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Graphene nanosheets encapsulated α-MoO3 
nanoribbons with ultrahigh lithium ion storage 
properties 

Pei-Jie Lu a, b, Ming Lei c, Jun Liu * a, b 

A facile and effective way has been reported to synthesize of graphene-encapsulated α-MoO3 

nanoribbons by self-assembly between negatively charged graphene oxide and positively 
charged MoO3 nanoribbons. Compared to those structures of MoO3 nanobelts grown on 
graphene or other hybrids of MoO3 composited with carbon or non-carbon, this unique hybrid 
architecture of graphene-encapsulated MoO3 nanoribbons exhibits not only a high specific 
capacity (up to 823 mAh•g-1 after 70 cycles at 200mA•g-1), but also an excellent cycling 
performance (with more than 754 mAh•g-1 after 200 cycles at 1000mA•g-1 ) as well as a 
greatly-enhanced high-rate capability (displaying a high discharge capacity of 710 mAh•g-1 
after 30 cycles at 3000 mA•g-1), thus holding a great potential as an anode material for lithium 
ion batteries. 

1 Introduction 
 

Looking forward to the energy future of humanity, 
renewable energy will definitely be the most sustainable way to 
solve many social and environmental problems. How to store 
the variable renewable energy in an efficient and cheap way 
would be a great challenge. The most promising energy storage 
systems should combine the features of relatively high energy 
density, good power capability, environmental friendliness, and 
low cost. Lithium ion batteries (LIBs) are considered among the 
most practical and effective technologies for electrochemical 
energy storage.1, 2 LIBs can be widely used in electric vehicles, 
multifunctional electric devices, communication equipment, 
and renewable energy integration.3, 4 Therefore, developing 
LIBs with high energy density, power density, and excellent 
cycling performance becomes critical. Numerous efforts have 
been devoted to develop the new electrode materials to meet 
these demands of LIBs.2, 3, 5 Electrochemically active transition 
metal oxides (MxOy ), such as Fe 2O3 ,

6, 7 Fe 3O 4 ,
8 SnO2 ,

9 Co3 

O4,
10-12 and TiO2

 13, 14 may be used as promising candidates for 
anode materials in the future owing to their high theoretical 
capacity and natural abundance. Among the metal oxide, 
molybdenum trioxide (MoO3) has recently received much 
attention as an electrode material for LIBs owing to its good 
chemical stability and high charge storage capability. MoO3 is a 
well-known Li+ insertion compound and has been investigated 
during the early years of lithium battery research.15-17 As an 
anode material, MoO3 not only has a superior theoretical 
specific capacity of nearly 1111mAh•g-1,18 which is nearly 
three times than that of graphite (372mAh•g-1) 19, but also has a 
very stable layered structure ( as show in scheme 2a). 20, 21 This 
layered structure is able to act as a temporary host for 
intercalated Li+.22 However, the poor conductivity and poor 

kinetics of Li+ diffusion in bulk layered MoO3 limits its 
electrochemical performances.23 

One way to enhance the kinetics for lithium storage in 
MoO3 is to prepare nanostructured MoO3, which can enlarge 
the surface area of active material and lessen the diffusion 
dimension of charges. 24-26 Another way is to synthesize MoO3-
carbon composite, which not only prevents the exfoliation of 
active material from current collector but also improves the 
conductivity of MoO3.

18 In this regard, Sn-Co-CNT@ CNT,27 
Si/graphene,28 Si@CNT,29 SnO2/graphene,30 LiFePO4@ CNT31, 
TiO2/graphene,32 Graphene/CNT@Porous Carbon-S33 and 
Co3O4/graphene,34 hybrids or composites, in which metals or 
metal oxides are distributed onto the surface of graphene or 
between the graphene layers, have been fabricated by 
restacking CNT or graphene sheets in the presence of guest 
nanoparticles or corresponding organometallic precursors. In 
particular, graphene, a new two-dimensional carbon material, 
exhibits superior electrical conductivity, large surface area, 
structural flexibility, and chemical stability, is greatly pursued 
by chemists and materials scientists since it was proposed.35, 36 
Therefore, graphene is regarded as a promising substitute for 
graphite to prepare high performance MoO3 - carbon composite. 
MoO3 nanobelts grown on reduced graphene oxide or graphene 
have been reported by hydrothermal methods,37, 38 however, as 
far as we known, the graphene-encapsulated MoO3 nanoribbon 
has not been reported. Although these reported MoO3 
nanomaterials or MoO3-graphene composites have shown 
improved performances, achieving MoO3 with good rate 
performances and stable cycling properties still remains a great 
challenge until now. 

