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Abstract:  

A kinetic Monte Carlo (KMC) model coupled with the vapor diffusion above the Al-polar 

(0001) surface of AlN is constructed for the physical vapor transport (PVT) growth of AlN 

crystal. Most of the important surface events and the vapor diffusion of Al atoms are taken 

into account. Based on the numerical simulations, an analytical model of the step-flow growth 

on (0001) surface is attained and the time evolution of random terrace widths under 

homogeneous and linearly inhomogeneous vapor flux of Al atoms is explored. By the KMC 

model and the analytical model it is found that under the growing conditions of this work the 

rate limiting step for the PVT growth of AlN is the supply of Al atoms due to the tiny flow of 

Al atoms in the vapor phase ( gAl ) at the steady state. The energy barriers for adsorbed AlN 

( adAlN ) incorporating at different configurations of neighboring AlN dimers can influence the 

growth morphology significantly. If the adsorption rate of gAl  is much slower than the rates 

of the surface events, the step-bunching caused by the randomness of the terrace widths can 

be avoided under either the homogeneous or linearly inhomogeneous flux of gAl .  

  

Key words:  

A1. growth models; A1. computer simulation; A3. physical vapor deposition processes; B1. 

nitrides; A2. surface structure; A1. morphology stability 
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1. Introduction  

AlN as a semiconductor is very promising for realizing high efficiency deep ultraviolet 

light-emitting diodes (UV-LEDs) which is of considerable interest for applications such as 

sterilization, water purification, medicine and biochemistry, light sources for high density 

optical recording, etc. [1–3]. AlN layers have been grown on foreign substrates like sapphire 

and silicon carbide. The density of threading dislocations in AlN layers is high because of the 

lattice-mismatch between the AlN layer and the foreign substrate and this is a major obstacle 

to improving light emitting efficiency [4, 5]. Recently, AlN bulk single crystals have been 

developed as substrates for the growth of AlN layers, and due to the match between the layer 

and the substrate the UV devices grown on the native substrate have a significant 

improvement in their performance [6, 7]. Currently, the physical vapor transport (PVT) 

growth method is the only approach to produce bulk AlN crystals of high quality and 

appropriate size for use as substrates and in an acceptable growth speed. The AlN single 

crystal growth by PVT method is illustrated in Fig. 1. A source of sintered AlN is sublimed at 

the temperature sT . The crucible gas consists of the vapor phase from the sublimation of AlN 

source and the ambient N2 gas. The temperature of the AlN single crystal seed, cT , is lower 

than sT . Hence the vapor phase from sublimation condenses on the seed and the seed can 

thus grow into a larger single crystal. The crystal surface vertical to the axis of the crucible is 

the (0001) surface. The growth of the AlN crystal is mainly due to the motion of the (0001) 

surface.  

 

The growth of AlN is greatly influenced by the growing conditions. There are several possible 
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reactions occurring on the (0001) surface of an AlN crystal and they are coupling with each 

other. It is unclear which ones are the main rate limiting steps. Hence one of the aims of the 

present work is to explore the relations among different reactions and events on the (0001) 

surface to gain more insights on the rate limiting steps. Besides the growth rate, the crystal 

quality is also a main issue in AlN growth. The crystal quality is closely related to the growth 

modes of the crystal surfaces. Very often, the surfaces of the AlN crystal grow in the step-flow 

mode and the spiral-dislocation mode. The latter can be considered as a special type of 

step-flow growth as well. The stable step-flow growth produces faceted surfaces with only 

few defects. On the contrary, instabilities of the step-flow growth such as step-bunching will 

produce more defects. The other aim of this work is to investigate the stability of step-flow 

growth of AlN by means of numerical methods.  

 

The rest of the paper is organized as follows. First, a kinetic Monte Carlo (KMC) model 

taking into account the reactions on the surface of AlN is developed and it is coupled to the 

diffusion model of Al atoms in the vapor phase, gAl . Then the growth of (0001) surface of 

AlN is studied. After that an analytical model of the step motions is proposed based on the 

results of the vapor diffusion coupled KMC model. Last the influence of homogeneous and 

linearly inhomogeneous vapor fluxes of Al atoms on the stability of step-flow growth with 

random initial terrace widths is studied by the analytical model.  

