bip $=1,3-\operatorname{bis}($ imidazole $)$ propane, $1,4-\mathrm{bib}=$ 1,4-bis(imidazole)butane, bix = 1,4-bis(imidazol-1-ylmethyl) benzene, bimb = 4,4'-bis(imidazol-1-ylmethyl)biphenyl and tib = 1,3,5-tris(imidazol-1-yl)benzene, have been synthesized by using $\mathrm{Cd}(\mathrm{II})$ acetate with $\mathrm{H}_{4}$ bptc and different bis(imidazole) ligands under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Complex 1 displays a (3,6)-connected $\mathrm{CdI}_{2}$ topology, which further forms a 3D supramolecular framework by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions. Complex 2 features a 3D network with a $(4,5,7)$-connected $\left(3.4^{3} \cdot 5^{2}\right)\left(3.4^{3} \cdot 5^{2} \cdot 6^{3} \cdot 7\right)\left(3 \cdot 4^{6} .5^{4} \cdot 6^{8} \cdot 7^{2}\right)$ topology. Complex 3 exhibits a 3 D framework with a $(3,4,5)$-connected $(5.6 .7)\left(4.5^{2} .6 .7 .8\right)\left(4.5^{2} .6^{2} .7^{3} .8^{2}\right)$ topology. Complex 4 has a 2-fold interpenetrated $(4,4)$ net. Complex 5 possesses a 3D self-penetrating network with two dia nets. The results show that $\mathrm{H}_{4}$ bptc can act as a versatile building block for the construction of various metal organic frameworks (MOFs). Moreover, the fluorescent properties of $\mathbf{1}-\mathbf{5}$ in the solid state have been investigated.


[^1]
## Introduction

The rational design and synthesis of coordination polymers have attracted more and more interest from chemists, not only because of their fascinating topologies but also owing to their tremendous potential applications as functional materials. ${ }^{1}$ Among various organic ligands, multicarboxylic acids have been proven to be excellent candidates for building highly connected, self-penetrating or helical coordination frameworks due to their versatile bridging fashions. ${ }^{2}$ In the last two decades, 10 aromatic multicarboxylate, such as 1,3 - benzenedicarboxylate, 1,3,5- benzenetricarboxylate and 1,2,4,5-benzenetetracarboxylate have been widely utilized to design and synthesis of MOFs. ${ }^{3}$ Compared to rigid 1,2,4,5-benzenetetracarboxylic acid, biphenyl tetracarboxylic
15 acid is a flexible and longer ligand. Biphenyl tetracarboxylic acid ligand has four carboxylic groups that may be completely or partially deprotonated, inducing various coordination modes and allowing interesting structures with higher dimensionality, and can act as hydrogen-bond acceptor as well as donor,
${ }_{20}$ depending upon the degree of deprotonation. In addition, two sets of carboxylic groups separated by one phenyl ring can form different dihedral angles through the rotation of $\mathrm{C}-\mathrm{C}$ single bonds, thus it may ligate metal centers in different orientations. These characters can lead to form cavities, interpenetration,
${ }_{25}$ helical structures, and other novel motifs with unique topologies.
To date, various biphenyl tetracarboxylic acid ligands, such as $2,2^{\prime}, 3,3^{\prime}$-biphenyl tetracarboxylate, ${ }^{4} \quad 2,2^{\prime}, 4,4^{\prime}$-biphenyl tetracarboxylate, ${ }^{5}$ 2,2',5,5'-biphenyl tetracarboxylate, ${ }^{6}$ ${ }_{30} 2,2^{\prime}, 6,6$ '-biphenyl $\quad$ tetracarboxylate, ${ }^{7}$ 3,3',4,4'-biphenyl tetracarboxylate, ${ }^{8,2 f}$ and 3,3',5,5'-biphenyl tetracarboxylate, ${ }^{9,1 n}$ have been widely used to construct coordination polymers. However, until now, there only one example based on 2,3',5,5'-biphenyl tetracarboxylic acid
${ }_{35}\left(\mathrm{H}_{4} \mathrm{bptc}\right)$ has been reported by our group. ${ }^{10}$ So it is necessary to construct new MOFs based on $\mathrm{H}_{4}$ bptc and investigate their physical properties.

On the other hand, the mixed ligand assembly system has been widely used for the generation of new networks. ${ }^{11}$ Herein, 40 we report the syntheses and characterizations of five coordination polymers based on $\mathrm{H}_{4}$ bptc and different bis(imidazole) ligands , namely $\quad\left\{\left[\mathrm{Cd}_{2}(\mathrm{Hbptc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left(1,3-\mathrm{H}_{2} \mathrm{bip}\right)\right\}_{n} \quad$ (1), $\left[\mathrm{Cd}_{2}(\text { bptc })(1,4-\text {-bib })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{2}),\left\{\left[\mathrm{Cd}_{2}\left(\text { bptc) }(\text { bix })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}\right.$ (3), $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{bptc}\right)(\mathrm{bimb})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(4)\right.$ and $\left\{\left[\mathrm{Cd}_{2}(\mathrm{bptc})(\mathrm{tib})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}\right.$

45 (5) (Scheme 1). These complexes exhibit a systematic variation of architectures from 2D layer to 3D frameworks. In addition, the fluorescent properties of $\mathbf{1 - 5}$ in the solid state were also investigated.

## Experimental section

## ${ }_{50}$ Materials and general methods

All chemicals purchased commercially were used as received without further purification. All the products were highly stable in air at ambient conditions. The infrared spectra ( $4000 \sim 600$ $\mathrm{cm}^{-1}$ ) were recorded on a NICOLET 6700 FT-IR spectrometer.
${ }_{55}$ Elemental analyses for carbon, hydrogen and nitrogen atoms were performed on a Vario EL III elemental analyzer. Powder

X-ray diffraction (PXRD) measurements for 1-5 were performed on a Bruker D8-ADVANCE X-ray diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA)$ and $2 \theta$ ranging from $5-50^{\circ}$. ${ }_{60}$ Fluorescent analysis for $\mathbf{1 - 5}$ was performed on a Hitachi F-4500 analyzer.