In this work, we initially come up with the idea that the α-
MoO3 nanoribbon can be modified by APS to achieve the 
fabrication of graphene-encapsulated α-MoO3 nanoribbon by 
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coplanar vibration of sp2-bonded carbon atoms in GNS. 
According to the Raman spectra comparison between GO and 
GNS (shown in Fig. S2), the Fig. 3a indicates that our sample is 
the MoO3@GNS composite, not MoO3@GO composite, since 
the intensity of D peak is higher than that of G peak. Moreover, 
the peak intensity ratio between the 1350 and 1580 cm−1 peaks 
(ID/IG) generally provides a useful index about the degree of 
crystallinity of various carbon materials, that is, the smaller the 
ID/IG ratio, the higher the degree of ordering in the carbon 
material.47 The intensity ratio ID/IG of ≈1.2 indicates the size of 
the graphitic carbon (La) is about 5.3 nm according to the 
empirical equation La = 4.4 ID/IG (nm).41 These results indicate 
that the carbon matrix is partially graphitized, which could 
benefit the electron transportation from/to the poorly 
conducting MoO3. The 2D band (2708 cm-1) is the most 
prominent feature in the Raman spectrum of GNS in the 
MoO3@GNS composite, and its position and shape are 
sensitive to the number of layers of graphene. The single, 
symmetrical 2D band exhibited at 2708 cm-1 corresponds to the 
graphene with a few layers. Fig. 3a showed the Raman spectra 
of the MoO3@GNS composite. The Mo-O stretching (ν) and 
bending (δ) vibrations usually appear in the 1000-600 cm-1 and 
600-150 cm-1 range, respectively. The Raman spectra of the 
MoO3@GNS composite showed the characteristic Raman 
bands of MoO3 at 993 (Ag , νas M=O stretch), 817 (Ag , νs M=O 
stretch), 665 (B2g, B3g , νas O-M-O stretch), 473 (Ag ,νas O-M-O 
stretch and bend), 380 (B1g , δ O-M-O scissor), 376 (B1g), 366 
(A1g , δ O-M-O scissor), 334 (Ag, B1g , δ O-M-O bend), 293 
(B3g , δ O=M=O wagging), 285 (B2g , δ O=M=O wagging), 247 
(B3g , τ O=Mo=O twist), 216 (Ag , rotational rigid MoO4 chain 
mode, Rc), 197 (B2g , τ O=Mo=O twist), 159 (Ag/B1g , 
translational rigid MoO4 chain mode,Tb), 129 (B3g , 
translational rigid MoO4 chain mode, Tc), 116(B2g , 
translational rigid MoO4 chain mode, Tc), 100 
(B2g ,translational rigid MoO4 chain mode, Ta) and 89 cm-1 
(Ag ,translational rigid MoO4 chain mode, Ta). The observed 
bands are assigned according to the single crystal study of Py 
etal.48 The Mo=O bond distances along the a- and b-axes (167 
and 173 pm) are shorter than the Mo-O bond distance along the 
c axis (195 pm). The high stretching frequency at 993 and 817 
cm-1 can be assigned to the stretching vibration of the terminal 
Mo=O bonds along the a- and b-axes.49 The high intensity of 
993 and 817 cm-1 bands may indicate that the high oxygen 
vacancy concentration in MoO3@GNS composite,48 which may 
result from the sample annealing in an atmosphere of 800 sccm 
gas mixtures (95% Ar and 5% H2).  

  

 

 

Fig. 3 (a) Raman spectra of MoO3@GNS, (b) FT-IR spectra of 
MoO3@GNS composite. 
 

The FT-IR spectra in Figure 3(b) support a consistent 
conclusion. The stretching mode of Mo-terminal oxygen is 
located at 991 cm–1. The absorption bands at 867 and 555 cm–1 
are assigned to stretching vibrations of the O(3) and O(2) atoms 
linked to two or three molybdenum atoms, respectively. The 
absorption bands  at 1628 cm-1 was caused by stretching 
vibrations of sp2 hybridized carbons C=C in graphene. From 
3000 to 3700 cm-1, there was a broad absorption peak which 
came from a small quantity of –OH. The intensity of absorption 
peak at 1720 cm-1 attributes to the stretching vibrations of C=O 
in –COOH,41 the intensity of which are very weak because the 
GO was reduced sufficiently by H2 during the heat treatment. 
The FT-IR spectra of the GO and GNS product was also shown 
Fig. S3. 