 

2. KMC simulation of the growth of the Al-polar (0001) surface of AlN  

2.1. KMC model   

The KMC method [8, 9] describes the time evolution of a system by the stochastic processes. 
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For a configuration of a system, the total rate, totR , of all the possible stochastic processes is 

calculated using the equation: 

tot i
i

R R=            (1) 

where iR  is the rate of the process i . Then two uniform random numbers 1ρ  and 2ρ  

which are between 0 and 1 are chosen. One integer number p  is determined by  

1

1 tot
0 0

p p

i i
i i

R R Rρ
−

= =

< ≤            (2) 

Then process p  is performed. The simulation time is evaluated as [10]  

( )c p 2 totln /t t Rρ→ −          (3) 

where ct  is the current time and pt  is the previous time.  

 

In the current KMC model a composed hexagonal lattice which consists of three rhomboidal 

lattices is used to simulate the lattice structure of (0001) of AlN. The size of each rhomboidal 

lattice is nx × ny. The atomic positions are mapped to the composed lattice. The types of the 

particles included in the KMC model are the Al atoms absorbed on the surface of the crystal 

(Alad), the nitrogen atoms adsorbed on the surface (Nad), the AlN molecules adsorbed on the 

surface (AlNad) and the AlN dimer of the single crystal (AlNc). The substrate of the above 

units is constructed by AlNc. The reactions, the growth processes and the rates of the KMC 

model are introduced in what follows.  
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2.1.1. Reactions and growth processes 

It is assumed that the PVT growth of an AlN crystal includes the following reactions:  

g adAl Al↔            (4)  

( )ad 2 ad adAl +N g AlN +N↔          (5)  

ad ad adAl +N AlN↔           (6)  

( )ad ad 2N +N N g↔           (7) 

( ) ( )ad c cAlN AlN 1 AlNn n+ ↔ + , ( )1 6n≤ ≤      (8)  

The whole process of AlN crystal growth is modeled as follows. First, gAl  are adsorbed to 

the (0001) surface of the AlN single crystal seed (Reaction (4) ). Then one 2N  molecule 

reacts with one Alad atom, producing one AlNad molecule and one Nad atom (Reaction (5)). 

Next, the Nad atom reacts with another Alad atom on the surface and an AlNad molecule is 

formed (Reaction (6)). Meanwhile two Nad atoms can meet, react into N2 gas and leave the 

surface [11]. At last, the AlNad molecules grow to the crystal as AlNc (Reaction (8)). n in 

Reaction (8) is the number of neighboring AlNc dimers. The meaning of n will be explained in 

details in Subsection 2.1.2..  

 

In the above growth model, reaction (5) and (6) replace the usually used reaction 

( )2 2ads adsN g =N =2N [12, 13], which means it is assumed in the current model that the direct 

adsorption of a N2 molecule to the AlN surface has a negligible success rate. Reaction (5) is 
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possible because Al has a catalytic effect on the decomposition of 2N  molecules [14]. 

Reaction (5) and (6) explain how a 2N  molecule can react with an Alad atom despite the fact 

that the N–N bond is very strong and the possibility that two Alad atoms locate at the right 

positions simultaneously is very low.  

 

2.1.2. The events included in the KMC model  

The events in the KMC model are listed in Table 1 (The rates of the events therein will be 

used shortly.). The surface diffusion of adN  consists of 3 different cases, which are surface 

diffusion within one terrace, surface diffusion downwards to the next lower terrace and 

surface diffusion upwards to the next higher terrace. These three surface diffusions are 

considered as different events in the model. Although the event of the nucleation of a new 

layer can be integrated into the model easily, the present work focus on the motion of the 

steps so the nucleation event is not included.  

 

For the reaction (8), the AlNad produced by reaction (5) and (6) might be transformed into 

AlNc depending on the number of neighboring AlNc dimers. This actually means an 

incorporation of AlNad into the crystal because AlNc is immobile and does not react. For a 

fixed number of neighbors their positions could be different – all possible configurations are 

listed in Table 2. In this work it is assumed that for a given number of neighbors there is no 

influence of configuration on the rate of turning AlNad into AlNc. The case of n  = 0 is 

considered as a special case of the nucleation of a new layer. Since the nucleation of a new 

layer is not considered in this work the case of n  = 0 is not included in Table 2. During the 
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growth of the crystal, all the growth configurations in Table 2 will be met. For reaction (6) the 

newly formed AlNad sits on the position of Alad after the reaction because it is assumed that 

AlNad and Alad have the same available positions [15].  