Scheme 1. Synthesis of complexes 1-5

65

(d)


Scheme 2. Various coordination modes of $\mathbf{H}_{4}$ bptc

## Synthesis of $\left\{\left[\mathrm{Cd}_{2}(\mathbf{H b p t c})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left(\mathbf{1 , 3}-\mathrm{H}_{2} \mathrm{bip}\right)\right\}_{n}(\mathbf{1})$

A mixture of 2,3',5,5'-biphenyl tetracarboxylic acid ( 33.0 mg , 0.1 mmol ), 1,3-bip ( $17.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{Cd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(26.6$ $s \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{KOH}(5.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ were added to water ( 12 mL ) in a 25 mL Teflon-lined stainless steel vessel. The mixture was heated at 413 K for 3 days, and then slowly cooled down to room temperature. Colorless block crystals of $\mathbf{1}$ were obtained (yield: 48\% based on cadmium). Anal. Calc. (\%) 90 for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{Cd}_{2} \mathrm{~N}_{4} \mathrm{O}_{18}$ : C, 45.03; H, 2.95; N, 5.12; found (\%): C, 45.09 ; H, 3.02; N, 5.04 . IR $\left(\mathrm{cm}^{-1}\right): 3064 \mathrm{~m}, 1700 \mathrm{~m}, 1547 \mathrm{~s}$, $1397 \mathrm{~m}, 1362 \mathrm{~m}, 1228 \mathrm{~m}, 1149 \mathrm{~s}, 1111 \mathrm{~m}, 808 \mathrm{~m}, 727 \mathrm{~m}$.

## Synthesis of $\left[\mathrm{Cd}_{\mathbf{2}}(\mathbf{b p t c})(\mathbf{1 , 4 - b i b})\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{2})$

The synthesis of $\mathbf{2}$ was similar to that of $\mathbf{1}$ except that 1,3-bip 95 was replaced by 1,4 -bib. Colorless block crystals of 2 were obtained (yield: $56 \%$ based on cadmium). Anal. Calc. (\%) for
$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cd}_{2} \mathrm{~N}_{4} \mathrm{O}_{10}$ : C, $40.17 ; \mathrm{H}, 3.11 ; \mathrm{N}, 7.21$; found (\%): C , 40.23 ; H, 3.03; N, 7.16. IR $\left(\mathrm{cm}^{-1}\right): 3119 \mathrm{~m}, 1606 \mathrm{~m}, 1556 \mathrm{~s}$, $1435 \mathrm{~m}, 1308 \mathrm{~m}, 1235 \mathrm{~m}, 1113 \mathrm{~s}, 1081 \mathrm{~s}, 809 \mathrm{~m}, 720 \mathrm{~m}$.

## Synthesis of $\left\{\left[\mathbf{C d}_{2}(\text { bptc) })(\text { bix })\left(\mathbf{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathbf{3 H}_{\mathbf{2}} \mathrm{O}\right\}_{n}(\mathbf{3})$

${ }_{5}$ The synthesis of $\mathbf{3}$ was similar to that of $\mathbf{1}$ except that 1,3-bip was replaced by bix. Yellow prismatic crystals of 3 were obtained (yield: $76 \%$ based on cadmium). Elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{CdN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ : C, 43.22; H, 2.29; N, 4.58. Found: C, 43.27; H, 2.32; N, 4.26. IR ( $\mathrm{cm}^{-1}$ ): $3390 \mathrm{~m}, 1701 \mathrm{~s}$, ${ }_{10} 1617 \mathrm{~m}, 1542 \mathrm{~m}, 1467 \mathrm{~m}, 1394 \mathrm{~s}, 1225 \mathrm{w}, 1141 \mathrm{w}, 1107 \mathrm{w}$, 1068 w, 1044 w, 1014 w, 876 w, 850 w, $813 \mathrm{~m}, 719 \mathrm{w}, 686 \mathrm{w}$, 630 w, 593 w, 536 w.

## Synthesis of $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{bptc}\right)(\mathbf{b i m b})\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)\right]_{n} \mathbf{( 4 )}\right.$

The synthesis of $\mathbf{4}$ was similar to that of $\mathbf{1}$ except that 1,3-bip was 15 replaced by bimb.. Colorless block crystals of 4 were obtained (yield: $37 \%$ based on cadmium). Anal. Calc. (\%) for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{CdN}_{4} \mathrm{O}_{9}$ : C, 55.93 ; H, 3.65 ; N, 7.25 ; found (\%): C, 55.87 ; H, 3.70; N, 7.29. IR ( $\mathrm{cm}^{-1}$ ): $3117 \mathrm{w}, 1697 \mathrm{~m}, 1539 \mathrm{~s}, 1517 \mathrm{~s}, 1404$ s, $1228 \mathrm{~m}, 1116 \mathrm{~s}, 1083 \mathrm{~s}, 804 \mathrm{~m}, 743 \mathrm{~s}$.

## ${ }_{20}$ Synthesis of $\left\{\left[\mathrm{Cd}_{\mathbf{2}}(\mathbf{b p t c})(\mathbf{t i b})\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)\right]_{n}(\mathbf{5})\right.$

The synthesis of $\mathbf{5}$ was similar to that of $\mathbf{1}$ except that 1,3-bip was replaced by tib. Colorless block crystals of $\mathbf{5}$ were obtained (yield: $52 \%$ based on cadmium). Anal. Calc. (\%) for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{Cd}_{2} \mathrm{~N}_{6} \mathrm{O}_{9}$ : C, 44.04; H, 2.38; N, 9.94; found (\%): C, 44.09; ${ }_{25} \mathrm{H}, 2.27$; N, 10.03. IR $\left(\mathrm{cm}^{-1}\right): 3129 \mathrm{~m}, 1614 \mathrm{~m}, 1506 \mathrm{~s}, 1385 \mathrm{~m}$, $1356 \mathrm{~s}, 1249 \mathrm{~s}, 1072 \mathrm{~s}, 837 \mathrm{~m}, 676 \mathrm{~s}$.
X-ray crystallographic data collection and structural determination

The crystallographic diffraction data for complexes 1-5 30 were collected on a Bruker SMART APEX II CCD diffractometer with graphite-monochromated $\mathrm{Mo} K \alpha$ radiation ( $\lambda$ $=0.71073 \AA$ ) at $296(2) \mathrm{K}$ using the $\varphi / \omega$ scanning technique. All the structures were solved using direct methods and successive Fourier difference synthesis, and refined using the full-matrix 35 least-squares method on $F^{2}$ with anisotropic thermal parameters for all non-hydrogen atoms by SHELXS-97. ${ }^{12}$ An empirical absorption correction was applied using the SADABS program. Basic information pertaining to crystal parameters and structure refinements are summarized in Table S1. Selected bond lengths 40 and angles for $\mathbf{1 - 5}$ are listed in Table S2. Hydrogen bonding distance and angle data are listed in Table S3, shown in ESI $\dagger$.