Page 4 of 10CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



Jou

This

Fig
ima
ima
SA
     

nan
4A
nan
Un
len
Ho
det
fou
sm
adh
mo
com
dif
D a
TE
gra
the
bot
nan
wh
nan
vol
Mo
Mo
tim
α-M
effe
two
exp
illu
nan
nan
stac
alth
nan
det
cry
phe
sho
orth
allo
for

urnal Name 

s journal is © Th

g. 4 (A,F) SEM
age of the α
ages of the α-

AED of the Mo
  
The morpho

nocomposite w
A and B presen
noribbons an
niform α-MoO
ngths of 4-10 
owever, the t
termine from 
und that the α-
ooth comparin
hering to α-M
orphology and
mposite, TEM
ffraction (SAE
and E of Figu

EM image w
aphene nanosh
e overall belt-
ttom (a), sid
noribbons all 
hich can enorm
nocomposites 
lume of α-Mo
oreover, the T
oO3 nanoribbo

me ultrasonic tr
MoO3 nanorib
fective electros
o materials. T
plain the perfe
ustrated in Fig
noribbons (ref
noribbons are 
cked single n
hough the obs
noribbons, onl
tected, indicati
ystallographic 
enomenon is 
own in Figure 
horhombic α-M
owed diffract
rbidden diffrac

e Royal Society o

M image of th
α-MoO3@GNS
-MoO3 @GNS

oO3@GNS com

ology and st
were character
nt the top-vie

nd α-MoO3@
O3 nanoribbons
μm can be o

thicknesses of
the SEM im

-MoO3 nanorib
ng with image

MoO3 nanoribb
d structure ch
M and corres
D) and HRTE
ure 4, respecti

which further 
heets encapsu
like morpholo

de (b, d), a
were wrappe

mously increas
and buffer 

oO3 nanoribb
TEM image in
on is firmly att
reatment, sugg
bbon and GN
static interacti
This special s
ect cycling pe
ure 6. From th

fer to Figure 4F
actually comp
nanoribbons. 
erved nanorib
ly one set of 
ing that two pa
orientation. T
“oriented atta
4E can be att

MoO3. It shou
tion spots su
ction spots c

of Chemistry 201

he α-MoO3 na
S nanocompos
S composite; (
mposite.   

tructure of t
rized by SEM
w SEM imag

@GNS compo
s with width o
observed clea
f the nanorib

mages. From F
bbons were no

e A, which resu
bons. To furt
haracteristics 
sponding sele
EM pattern are
ively. Figure 4

confirms sp
ulated α-MoO3

ogy of as-prep
and upper si
ed up by the 
se the electric 
the strain fro
ons during th
n Figure 4C 
tached to the G
gesting strong 
NS, which c
ion caused by
structure chara
erformance an
he contrast alo
F), it is obviou
posed of two p
It is of inte

bbons are comp
electron diffra
arallel nanorib

The most poss
achment”. 42 
tributed to the

uld be mention
uch as 200* 
an also be o

13 

anoribbon (B) 
site and (C) 
(D,E) HRTEM

he α-MoO3@
M and TEM. F

es of pure α-M
osite, respect
of 300-600 nm
rly from imag
bbons are ha
Figure 4B, w
ot that uniform
ulted from the
ther understan
of α-MoO3@

ected area ele
shown in pan

4C shows a ty
pecial structu
3 nanoribbons
pared product
ide(c) of α-M

ultrathin grap
conductivity 

om the chan
he cycling pro
reveals that t

GNS even afte
interaction bet
ould contribu
y APS betwee
acteristic can 

nd rate perform
ong the width 
us that the obs
parallel and c
erest to note 
posed of two 
action spots c

bbons have ide
sible reason fo
The SAED p

e [010] zone a
ned that, besid

and 002*, 
bservable (su

 

SEM 
TEM 

M and 

@GNS 
Figure 
MoO3 
tively. 
m and 
ge A. 