 

2.1.3. The rates of the events 

The rates for the surface diffusion of adAl , adN  and adAlN  and reactions (5) and (8) are 

calculated by  

0 Bexp( / k )i iR E T= Γ −         (9) 

where iR  is the rate for the event i ; 0Γ  is the attempt frequency of adAl , adN  or adAlN ;  

iE  is the energy barrier for the event i ; Bk  is Boltzmann constant; T  is temperature. iR  

defined here as well as r6R , r7R , and r4R  defined in the following are the counter-parts of 

iR  in Eq. (1). The rate of reaction (6), r6R ,  is expressed as  

( ) ( )( ) ( )diff diff
r6 0 Al B 0 N B r6 Bexp / k exp / k exp / kR E T E T E T= Γ − + Γ − ⋅ −     (10) 

where diff
AlE  is the energy barrier for the surface diffusion of adAl ; diff

NE  is the energy 

barrier for the surface diffusion of adN ; the term 

( ) ( )( )diff diff
0 Al B 0 N Bexp / k exp / kE T E TΓ − + Γ −  is the knocking rate between adAl  and adN . 

r6E  is the energy barrier for the reaction (6). Similarly, the rate of reaction (7) is expressed as  

( ) ( )diff
r7 0 N B r7 B2 exp / k exp / kR E T E T= Γ − ⋅ −       (11) 

where ( )diff
0 N B2 exp / kE TΓ −  is the knocking rate between two neighboring adN ; r4E  is the 
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energy barrier for the reaction (7). The rate of reaction (4), r4R , is calculated by  

in ad
r4 Al AlR J S= ⋅           (12) 

where in
AlJ  is the flux of gAl  approaching the surface of the single crystal. ad

AlS  is the area 

of one available position for the adAl , which is shown in Fig. 2. in
AlJ  is obtained by 

Hertz-Knudsen equation: 

c
in Al
Al Al

Al B c2 k

P
J

m T
α

π
=          (13)  

where Alα  is the condensation coefficient of gAl  to the AlN crystal, which is equal to 

success total/Γ Γ , where totalΓ  is the total knocking rate of gAl  to the crystal surface of 1m2; 

successΓ  is the successful knocking rate by which one gAl  is adsorbed by the surface. Alm  is 

the mass of Al atom. cT  is the temperature at the growth interface (assumed to be constant 

during growth). c
AlP  is the pressure of Al vapor next to the surface of AlN crystal and it is 

derived as  

c c
Al Al cP c RT=         (14) 

where c
Alc  is the molar volume concentration of gAl  next to the surface of the AlN crystal; 

R  is the gas constant.  

 

2.2. Vapor diffusion model and its coupling to the KMC model  

Since the ambient vapor pressure to be studied in this work is low, the convection effect in the 

vapor phase is neglected. The transport of Al atoms from the source material to the single 
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crystal through the vapor phase is modeled as a 1D diffusion process. The vapor diffusion 

equation follows Fick's second law: 

2

v 2

d d

d d

c c
D

t x
= − .          (15) 

where c  is the molar volume concentration of gAl ; vD  is the vapor diffusion coefficient 

of gAl  atoms.  

 

The more critical part of the vapor diffusion model are the two boundary conditions (BCs) of 

Eq. (15). The physical meanings of the BCs are the flux of Al atoms coming from the source 

into the vapor phase (BC1) and the flux going from the vapor phase into the single crystal 

adlayer (BC2). The flux of Al atoms coming out of the source (BC1) is modeled by the 

Hertz-Knudsen equation:  

e s
out Al Al
Al Al

Al B s2 k

P P
J

m T
α

π
−=         (16)  

where out
AlJ  is the flux of Al atoms coming out of the AlN source; s

AlP  is the pressure of Al 

vapor next to the surface of AlN source; e
AlP  is the pressure of Alg equilibrium with AlN 

source at temperature sT . e
AlP  at temperature sT  is derived from the equations: 