## Results and discussions

## Description of Crystal Structures

 $\left\{\left[\mathrm{Cd}_{\mathbf{2}}(\mathrm{Hbptc})_{\mathbf{2}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left(\mathbf{1 , 3 - \mathbf { H } _ { 2 }} \mathbf{b i p}\right)\right\}_{\mathrm{n}}(\mathbf{1})$.45 Single-crystal X-ray diffraction analysis shows that complex 1 crystallizes in the monoclinic system, $C 2 / c$ space group. The asymmetric unit of $\mathbf{1}$ consists of one crystallographically $\mathrm{Cd}(\mathrm{II})$ cation, one partly deprotonated $\mathrm{Hbptc}^{3-}$ ion, one coordinated water molecule and half of a $1,3-\mathrm{H}_{2}$ bip cation. As shown in
${ }_{50}$ Fig. 1a, each $\mathrm{Cd}(\mathrm{II})$ ion is six-coordinated with a distorted octahedronal geometry by five carboxylic oxygen atoms from four separate $\mathrm{Hbptc}^{3-}$ and one coordinated water molecule. The Cd-O bond lengths are in the range of 2.222(9)-2.526(8) $\AA$.
$\mathrm{Hbptc}^{3-}$ shows obvious torsion with the dihedral angle between 55 the two benzene rings of $44.12^{\circ}$.

In 1, 2-, 5 - and $5^{\prime}-\mathrm{COOH}$ are deprotonated, scheme 2 a shows the coordination mode of partly deprotonated $\mathrm{Hbptc}^{3-}$, which connect $\mathrm{Cd}(\mathrm{II})$ ions to generate a 2D layer along $a b$ plane with $5-\mathrm{COOH}$ groups and corresponding phenyl rings decorating up ${ }_{60}$ and down sides (Fig. 1b). In the 2D layer, two $5^{\prime}-\mathrm{COO}^{-}$groups link two $\mathrm{Cd}(\mathrm{II})$ ions to form a $\left[\mathrm{Cd}_{2} \mathrm{O}_{2}\right]$ dinuclear subunit, in which the two $\mathrm{Cd}(\mathrm{II})$ ions and two oxygen atoms are all coplanar with a parallelogram, and adjacent $\mathrm{Cd} \cdots \mathrm{Cd}$ distance is $3.77 \AA$. From the topological point of view, the 2D structure of $\mathbf{1}$ can be ${ }_{65}$ simplified to a binodal (3,6)-connected $\mathrm{CdI}_{2}$ topology (Fig. 1c) with a Schläfli symbol of $\left(4^{3}\right)_{2}\left(4^{6} .6^{6} \cdot 8^{3}\right)$, in which, each $\left[\mathrm{Cd}_{2} \mathrm{O}_{2}\right]$ subunit links six $\mathrm{Hbptc}^{3-}$ and $\mathrm{Hbptc}{ }^{3-}$ connects three $\left[\mathrm{Cd}_{2} \mathrm{O}_{2}\right]$ subunits. Furthermore, the adjacent 2D layers are extended into a 3D opening supramolcular framework by O5-H5 $\cdots$ O3(I) 70 hydrogen bonding between $\mathrm{Hbptc}^{3-}$ with $\mathrm{O} \cdots \mathrm{O}$ distance of $2.731(13) \AA$. The guest $1,3-\mathrm{H}_{2}$ bip cations are encapsulated in channels through $\pi \cdots \pi$ stacking interactions between benzene rings of $\mathrm{Hbptc}^{3-}$ and imidazole rings of $1,3-\mathrm{H}_{2} \mathrm{bip}$ with the centroid-centroid distance of 3.677 Å (Fig. S1c, ESI).
75 Several binodal (3,6)-connected $\mathrm{CdI}_{2}$-type 2D MOFs were synthesized. ${ }^{13}$ For example, $\left\{\left[\mathrm{Mn}(\mathrm{qptc})(\text { phen })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$ exhibits a $(3,6)$-connected $\mathrm{CdI}_{2}$ layered architecture incorporating left- and right-handed helical chains. ${ }^{13 a}$ $\left[\mathrm{Zn}_{2}(\mathrm{BTC})(\mathrm{OH})(2-\mathrm{PyBim})\right]$ has the similar 2D $(3,6)$-connected ${ }_{80}$ non-interpenetrating $\mathrm{CdI}_{2}$-type network with a $\left(4^{3}\right)_{2}\left(4^{6} \cdot 6^{6} \cdot 8^{3}\right)$ topology based on tetranuclear $\mathrm{Zn}_{4}$ units. ${ }^{13 \mathrm{~d}}$

## $\left[\mathrm{Cd}_{2}(\text { bptc })(\mathbf{1}, 4-\mathrm{bib})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{\mathrm{n}}$ (2).

The fundamental building unit of complex 2 consists of two crystallographically independent $\mathrm{Cd}(\mathrm{II})$ atoms, one bptc $^{4-}$, one ${ }_{85}$ 1,4-bib and two coordinated water molecules. As depicted in Fig. 2a, Cd1 center adopts a distorted trigonal bipyramidal coordination environment and is coordinated with one carboxylic oxygen atom (O4) from one bptc ${ }^{4-}$ and one nitrogen atom (N1) from one 1,4-bib occupying the axial positions while three 90 carboxylic oxygen atoms (O8\#1, O6\#2 and O2\#3) from three different bptc $^{4-}$ lie in an equatorial plane. Cd2 center is coordinated by one nitrogen atom ( $\mathrm{N} 4 \# 4$ ) from 1,4-bib, three carboxylic oxygen atoms (O3, O5\#2 and O7\#5) from three different bptc ${ }^{4-}$ and two coordinated water molecules ( 09 W and ${ }_{5}$ O10W), showing a distorted octahedral geometry. The Cd-O bond lengths are in the range of $2.203(3)-2.400(2) \AA$, and the Cd-N ones are 2.273(3) and 2.269(3) $\AA$, respectively. The bptc ${ }^{4-}$ shows obvious torsion with the dihedral angle between the two benzene rings of $80.83^{\circ}$. Coordination mode of the bptc ${ }^{4-}$ ligand 100 is displayed in scheme 2 b , each bptc ${ }^{4-}$ ligand links seven $\mathrm{Cd}(\mathrm{II})$ atoms to generate a 3D framework. Finally, 1,4-bib ligands are fixed in the channels of the 3D framework by Cd-N coordinated bonds (Fig. 2b).