ard to 
we can 

m and 
e GNS 
nd the 
@GNS 
ectron 

nels C, 
ypical 

ure of 
s, and 
ts, the 
MoO3 

aphene 
of the 

nge in 
rocess. 
the α-

er long 
tween 

ute to 
en the 

well-
mance 
of the 

served 
losely 
 that, 
single 

can be 
entical 
or this 
pattern 
axis of 
des the 

some 
uch as 

100*
expla
scatte
TEM
confi
direc
Two 
(0.40
schem
high-

Sc
and l

Fig. 
Mo, 
nano
 

nano
elem
with 
More
elem
nano
which
of gra

 and 001* in
ained as the 
ering of the s

M image and
irmed that the
tion and along
sets of crysta

0 nm) and {00
me 2c, d), ca
-resolution HR

cheme 2.  Sch
ithiated MoO3

5 SEM image 
O and C in th
ribbons nanos

Energy dispe
composite of 
ents Mo, O an
the XRD, Ra

eover, from th
ental mappin
ribbon α-MoO
h illustrates w
aphene nanosh

ndicated by w
double diffra
trong electron

its correspo
 α-MoO3 nano

g the (010) pla
al lattice fringe
01} (0.37nm) 
an be clearly 
RTEM image o

hematic of sta
3. 

and the corres
e graphene na
tructures. 

rsive spectros
nanoribbon α

nd C (shown in
aman and TEM
e SEM image 

ng of C (Fig
O3 is uniform

we have succes
heets encapsul

J. Name

white arrows
action caused 
n beam. On c
onding SAED

noribbons grow
ane (as shown 
es, correspond
atomic spacin
distinguished

of the α-MoO3

able layered α

sponding elem
anosheets enca

scopy (EDS) 
α-MoO3@GN
n Figure 5), w
M results (Fig
(Fig.5a) and t

ig.5d), we ca
mly wrapped 
ssfully achieve
lated α-MoO3 

ARTI

., 2013, 00, 1‐3

), which can
by the dyna

omparison of 
D pattern, it
w along the [0

in scheme 2a
ding to the {1
ngs (as shown

d in the top-v
3 (Figure 4D). 

α-MoO3 structu

mental mappin
apsulated α-M

reveals that 
S consists of 

which is consis
gures 2, 3 and
the correspond
an see that 
up by the G

ed the prepara
nanoribbons.

ICLE 

3 | 5 

n be 
amic 
f the 
t is 
001] 
, b). 
00} 
n in 

view 
 

 

ures 

 

g of 
oO3 

the 
the 

stent 
d 4). 
ding 

the 
GNS 
ation 

Page 5 of 10 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE  Journal Name 

6 | J.  Name., 2013, 00, 1‐3  This journal is © The Royal Society of Chemistry 2013 

 
3.2 Electrochemical performance 
 

To address the effect of nanocoating layer (GNS) on the 
electrochemical performance of the α-MoO3 nanoribbon, we 
have studied the electrochemical performance of α-
MoO3@GNS nanocomposites and pure α-MoO3 nanoribbon on 
the same time. 

Fig. 6a indicates the Li+ insertion/extraction capacities and 
the coulombic efficiency of the α-MoO3@GNS and the α-
MoO3 nanoribbon. From the chart we can see that under a 
current density of 200 mA•g-1 between the voltage limits of 
0.01 and 3.0V (vs. Li+/Li), the α-MoO3@GNS anode has a high 
specific capacity and a perfect cycle performance. The initial 
discharge capacity reached 1321 mAh•g-1 and the second 
discharge capacity reached 953 mAh•g-1, the large capacity loss 
in the first two cycles is mainly attributed to the irreversible 
intercalation of Li+ ions into the crystal lattice which results in 
the structural change of MoO3  and the formation of Li2O. The 
structural change of MoO3 at the end of the first recharge can’t 
be fully recovered after the initial discharge which plays an 
important role in the large capacity loss. The similar results are 
reported by  T.Tsumura, Minoru Inaba, etc.50, 51 Meanwhile 
some other irreversible processes such as inevitable formation 
of solid-electrolyte interface (SEI) layer also may result in the 
capacity loss as well, which are common for most interstitial-
free transitional metal oxides anodes. The specific discharge 

and charge capacity of α-MoO3@GNS anodes experienced a 
sluggish increase firstly, and then almostly sustain the same 
level and even after 70 cycles, there was still 833 mAh•g-1 
remained to the nanoribbon α-MoO3@GNS anodes, which is 
2.2 times more than the theoretical capacity of graphite (372 
mAh•g-1). The coulombic efficiency increases at the initial few 
cycles and after several conditioning cycles, the coulombic 
efficiency of the coin cell increased to higher than 99% (Figure 
2b, c), indicating good reversibility of the interaction and 
extraction of Li+ in the nanocomposite. 