2

e e
Al N totP P P+ =           (17)  

( ) ( ) ( )
2

0.51e e
Al N sP P K T

−−
⋅ =          (18)  

where 
2

e
NP  is the pressure of 2N  in equilibrium with AlN source at temperature sT ; totP  is 
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the total vapor pressure of the system; ( )K T  is the equilibrium constant at temperature T  

for the reaction: 

( ) ( )2

1
Al g N g AlN

2
+ =         (19) 

Equation (17) is applied because the rate of sublimation is very low and therefore these 

processes are very close to the equilibrium state. It is also because the vast major species in 

the vapor phase are gAl  and 2N . 

 

The flux of Al atoms going from the vapor phase into the single crystal adlayer (BC2) is 

determined in the following way. First, the KMC model is run for a period of time, KMCΔt , 

which is expressed as: 

KMC

KMC KMC
1

n
i

i

t t
=

Δ = Δ         (20) 

where KMCn  is the number of the KMC steps performed during KMCΔt ; KMC
itΔ  is the time 

increase for the ith KMC step. When KMCΔt  is equal to the time step difftΔ  used in solving 

the vapor diffusion (Eq. (15)) numerically the amount of gAl  adsorbed to the single crystal 

obtained by the KMC method during KMCΔt  is used as the amount of the Al atoms leaving 

the vapor phase during difftΔ . On the other hand, since the rate of reaction (4) , r4R , is 

dependent on c
AlP  (see Eq. (13)) the KMC simulation is influenced by the vapor diffusion. 

Thus BC2 serves as the coupling between the vapor diffusion model and the KMC model by 

transferring the information derived by the KMC model (the amount of gAl  adsorbed to 

crystal) to the vapor diffusion model (the amount of gAl  leaving the vapor phase) and 
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performing the influence of the vapor diffusion model ( c
AlP ) to the KMC model ( r4R ). As it 

may be noticed that KMCΔt  can not be exactly equal to difftΔ  because of the randomness of 

KMCΔt . Because KMC
itΔ  is very small compared with difftΔ  the difference between the 

KMCΔt  and difftΔ  is very small. Therefore KMCΔt  is used as difftΔ  in solving the Eq. (15).  

 

2.3. Parameters for the simulation of the growth of (0001) plane by the vapor diffusion 

coupled KMC model  

The input parameters for the simulations are as follows. sT  is 2398 K (2125 ℃). cT  is 2348 

K (2075 ℃). totP  is 0.8 bar. The distance between the source material and the single crystal 

seed, scL , is 16 mm. vD  is 6.25 × 10-5 m2 s-1 [16]. Alα  is 5 × 10-3 [17], which is the same 

value as the condensation coefficient of 2N . Alm  is 4.5 × 10-26 kg. ( )sK T  in Eq. (18) was 

obtained by the thermodynamic calculation using the data from JANAF tables [18] and its 

value is 91.95. e
AlP  is 1.22 × 103 Pa which is derived by solving Eq. (17) and (18). The length 

of the sides of the regular triangle ABC shown in Fig. 2 is 0.31 nm [19]. Therefore ad
AlS  is 

4.15 × 10-20 m2. The value used for the attempt frequency of the atoms and the molecules on 

the surface, 0Γ , is 1012 s-1 [20]. The energy barrier for the surface diffusion of adAl , diff
AlE , is 

2.2 eV [15]. The energy barrier for the detachment of adAl , det
AlE , is 6.0 eV [15].  

 

The value used for the energy barrier of the surface diffusion of AlNad, 
diff
AlNE , is 1.78 eV and it 

is estimated as follows. According to the potential energy surfaces (PESs) of Alad and Nad [15], 

the geometrical patterns of the both PESs are the same. The difference is only that the place 

where the PES of Alad is maximum, the PES of Nad is minimum and vice versa (see Fig. 3a 
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and 3b in [15]). It is assumed that the forces acting on the AlNad is the combination of the 

forces acting on the Alad and Nad. Figure 3 shows the overlapping of the PESs of adAl  and 

adN  on N-terminated (0001) surface of AlN. It is shown that there are two types of positions 

available for adAlN . One type is marked by A in Fig. 3. The other type is marked by B. Type 