From the topological perspective, each $\mathrm{bptc}^{4-}$ can be 105 considered as a 7 -connected node and Cd 1 center and Cd 2 can be considered as 5 -connected node and 4 -connected node, respectively. The framework of 2 features an unprecedented trinodal $(4,5,7)$-connected network with a Schläfli symbol of $\left(3.4^{3} \cdot 5^{2}\right)\left(3.4^{3} \cdot 5^{2} \cdot 6^{3} \cdot 7\right)\left(3.4^{6} \cdot 5^{4} \cdot 6^{8} \cdot 7^{2}\right)$ topology (Fig. 2c).
(a)

(b)
10
20


Fig. 1. (a) Coordination environments of the $\mathrm{Cd}(\mathrm{II})$ ion in $\mathbf{1}$, hydrogen atoms and 1,3-H2bip are omitted for clarity. Symmetry codes: \#1: $x, y-1, z ; \# 2:-x+$ $251 / 2,-y-1 / 2,-z$; \#3: $x-1 / 2, y-1 / 2, z$. (b) Perspective view of the 2D layer in 1. (c) Schematic view of the $\mathrm{CdI}_{2}$ topology in 2 (blue nodes for 6 -connected $\left[\mathrm{Cd}_{2} \mathrm{O}_{2}\right]$ subunit and pink nodes for 3-connected bptc).

## $\left\{\left[\mathrm{Cd}_{2}(\text { bptc) })(\text { bix })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathbf{3} \mathrm{H}_{\mathbf{2}} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{3})$.

30
X-ray crystallography reveals that complex $\mathbf{3}$ crystallizes in a monoclinic system with space group $P 2_{1} / n$ and displays a (3,4,5)-connected 3D framework. Complex 3 comprises two crystallographic independent Cd (II) atoms, one $\mathrm{bptc}^{4-}$, one bix, two coordinated water molecules and one free water molecule. As depicted in Fig. 3a, Cd1 is surrounded by one nitrogen atom from one bix and five carboxylate oxygen atoms from three different bptc ${ }^{4-}$, while Cd 2 completed by one nitrogen atom from one bix, three carboxylate oxygen atoms from two bptc ${ }^{4-}$ and two oxygen atoms from two coordinated water molecules. The Cd-O bond
${ }_{40}$ lengths are in the range of $2.2106(19)-2.575(2) \AA$, and the $\mathrm{Cd}-\mathrm{N}$ ones are $2.186(2)$ and $2.265(3) \AA$, respectively. The bptc ${ }^{4-}$ ligand shows obvious torsion with the dihedral angle between the two benzene rings of $40.17^{\circ}$. The bptc ${ }^{4-}$ ligand connects five $\mathrm{Cd}(\mathrm{II})$ atoms, and the coordination mode is exhibited in scheme 2c. ${ }_{45}$ Thus, the $\mathrm{Cd}(\mathrm{II})$ atoms are bridged by $\mathrm{bptc}^{4-}$ to form a 3 D framework. The bix ligands are covalently filled in the voids of the framework of $\mathbf{3}$ via $\mathrm{Cd}-\mathrm{N}$ coordination bonds to generate an overall 3D framework (Fig. 3b). There are also hydrogen bonding between water molecules (coordinated or uncoordinated) and ${ }_{50}$ carboxylate oxygen atoms to stabilize the structures (see Table S3, ESI).

From the topological perspective, each bptc ${ }^{4-}$ coordinates to five $\mathrm{Cd}(\mathrm{II})$ ions and therefore the ligand can be considered as 5 -connected node. As Cd1 center and Cd2 can be considered as ${ }_{55} 4$-connected node and 3 -connected node, respectively. The network of 3 features a (3,4,5)-connected (5.6.7)(4.5 ${ }^{2}$.6.7.8) $\left(4.5^{2} \cdot 6^{2} .7^{3} .8^{2}\right)$ topology (Fig. 3c).

60
${ }_{90}$ Fig. 2. (a) Coordination environments of the $\mathrm{Cd}(\mathrm{II})$ ion in 2, hydrogen atoms are omitted for clarity. Symmetry codes: \#1: $x, y, z-1 ; \# 2: x-1, y, z-1 ; \# 3$ : $x+2, y-1 / 2,-z+2$; \#4: $x, y+1, z ; \# 5:-x+2, y+1 / 2,-z+2$. (b) View of the 3D network constructed by $\mathrm{Cd}(\mathrm{II})$ ions and bptc ${ }^{4-}$ ligands (red part) along the $b$ axis, with 1,4-bib ligands (green part) reside in. (c) Schematic view of the
$95(4,5,7)$-connected $\left(3.4^{3} .5^{2}\right)\left(3.4^{3} .5^{2} .6^{3} .7\right)\left(3.4^{6} \cdot 5^{4} .6^{8} .7^{2}\right)$ topology in 2 (blue nodes for 5 -connected Cd 1 and green nodes for 4 -connected Cd 2 ; pink nodes for 7 -connected bptc ${ }^{4}$ ).

## $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{bptc}\right)(\mathbf{b i m b})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(\mathbf{4})\right.$.