To further understand the cyclic performance of nanoribbon α-
MoO3@GNS electrodes, the voltage-capacity curves of the 
nanoribbon α-MoO3@GNS sample in the 1st, 20th, 30th, 40th, 60th 
and 70th cycles at 0.2C (200mA•g-1) discharge rate are shown in Fig. 
6b. The charge and discharge platform were 1.3V and 0.6V, 
respectively. The discharge capacity of 1st, 20th, 40th, 60th and 70th 
cycle are 1321, 984, 980, 900 and 843 mAh•g-1, respectively. From 
2nd to 70th, there was only 14.3% attenuation of capacity, which 
means only a 0.2% capacity decrease per cycle. Moreover, we can 
see that the discharge plateaus in the 1st are higher and the charge 
plateaus are lower compared to consequent cycles. This was due to 
irreversible reactions between Li+ and GNS and decomposition of 
the electrolyte solvent, forming a solid electrolyte interphase (SEI) 
when a current was applied and the SEI film form gradually in the 
first few cycles. After that, the charge plateaus voltage rises and 
discharge plateaus voltage decreases synchronously with cycling,

 

Fig. 6 (a). Cyclic performances of the α-MoO3@GNS anode at 200 mA•g-1; (b).Charge-discharge curves of different cycles for the 
α-MoO3@GNS anodes at 200 mA•g-1 in the range of 0.01-3V; (c). Cycling performance and Coulombic efficiency of the α-
MoO3@GNS anodes in the voltage range of 0.01-3.0 V at a current density of 1000 mA•g-1; (d). Rate performances of the α-
MoO3@GNS and the α-MoO3 anodes. 
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Fig. 9 Nyquist plots of nanoribbon α-MoO3@GNS before 
cycling and after 1, 20, 40, 50, 60 and 70 galvanostatic 
charge/discharge cycles. 
 

To further understand the electrode reaction kinetics of the 
nanocomposite, EIS measurements were carried out before 
cycling and after 1, 20, 40, 50, 60 and 70  galvanostatic 
charge/discharge cycles are carried out and the diffenrent 
Nyquist plots of the nanoribbon α-MoO3@GNS electrodes are 
shown in Fig.9. It is seen that the charge-transfer resistance 
before cycling is lower than that in the 1st, 20th, 40th, 50th, 
60th and 70th cycle. It is because the formation of SEI film 
when a current was applied. After 70 cycles, the charge-transfer 
resistance increases a little which is mainly because the 
continuous deposition of lithium ion in SEI film makes its 
thickness increase and then causes the increase of charge-
transfer resistance, while the charge-transfer resistance only 
have a very little increase and nearly remain the same level 
which indicates the α-MoO3@GNS has a perfect electron 
transport network and fast Li+ diffusivity resulting from the 
incorporation of ultrathin GNS nanosheets and nanoscale α-
MoO3, and also illustrates the structure stability and perfect 
electron conductivity of α-MoO3@GNS nanocomoposites. 

5 Conclusions 

A facile and effective way has been reported to 
synthesize α-MoO3 nanoribbon@graphene nanosheeet 
nanocomposites through an electrostatic self-assembly method 
The characterizations of Raman, FT-IR, XRD, FESEM, TEM, 
SAED and HRTEM demonstrate that graphene nanosheets 
wrapped up the MoO3 nanoribbon tightly and homogeneously 
and formed a robust composite structure. Compared to those 
structures of MoO3 nanobelts grown on reduced graphene oxide 
or graphene, this unique hybrid architecture of graphene-
encapsulated MoO3 nanoribbon can take several advantages: 1) 
suppress the aggregation of α-MoO3 nanoribbons, 2) 
accommodate the volume change during the cycle processes, 3) 
greatly improve the transportation efficiency of current carriers, 
4) maintain a high electrical conductivity of the overall 
electrode. Most importantly, the α-MoO3@GNS 
nanocomposites exhibits not only a high reversible capacitance 
(up to 823 mAh•g-1 after 70 cycles) but also an excellent 
cycling stability (with more than 754 mAh•g-1 after 200 cycles 
at 1000mA•g-1) as well as a greatly-enhanced rate capability 
(displaying a high discharge capacity of 710 mAh•g-1 after 30 
cycles at 3000mA•g-1). We attributed the superior 
electrochemical performances of the α-MoO3@GNS 

nanocomposites to their robust composite structure and the 
synergistic effect between MoO3 nanoribbon and graphene 
nanosheet. EIS analysis confirms that the incorporation of 
graphene preserves the high conductivity and greatly enhances 
the transportation efficiency of Li+ in the MoO3@GNS 
nanocomposites during the electrochemical reaction. Therefore, 
the present results suggest that this kind of the α-MoO3@GNS 
nanocomoposites hold a great potential as anode materials for 
high performance LIBs. 
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