A positions have lower energy than type B positions. This agrees with the fact that type A 

positions are the positions for adAlN  to grow on (0001) surface to form the Wurtzite 

structure. The energy barriers for B to A and A to B diffusions are 1.64 eV and 2.60 eV 

respectively. The B to A diffusion and A to B diffusion are reduced to one diffusion event in 

the KMC simulation by using an average diffusion energy barrier, diff
AlNE , which is defined by  

( ) ( ) ( )( )diff AB BA
AlN B AlN B AlN Bexp / k exp / k exp / k / 2E T E T E T− = − + −     (21) 

Equation (21) implies that the diffusion distance of adAlN  obtained using one diffusion event 

whose barrier is diff
AlNE  is the same as the one obtained using two diffusion events whose 

barriers are AB
AlNE  and BA

AlNE . By solving Eq. (21) the value of diff
AlNE  is determined as 1.78 

eV.  

 

The energy barrier for the diffusion of Nad, 
diff
NE , is 2.0 eV [15]. The Ehrlich–Schwoebel 

barrier for Nad to diffuse across the step upwards and downwards are estimated as 10% of 

diff
NE . Since the Ehrlich–Schwoebel barrier will not influence either the growth morphology 

or the growth rate in the present work (see Subsection 2.5.) it is of no importance. The value 

of the energy barrier for reaction (5) is 2.6 eV [21]. The energy barrier for reaction (6), r6E , is 

0 eV [14]. The energy barrier for reaction (7), r7E , is 0 eV which is estimated as follows. The 
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rate of reaction (7) is assumed to be in the same order of magnitude as the rate of the same 

reaction on the surface of Ir, which is ( )11 5 110 exp 1.22 10 Jmol / RT−× [11]. According to Eq. 

(11) r7R  at sT  has the closest value to ( )11 5 -1
s10 exp 1.22 10 Jmol /RT×  when r7E  = 0 ( r7E  

can not be less than 0 eV). According to Eq. (11), r7E  = 0 implies that the combination of 

two adN  does not limit the rate of reaction (7) but the knocking between two adN  does. 

 

Reaction (8) has 6 growth energy barriers and each one corresponds to one situation with a 

different number of neighboring AlN dimers. The growth energy barriers are denoted as g
iE , 

( i  = 1 ... 6) where i  is the number of the neighboring AlN dimers. According to Ref. [22], 

the energy decrease for the formation of one AlN dimer of a AlN single crystal ( cAlN ) is 

11.52 eV and it was estimated from the data in Ref. [23] that the energy decrease for the 

formation of a adAlN  molecule is 6.4 eV. This means when the energy of one adAlN  

molecule is increased by 6.4 eV it will be in the state of one Al atom and one N atom in the 

vacuum. Therefore this is the upper limit of the energy barrier for one adAlN  attaching to 

AlN single crystal. This value is used as the growth barrier with one neighbor ( n  = 1 in 

Table 2). The growth situation with more neighbors is more similar to the environment of an 

AlN dimer in the perfect crystal and it is an easier situation for an adAlN  to attach to the 

crystal. Otherwise this crystalline structure will be less favorite than the amorphous structure 

or other crystalline structures. Therefore it is assumed that the higher the number of the 

neighboring AlN dimers, the lower the energy barrier for the attachment of adAlN , and thus, 

g
iE  are formulated as g 6.4 /iE i=  eV, (i = 1 ... 6). Since 6.4 eV is the upper limit of the 

energy barrier of attachments, the rates of adAlN  attaching to the single crystal have been 
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assigned the possibly lowest values. Though this is not perfectly precise it will allow us to 

check if AlN attaching could be the rate limiting step compared with other steps. It should be 

noticed that g
iE  is the energy barrier for the reaction (8) which occurs at a fixed site (the grey 

site shown in Table 2). It is different from the barrier for diffusing from one site to another.  

 

The size of the grid, dz, for the simulation of the vapor diffusion of gAl  is 0.8 mm. difftΔ  = 

1 × 10-4 s. The system size of the KMC simulation for the comparison between the KMC and 

the analytical model (see Subsection 3.2.) is 84 × 50 AlN dimers or 25.7 nm × 15.2 nm. For 

all the other KMC simulations the system size is 55 × 50 AlN dimers or 16.7 nm × 15.2 nm.  