Single-crystal X-ray characterization indicates that complex 4 comprises one crystallographically $\mathrm{Cd}(\mathrm{II})$ atom, one partly deprotonated $\mathrm{H}_{2} \mathrm{bptc}^{2-}$ ion, one bimb ligand and one coordinated water molecule. As shown in Fig.4a, each $\mathrm{Cd}(\mathrm{II})$ ion is seven-coordinated by four carboxylic oxygen atoms from two separate $\mathrm{H}_{2} \mathrm{bptc}^{2-}$ ligands, two nitrogen atoms from two bimb ligands and one coordinated water molecule. The $\mathrm{Cd}-\mathrm{O}$ bond lengths are in the range of $2.222(9)-2.526(8) \AA$. The $\mathrm{H}_{2} \mathrm{bptc}^{2-}$ ligand shows obvious torsion with the dihedral angle between the 110 two benzene rings of $44.48^{\circ}$. Both of deprotonated carboxylate groups (2- and $5^{\prime}-\mathrm{COOH}$ ) of $\mathrm{H}_{2} \mathrm{bptc}^{2-}$ adopt chelate coordination modes (Scheme 2 d ) joining $\mathrm{Cd}(\mathrm{II})$ atoms to form a chain along $c$ direction, which is further extended to a 2D $(4,4)$ net by bimb ligands (Fig. 4c). The $\mathrm{Cd} \cdots \mathrm{Cd}$ separation through the $\mathrm{H}_{2} \mathrm{bptc}^{2-}$ dianions is $10.945 \AA$, which is shorter than that through the bridge ligand bimb (18.636 $\AA$ ). A pair of networks are
interlocked in a parallel fashion forming a 2 -fold interpenetrated netwok (Fig. 4c). Two kinds of hydrogen bonding are present: (a) hydrogen bonding between uncoordinated carboxylate oxygen atoms and coordinated carboxylate oxygen atoms with $\mathrm{O} \cdots \mathrm{O}$ distances of $2.541(3) \quad(\mathrm{O}(6)-\mathrm{H}(6) \ldots \mathrm{O}(5) \# 5)$ and $2.645(3)$ (O(2)-H(2)...O(4)\#6) Å, respectively; (b) hydrogen bonding between coordinated water molecules and uncoordinated carboxylate oxygen atoms with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.923(3) $(\mathrm{O}(1)-\mathrm{H}(2 \mathrm{~W}) \ldots \mathrm{O}(7) \# 7)$ and $2.907(4)(\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~W}) \ldots \mathrm{O}(7)) \AA$ (see
${ }_{10}$ Table S3, ESI). Such interpenetrated layers are further linked by hydrogen bonding interactions to generate an extended 3D supramolecular architecture.

15


20
(b)

30


Fig. 3. (a) Coordination environments of the $\mathrm{Cd}(\mathrm{II})$ ion in 3, hydrogen atoms and free water molecules are omitted for clarity. Symmetry codes: $\# 1:-x+1$, $-\mathrm{y}+1,-\mathrm{z} ; \# 2:-\mathrm{x}+3 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2 ; \# 3:-\mathrm{x}+2,-\mathrm{y}+1,-\mathrm{z}+1 ; \# 4 /: \mathrm{x}+$ $351, y$, z. (b) View of the 3D porous network constructed by $\mathrm{Cd}(\mathrm{II})$ ions and bptc4- ligands (red part) along the a axis, with bix ligands (cyan part) reside in. (c) Schematic view of the $(3,4,5)$-connected $(5.6 .7)(4.52 .6 .7 .8)(4.52 .62 .73 .82)$ topology in 3 (blue nodes for 4-connected Cd1 and 3-connected Cd2; pink nodes for 5-connected bptc4-).
40

## $\left\{\left[\mathrm{Cd}_{2}(\mathrm{bptc})(\mathrm{tib})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(5)\right.$.

The fundamental building unit of 5 consists of two crystallographically unique $\mathrm{Cd}(\mathrm{II})$ ions, one $\mathrm{bptc}^{4-}$, one tib and one coordinated water molecule. As illustrated in Fig.5a, Cd1 is 45 coordinated by four carboxylic oxygen atoms from two bptc ${ }^{4-}$ and two nitrogen atoms from two tib. Cd2 adopts a distorted square pyramidal coordination environment. Three carboxylic oxygen atoms from two different $\mathrm{bptc}^{4-}$ and one nitrogen atom from one tib form the equatorial plane and the apical position is occupied 50 by one oxygen atom ( O 9 W ) from one coordinated water molecule. The $\mathrm{Cd}-\mathrm{O}$ bond lengths are in the range of $2.219(6)-2.532(5) \AA$ and the $\mathrm{Cd}-\mathrm{N}$ ones are in the range of $2.234(6)-2.256(5) \AA$, respectively. The bptc ${ }^{4-}$ ligand shows obvious torsion with the dihedral angle between the two benzene 55 rings of $55.10{ }^{\circ}$. Four carboxylate groups of bptc ${ }^{4-}$ are deprotonated, and coordination mode is showed in scheme 2 e .

The $\mathrm{Cd}(\mathrm{II})$ atoms are bridged by bptc ${ }^{4-}$ and tib ligands to form a complicated 3D framwork (Fig. S3).

Fig. 4. (a) Coordination environments of the $\mathrm{Cd}(\mathrm{II})$ ion in 5 , hydrogen atoms are omitted for clarity. Symmetry codes: \#1: $x+1,-y+3 / 2,-z-$ 1/2; \#2: $x, y, z-1$. (b) View of 2D layer along the ac plane in 4. (c) View of 902 -fold interpenetrated $(4,4)$ net in 4.

Analysis of the network topology of 5 reveals that Cd 1 center acts as a 4 -connected node to connect two bptc ${ }^{4-}$ and two tib spacers. Cd2 center acts as a 3-connected node to two bptc ${ }^{4-}$ 95 and one tib. While bptc $^{4-}$ and tib ligands serve as 4 - and 3 -connected nodes, respectively. Thus the 3D network of complex 5 can be simplified as a $(3,4)$-connected $\left(6^{2} .8\right)\left(6.8^{5}\right)$ topology (Fig. 5b). To further understand this complicated structure, we break the N4-Cd2 bonds which bridges a pair of 100 adjacent networks. Thus both Cd2 and tib serve as 2 -connected node. The 2-connected Cd2 and tib are not ascribed to any node. So the topology of the 2-fold interpenetrated network becomes a binodal 4-connected dia nets (Fig. 5c). Therefore, the framework of $\mathbf{5}$ is clearly a self-penetrating net and can be considered as derived from cross-linking of 2-fold interpenetrated dia nets via $\mathrm{N} 4-\mathrm{Cd} 2$ bonds (Fig. 5d and 5e).
Influence of imidazole-containing ligands on the structures of the complexes.
Compounds $1-5$ are prepared in single crystalline through the 110 hydrothermal reaction of cadmium nitrate, $\mathrm{H}_{4} \mathrm{bptc}$, and five imidazole-containing ligands. From the structural descriptions above, it can be seen that the neutral imidazole-containing ligands have an influence on the frameworks of the complexes. As shown
in Scheme 2, $\mathrm{H}_{4}$ bptc in $\mathbf{1 - 5}$ displays different bridging coordination modes in the presence of different imidazole-containing ligands. These results show that both the imidazole-containing ligands and different coordination modes of $\mathrm{H}_{4}$ bptc have an effect on the final structures of metal organic frameworks.