 

2.4. Influence of the energy barriers of the growth of adAlN  with different neighboring AlN 

dimers on the growth morphology  

To simplify the expression, the energy barriers of the growth of adAlN  (Reaction (8)) with 

different number of neighboring AlN dimers are expressed as a growth-barrier vector which is 

defined as { } ( )1 2 3 4 5 6
g g g g g g g, , , , ,iE E E E E E E= . The influence of { }g

iE  on the growth 

morphology was studied by the KMC model with only 7 events which are the growth of 

adAlN  with one to six neighboring cAlN  and the surface diffusion of adAlN . Three { }g
iE  

are used in the simulation. The six components of { }g 1

iE  are all equal to 2.13 eV. { }g 2

iE  = 

(2.53, 2.33, 2.13, 1.93, 1.73, 1.53) and { }g 3

iE  = (3.13, 2.63, 2.13, 1.63, 1.13, 0.63). All 3
gE  

values are equal to 2.13 eV. The components of { }g 2

iE  and { }g 3

iE  decrease from 1
gE  to 

6
gE  and the decrements are 0.2 eV and 0.5 eV, respectively. In the simulations of this 

subsection, the adAlN  appears on the surface randomly and each time only one adAlN  
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appears. After the adAlN  grows to the single crystal another adAlN  appears. The above 

mechanism implies that the simulated growth is vapor-adsorption limited.  

 

The initial condition of the KMC simulation is shown in Fig. 4a, which is a stripe of a new 

layer of the AlN crystal in the middle of a flat (0001) surface. adAlN  will grow to the both 

sides of the stripe. The periodic boundary conditions are applied in the simulation. The 

simulated growth morphologies using { }g 1

iE , { }g 2

iE  and { }g 3

iE  after incorporation of 98 

adAlN  are shown in Figs. 4b–d. From Fig. 4b it can be seen that when the components of 

{ }g
iE  are equal (i.e. the energy barrier does not depend on the number of neighboring AlN 

dimers), the growth morphology shows a pattern of diffusion-limited aggregation and it is far 

from the morphology of the step-flow growth. Figure 4c shows that the growth morphology 

becomes less dendritic and more related to step-flow growth when the components of { }g
iE  

decrease from 1
gE  to 6

gE . If the components of { }g
iE  decrease by a larger amount from 1

gE  

to 6
gE  (see Fig. 4d) the simulated morphology shows the pattern of step-flow growth. From 

the above changes of the growth morphology from the diffusion-limited aggregation to the 

step-flow pattern we can see that the growth-barrier vector { }g
iE  can influence the growth 

morphology significantly and its values are important for the emergence and the stability of 

the step-flow growth. The KMC simulations reveal that one of the necessary conditions for 

step-flow growth is that there has to be a decrease of the energy barrier for the growth with 

increasing number of neighboring AlN dimers which should exceed some (positive) value. In 

other words, the growth rate for the growth at places with more neighboring AlN dimers 

should be reasonably faster than the growth at places with less neighboring AlN dimers. 
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Previous studies have shown that the growth being fractal or compact depends on the rate 

ratio between the jump to the step and the jump along the step [24]. In the case of (0001) 

surface of AlN, due to the Wurtzite structure (similar to hcp) all the jumps are along the 

directions which are / 3π  away from the normal direction of the step. Therefore it can not be 

separated which jump is to the step and which one is along the step. In the present model the 

energy barriers for the jumps to the step and along the step are the same. The transition from 

the fractal growth to the compact growth is solely due to the different values of the 

growth-barrier vectors, { }g
i

j
E . The components of the growth-barrier vectors actually change 

the relative growth rates of the six different growth situations. When the growth rate with 

more neighbors is higher the growth will be more compact. This is the situation where the 

step tends to keep straight during the growth. In the reverse case the growth will be more 

fractal. This explains why the transition from the fractal to compact growth can be observed 

in the present model though the energy barriers for the jumps are all same.  

 

2.5. Simulated morphology of the step-flow growth on the (0001) surface.  

The step-flow growth on the (0001) surface of AlN single crystals is simulated by the vapor 

diffusion coupled KMC model with the parameters of Subsection 2.3. Figure 5a shows the 

initial condition of the simulation. The number of the steps is 10. The width of each terrace is 

1.34 nm. The periodic boundary condition is applied along the direction of the steps. The 

quasi-periodic boundary condition is used along the direction vertical to the steps. The 

quasi-periodic boundary condition means when a step (or a particle) runs out of the left side 

of the system it reappears as a new step (or a new particle) at the right side of the system. The 
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reverse way is also possible for an particle. Due to the quasi-periodic boundary condition the 

number of AlN layers can increase without the layer nucleation event.  

 

Figure 5b shows the simulated growth morphology which indicates that the surface has a 

stable step-flow growth. In fact at 10.0 s 132 new layers have grown. In this figure only the 

top layers are shown. Figure 5b also shows the details of the surface state. It can be seen that 

the surface is very clean. There are only two adN  atoms on the surface (the red spheres). 

This means that the rate of adsorption of Alg on the surface is much slower than the rate of the 

surface diffusion and the rates of reactions (5) to (8). This is further validated by the 

instantaneous rates of the events in the KMC simulation at t = 6.0 s (see Table 1). According 

to Table 1, the rate of adsorption of Alg is much slower than the other events except the 

desorption of Alad
 and the attachment of adAlN  to the crystal with one neighbor ( n  = 1 in 

Table 2). The rates of attachments of adAlN  have been assigned the possible lowest values in 

the KMC simulation but the attachment of adAlN  to the single crystal is still not the rate 

limiting step according to Fig. 5b. Therefore, the possible rate limiting steps for the growth of 

AlN crystal are the adsorption of Alad to the surface and the vapor diffusion of Alg from the 

source material to the crystal seed. Since the speeds of the steps are determined by the 

adsorption of gAl  or the diffusion of gAl  Ehrlich–Schwoebel barrier of adN  has no 

influence on the growth morphology and growth rate of the single crystal as was pointed out 

in Subsection 2.3. In addition, due to the high growing temperature (~2400 K), the attempt 

frequency, 0Γ , could be as high as 1013 s-1 instead of 1012 s-1 used in the simulation. Actually 

a higher 0Γ  will make all the rates of the surface events higher except the rate of the 
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adsorption of gAl . This is because the rate of the adsorption of gAl  is independent of the 

attempt frequency (see Eq. (12)) but the rates of all the other surface events are proportional 

to the attempt frequency. Therefore a higher 0Γ  will only strengthen the result that the rate 

of the adsorption of gAl  is much lower than the other surface events.  

 

Figure 6 shows the evolution of gAl  concentration profile from the AlN source (0 mm) to 

the AlN single crystal (16 mm). The initial condition is that Alc  = 0 in the vapor phase, i.e. 

s
AlP  = 0 and out

AlJ  is at its maximum (see Eq. (16)) and at the same time c
AlP  = 0 and in

AlJ  is 

at its minimum (see Eq. (13)). It shows that the concentration profile changes from a 

upwards-concave curve to a straight line after about 1.5 s. This means the vapor diffusion of 

gAl  evolves to a steady state very quickly (usually one growth of AlN single crystal takes 

tens of hours). At the steady state the flux of gAl  going through the vapor phase is constant 

and it is equal to the fluxes coming out of the source material and going into the adlayer of the 

single crystal. Because of the coupling with the vapor diffusion model through BC2, as soon 

as the vapor diffusion reaches the static state the crystal surface simulated by KMC also 

reaches to the steady state where all the rates and surface concentrations are constant. The 

short time for the transition to the steady state indicates that the vapor transport is not the 

rate-limiting step.  

 

The time evolution of the vapor concentration of gAl  in close vicinity to the surface of the 