${ }_{25}$ Fig. 5. (a) Coordination environments of the $\mathrm{Cd}(\mathrm{II})$ ion in 6, hydrogen atoms are omitted for clarity. Symmetry codes: \#1: $x,-y+3 / 2, z-1 / 2$; \#2: $x+1, y, z-1 ; \# 3: x,-y+1 / 2, z+1 / 2 ; \# 4:-x+1, y-1 / 2,-z+3 / 2$. (b) View of 3D framework with tetranodal $(3,4)$-connected topology (black: 3-connected tib node; pink: 3-connected Cd2 node; green: 304 -connected bptc; red: 4-connected Cd1 node). (c) The 2 -fold interpenetrated bimodal 4 -connected dia network by breaking N4-Cd2 bonds. (d) View of the details of self-interpenetration by tridentate tib ligand via $\mathrm{N} 4-\mathrm{Cd} 2$ bond. (e) Formation of the interpenetration by breaking $\mathrm{N} 4-\mathrm{Cd} 2$ bonds.

35

## PXRD Results and Photoluminescent properties

In order to check the phase purity of the complexes, powder X-ray diffraction (PXRD) patterns of 1-5 were recorded at room temperature. As shown in Fig. S4, ESI, the peak positions of the
40 simulated and experimental PXRD patterns are in agreement with each other, which confirm their phase purity. The difference in intensity of some diffraction peaks may be attributed to the preferred orientation of the crystalline powder samples.

Luminescent compounds are of great current interest because 45 of their various applications in chemical sensors, photochemistry and electroluminescent display. ${ }^{14}$ To examine the luminescent properties of these $\mathrm{d}^{10}$ metal complexes, the luminescence spectra of $1-5$ (Fig. 6) have been measured. Complexes $1-5$ display emission peaks at $447,424,446,456$ and 425 nm upon excitation ${ }_{50}$ at $\lambda=348,321,370,378$ and 363 nm , respectively. In order to
understand the nature of such emission bands, the fluorescence properties of the free $\mathrm{H}_{4} \mathrm{bptc}$ ligand was also measured, upon excitation at $c a .417 \mathrm{~nm}$, which shows the emission at $c a .466$ nm . Compared with the emission spectrum of $\mathrm{H}_{4}$ bptc, blue shifts 55 of emission bands for $\mathbf{1} \mathbf{- 5}$ have been observed. These emissions are neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal transfer (LMCT) in nature, since $\mathrm{Cd}^{\mathrm{II}}$ ions are difficult oxidize or reduce due to their $\mathrm{d}^{10}$ configuration. ${ }^{15}$ These shifts of the emission bands are attributed to both the ${ }_{60}$ deprotonated effect of $\mathrm{H}_{4} \mathrm{bptc}$ and the coordination interactions of the organic ligands to $\mathrm{Cd}^{\text {II }}$ ions. ${ }^{16}$


Fig. 6. Solid-state emission spectra of complexes $\mathbf{1}-\mathbf{5}$ and $\mathrm{H}_{4}$ bptc ${ }_{65}$ ligand at room temperature.

## Conclusions

In summary, five $\mathrm{Cd}(\mathrm{II})$ coordination polymers based on 2,3',5,5'-biphenyl tetracarboxylic acid and different 70 bis(imidazole) ligands have been synthesized under hydrothermal conditions. Structural analyses reveal that the backbone of $\mathrm{H}_{4}$ bptc plays an important role in governing the final structures of these metal-organic coordination polymers. Our research demonstrates for the first time that $\mathrm{H}_{4}$ bptc could be a potential building block 75 to construct novel coordination polymers with unusual architectures and interesting physical properties. Further experiments exploring the design and synthesis such crystalline materials with $\mathrm{H}_{4}$ bptc and other N -donor building blocks are underway in our laboratory.
80

## Acknowledgment

This work was supported by the National Natural Science Foundation of China (21371089 and 21271098), and sponsored ${ }_{85}$ by Program for New Century Excellent Talents in University (NCET-11-0947), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (134100510011) and Supported by Program for Innovative Research Team (in Science and Technology) in University of Henan Province.
${ }_{90}$ Electronic Supplementary Information (ESI) available: Crystallographic data in CIF format for $\mathbf{1 - 5}$, selected bond lengths, bond angles, and hydrogen-bonding geometries for $\mathbf{1 - 5}$.

CCDC 978916-978920 contain the supplementary crystallographic data for $\mathbf{1 - 5}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

5

## Notes and references

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
${ }_{10} b$ College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450052, P. R. China
c College of Chemistry and Pharmaceutical Engineering, Nanyang
Normal University, Nanyang 473061, P. R. China

15
1 (a) S. A. Barnett and N. R. Champness, Coordin. Chem. Rev., 2003, 246, 145-168; (b) G. Férey and C. Serre, Chem. Soc. Rev., 2009, 38, 1380-1399; (c) Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev., 2011, 112, 1126-1162; (d) M. O'Keeffe
20 and O. M. Yaghi, Chem. Rev., 2011, 112, 675-702; (e) J.-P. Zhang, Y.-B. Zhang, J.-B. Lin and X.-M. Chen, Chem. Rev., 2011, 112, 1001-1033; (f) P.-Q. Liao, D.-D. Zhou, A.-X. Zhu, L. Jiang, R.-B. Lin, J.-P. Zhang and X.-M. Chen, J. Am. Chem. Soc., 2012, 134, 17380-17383; (g) W. Xuan, C. Zhu, Y. Liu
25 and Y. Cui, Chem. Soc. Rev., 2012, 41, 1677-1695; (h) Y. Zhao, D.-S. Deng, L.-F. Ma, B.-M. Ji and L.-Y. Wang, Chem. Comтип., 2013, 49, 10299-10301; (i) R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.-C. Chang and T. C. Ozawa, Science, 2002,

30 298, 2358-2361; (j) O. R. Evans and W. Lin, Accounts. Chem. Res., 2002, 35, 511-522; (k) C. Janiak, Dalton Trans., 2003, 2781-2804; (1) T. T. Luo, H. L. Tsai, S. L. Yang, Y. H. Liu, R. D. Yadav, C. C. Su, C. H. Ueng, L. G. Lin and K. L. Lu, Angew. Chem. Int. Ed., 2005, 44, 6063-6067; (m) H.-L. Tsai,
35 C.-I. Yang, W. Wernsdorfer, S.-H. Huang, S.-Y. Jhan, M.-H. Liu and G.-H. Lee, Inorg. Chem., 2012, 51, 13171-13180; (n) X. Zhang, L. Fan, Z. Sun, W. Zhang, D. Li, J. Dou and L. Han, Cryst. Growth Des., 2013, 13, 792-803;
2 (a) L. A. Borkowski and C. L. Cahill, Inorg. Chem., 2003, 42,
40 7041-7045; (b) P. Vishweshwar, A. Nangia and V. M. Lynch, Cryst. Growth Des., 2003, 3, 783-790; (c) S. L. Childs, L. J. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly and G. P. Stahly, J. Am. Chem. Soc., 2004, 126, 13335-13342; (d) Z.-H. Zhou, J.-M. Yang and H.-L. Wan, Cryst. Growth Des.,

45 2005, 5, 1825-1830; (e) D. T. de Lill, N. S. Gunning and C. L. Cahill, Inorg. Chem., 2005, 44, 258-266; (f) X.-L. Wang, C. Qin and E.-B. Wang, Cryst. Growth Des., 2006, 6, 439-443; (g) Y.-Y. Liu, J.-F. Ma, J. Yang, J.-C. Ma and Z.-M. Su, CrystEngComm, 2008, 10, 894-904.
${ }_{50} 3$ (a) R. K. Vakiti, B. D. Garabato, N. P. Schieber, M. J. Rucks, Y. Cao, C. Webb, J. B. Maddox, A. Celestian, W.-P. Pan and B. Yan, Cryst. Growth Des., 2012, 12, 3937-3943; (b) C. Robl, Z. Anorg. Allg. Chem., 1988, 561, 57-65; (c) C. Daiguebonne, O. Guilloa, Y. Gerault, A. Lecerf and K. Boubekeur, Inorg.

55 Chim. Acta, 1999, 284, 139-145; (d) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, J. Am. Chem. Soc.,

2011, 134, 928-933; (e) P. Chaudhuri, K. Oder, K. Wieghardt, S. Gehring, W. Haase, B. Nuber and J. Weiss, J. Am. Chem. Soc., 1988, 110, 3657-3658; (f) D.-P. Cheng, Y.-Q. Zheng, J.-L. Lin, D.-J. Xu and Y.-Z. Xu, Acta Crystallogr, Sect C: Cryst Struct Commun, 2000, 56, 523-524; (g) G.-G. Luo, S.-H. Wu, Q.-H. Zhao, D.-X. Li, Z.-J. Xiao and J.-C. Dai, Inorg. Chem. Commun., 2012, 20, 290-294; (h) X. Xiao, D. Du, X. Han, J. Liang, M. Tian, D. Zhu and L. Xu, J. Organomet. Chem., 2012, 713, 143-150; (i) I. Mihalcea, C. Volkringer, N. Henry and T. Loiseau, Inorg. Chem., 2012, 51, 9610-9618.
4 (a) S. Zang, Y. Su, C. Duan, Y. Li, H. Zhu and Q. Meng, Chem. Commun., 2006, 4997-4999; (b) S. Zang, Y. Su, Y.-Z. Li, J. Lin, X. Duan, Q. Meng and S. Gao, CrystEngComm, - 2009, 11, 122-129.

5 (a) T. Jia, S. Zhu, M. Shao, Y. Zhao and M. Li, Inorg. Chem. Commun., 2008, 11, 1221-1223; (b) J. Jia, M. Shao, T. Jia, S. Zhu, Y. Zhao, F. Xing and M. Li, CrystEngComm, 2010, 12, 1548-1561; (c) Y.-H. Su, F. Luo, H. Li, Y.-X. Che and J.-M.

6 (a) D. Tian, Y. Pang, Y.-H. Zhou, L. Guan and H. Zhang, CrystEngComm, 2011, 13, 957-966; (b) X. Zhang, L. Fan, Z. Sun, W. Zhang, D. Li, P. Wei, B. Li and J. Dou, J. Coord. Chem., 2012, 65, 3205-3215; (c) S.-Q. Guo, D. Tian, Y.-H.
80 Luo, X. Chen and H. Zhang, J. Solid State Chem., 2013, 205, 110-115.
7 (a) P. Holý, J. Závada, I. Císařová and J. Podlaha, Angew. Chem. Int. Ed., 1999, 38, 381-383; (b) Y.-G. Huang, Y.-Q. Gong, F.-L. Jiang, D.-Q. Yuan, M.-Y. Wu, Q. Gao, W. Wei 85 and M.-C. Hong, Cryst. Growth Des., 2007, 7, 1385-1387; (c) P. Suh, H. R. Moon, E. Y. Lee and S. Y. Jang, J. Am. Chem. Soc., 2006, 128, 4710-4718; (d) Z. Yang, J. Liu, X.-Q. Liang, Y. Jiang, T. Zhang, B. Han, F.-X. Sun and L. Liu, Inorg. Chem. Commun., 2012, 16, 92-94; (e) Z. Chang, D.-S. Zhang,
90 Q. Chen, R.-F. Li, T.-L. Hu and X.-H. Bu, Inorg. Chem., 2011, 50, 7555-7562; (f) Z. Chang, D.-S. Zhang, T.-L. Hu and X.-H. Bu, Inorg. Chem. Commun., 2011, 14, 1082-1085; (g) L. Cheng, H. Hu, L. Zhang and S. Gou, Inorg. Chem. Commun., 2012, 15, 202-207; (h) L. Cheng, J.-Q. Wang and S.-H. Gou,
95 Inorg. Chem. Commun., 2011, 14, 261-264; (i) L. Cheng, L.-M. Zhang, S.-H. Gou, Q.-N. Cao, J.-Q. Wang and L. Fang, CrystEngComm, 2012, 14, 4437-4443.
8 (a) X.-R. Hao, Z.-M. Su, Y.-H. Zhao, K.-Z. Shao and Y. Wang, Acta Crystallog.r, Sect. C: Cryst. Struct. Commun., 2005, 61, m469-m471; (b) L.-X. Sun, Y. Qi, Y.-X. Che, S. R. Batten and J.-M. Zheng, Cryst. Growth Des., 2009, 9, 2995-2998; (c) L.-X. Sun, Y. Qi, Y.-M. Wang, Y.-X. Che and J.-M. Zheng, CrystEngComm, 2010, 12, 1540-1547; (d) J.-J. Wang, L. Gou, H.-M. Hu, Z.-X. Han, D.-S. Li, G.-L. Xue, M.-L. Yang and

105 Q.-Z. Shi, Cryst. Growth Des., 2007, 7, 1514-1521; (e) X. L. Wang, C. Qin, E. B. Wang and L. Xu, Eur. J. Inorg. Chem., 2005, 2005, 3418-3421; (f) D. Weng, X. Zheng, L. Li, W. Yang and L. Jin, Dalton Trans., 2007, 4822-4828; (g) G. P. Yang, Y. Y. Wang, L. F. Ma, J. Q. Liu, Y. P. Wu, W. P. Wu
110 and Q. Z. Shi, Eur. J. Inorg. Chem., 2007, 2007, 3892-3898; (h) G.-P. Yang, Y.-Y. Wang, H. Wang, C.-J. Wang, G.-L.

Wen, Q.-Z. Shi and S.-M. Peng, J. Mol. Struct., 2008, 888, 366-374.
9 (a) B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi and S. Dai, Angew. Chem., 2006, 118, 1418-1421; (b) B. Chen, N. W. Ockwig, F. R. Fronczek, D. S. Contreras and O. M. Yaghi, Inorg. Chem., 2005, 44, 181-183; (c) H. S. Choi and M. P. Suh, Angew. Chem. Int. Ed., 2009, 48, 6865-6869; (d) X. Lin, J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R.
10 Champness, P. Hubberstey and M. Schröder, Angew. Chem. Int. Ed., 2006, 45, 7358-7364; (e) X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas and T. J. Mays, J. Am. Chem. Soc., 2009, 131, 2159-2171; (f) H. Zhou, H. Dang, J.-H. Yi, A.
15 Nanci, A. Rochefort and J. D. Wuest, J. Am. Chem. Soc., 2007, 129, 13774-13775.
10 Y. Zhao, L.-F. Ma, Z.-Z. Shi, M.-L. Han and L.-Y. Wang, Inorg. Chem. Commun., 2013, 38, 50-53.
11 (a) J.-J. Cheng, Y.-T. Chang, C.-J. Wu, Y.-F. Hsu, C.-H. Lin,
20 D. M. Proserpio and J.-D. Chen, CrystEngComm, 2012, 14 537-543; (b) M. Du, X.-J. Jiang and X.-J. Zhao, Chem. Commun., 2005, 5521-5523; (c) M. Du, X.-J. Jiang and X.-J. Zhao, Inorg. Chem., 2007, 46, 3984-3995; (d) L. Fan, X. Zhang, Z. Sun, W. Zhang, Y. Ding, W. Fan, L. Sun, X. Zhao
25 and H. Lei, Cryst. Growth Des., 2013, 13, 2462-2475; (e) F. Yang, Q. Zheng, Z. Chen, Y. Ling, X. Liu, L. Weng and Y. Zhou, CrystEngComm, 2013, 15, 7031-7037; (f) J. Yang, J.-F. Ma, Y.-Y. Liu, J.-C. Ma and S. R. Batten, Cryst. Growth. Des., 2009, 9, 1894-1911; (g) K.-J. Chen, R.-B. Lin, P.-Q. Liao,
${ }_{30}$ C.-T. He, J.-B. Lin, W. Xue, Y.-B. Zhang, J.-P. Zhang and X.-M. Chen, Cryst. Growth Des., 2013, 13, 2118-2123; (f) J. Xu, X.-Q. Yao, L.-F. Huang, Y.-Z. Li and H.-G. Zheng, CrystEngComm, 2011, 13, 857-865.
12 G. M. Sheldrick, Acta Crystallogr. Sect. A: Found.
35 Crystallogr., 2007, 64, 112-122.
13 (a) X.-T. Zhang, L.-M. Fan, X. Zhao, D. Sun, D.-C. Li and J.-M. Dou, CrystEngComm, 2012, 14, 2053-2061; (b) Y. Zhang, Q. Wang, Y.-J. Xiao, J. Han and X.-L. Zhao, Polyhedron, 2012, 33, 127-136; (c) M. Hu, M. Chen, X.-G.
40 Yang, S.-M. Fang and C.-S. Liu, J. Coord. Chem., 2011, 64, 3928-3937; (d) F.-H. Zhao, Y.-X. Che and J.-M. Zheng, Inorg. Chim. Acta, 2012, 384, 170-175
14 (a) J. E. McGarrah, Y.-J. Kim, M. Hissler and R. Eisenberg, Inorg. Chem., 2001, 40, 4510-4511; (b) Q. Wu, M.
45 Esteghamatian, N.-X. Hu, Z. Popovic, G. Enright, Y. Tao, M. D'Iorio and S. Wang, Chem. Mater., 2000, 12, 79-83; (c) G. De Santis, L. Fabbrizzi, M. Licchelli, A. Poggi and A. Taglietti, Angew. Chem. Int. Ed. Engl., 1996, 35, 202-204.
15 (a) L.-L. Wen, D.-B. Dang, C.-Y. Duan, Y.-Z. Li, Z.-F. Tian
50 and Q.-J. Meng, Inorg. Chem., 2005, 44, 7161-7170. (b) T.-L. Hu, R.-Q. Zou, J.-R. Li and X.-H. Bu, Dalton Trans., 2008, 1302-1311.
16 F.-F. Li, J.-F. Ma, S.-Y. Song, J. Yang, Y.-Y. Liu and Z.-M. Su, Inorg. Chem., 2005, 44, 9374-9383.
55


[^0]:    * Corresponding author. Fax: +86-379-65526089.

    E-mail address: mazhuxp@126.com (L. F. Ma); wlya@lynu.edu.cn (L. Y. Wang).

[^1]:    * Corresponding author. Fax: +86-379-65526089.

    E-mail address: mazhuxp@126.com (L.F. Ma); wlya@lynu.edu.cn (L. Y. Wang).