AlN  source material, s
Alc , is shown in Fig. 7a. It can be seen that s

Alc  increases from 0.0 

mol m-3 and reaches to a constant value after about 1.5 s. The constant value is 0.069 mol m-3. 
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The time evolution of c
Alc  which is the vapor concentration of gAl  in close vicinity to the 

surface of AlN single crystal is shown in Fig. 7b. Because c
Alc  is related to the amount of 

gAl  adsorbed to the surface of the single crystal obtained by the KMC simulation therefore 

its value fluctuates. However it is shown clearly in Fig. 7b that the average value of c
Alc  

increases from 0.0 mol m-3 and reaches to a constant value after about 1.5 s, which is the same 

time when s
Alc  reaches a constant value. The constant average value of c

Alc  is 1.90×10-4 mol 

m-3. The state with the constant s
Alc  and c

Alc  corresponds to the steady state shown in Fig. 6 

(see the straight line there at t  = 1.5 s). According to Eq. (14) 1.90 × 10-4 mol m-3 

corresponds to c
AlP  = 3.7  Pa which is very low. This means that the steady flow of gAl  is 

very small. Using the constant s
Alc  and c

Alc  the growth rate of (0001) surface of the single 

crystal can be evaluated as follows. The flux of gAl  from the source to the single crystal at 

the steady state is ( )s c
v Al Al sc/J D c c L= − = 2.69 × 10-4 mol m-2 s-1. The distance between two 

Al sub-layers in the AlN crystal is 0.25 nm. Thus, the growth rate at the steady state is 13.5 

µm h-1, which agrees with the preliminary experimental result, 15–30 µm h-1. This means 

under the growing conditions applied in this work the rate limiting factor is the tiny flow of 

gAl  at the steady state. The steady flow of gAl  can be influenced by sT , cT , vD  and scL . 

The influence of scL  can be considered in the following way. At the steady state  

s c
Al Al s c sc sc s/P P T T s L RT− =         (22) 

where scs  is the slope of the concentration profile between the source and the crystal and the 

relation 

 s s
Al Al sP c RT=           (23) 
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which is similar to Eq. (14) is used in the derivation of Eq. (22). When scL  is sufficiently 

small and s cT T≈ , c s
Al AlP P≈ . Since out in

Al AlJ J=  at the steady state c s e
Al Al Al / 2P P P≈ ≈ ≈ 6.1 × 

102 Pa. Because the growth rate is roughly proportional to c
AlP  in the present condition which 

is the step-flow growth and rate of the supply of gAl  is much smaller than the other rates, 

the value of the growth rate can be estimated as 2.2 mm h-1. This means the growth rate and 

therefore the steady flow can be increased significantly by decreasing scL . With the same 

rationale, increasing vD  has the similar effects on the steady flow as decreasing scL  does.  

 

Therefore the tiny steady flux of gAl  is determined by the processing parameters of the two 

ends (source material and single crystal) and the vapor phase in middle. For this reason, in 

order to increase the growth rate of the AlN single crystal the whole PVT growth system that 

is the source material, the single crystal and the vapor diffusion should be considered 

comprehensively. However, regarding the side of the single crystal it is clear from the 

simulation results that the adsorption of gAl  is the rate-limiting step and the PVT growth of 

AlN single crystals is Al deficient under the growing conditions studied in this work. The 

statement that the adsorption of gAl  is the rate-limiting step is equivalent to the statement 

that the rate limiting step is the tiny steady flow of gAl . This is because at the steady state the 

flow from the source to the single crystal in the vapor diffusion model is equal to the 

adsorption flow to the crystal surface from the vapor phase in the KMC model due to the 

coupling of the two models. Moreover at the steady state the flow from the source to the 

single crystal in the vapor phase is also equal to the flow going out of the source into the 

vapor. The flow of gAl  at the steady state is like a state variable which is determined by sT , 
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cT , vD  and scL  of the system.  

 

3. Study of step-flow growth by the analytical model derived based on the KMC results  

Though the vapor diffusion coupled KMC model can provide various detailed information 

about most of the important processes involved in the PVT growth of AlN, the limitation of 

the system size makes it incapable or very inefficient to study the growth of a long train of 

steps. Based on the insights obtained from the KMC simulation, an analytical model which is 

much easier to be analyzed and solved is proposed and used to study the growth of a train of 

steps on the (0001) surface.   

 

3.1. The analytical model for the step-flow growth of AlN  

According to the KMC simulation the rate of the adsorption of gAl  is much slower than the 

rates of all the other surface events. This means the velocity of the i-th step in a train of steps 

(see Fig. 8) is proportional to the amount of Al atoms adsorbed to the terrace in front of it. If 

the flux of gAl  to the terrace is homogeneous then  

i iv k l= ⋅             (24) 

where il  is the terrace width of the i-th step; iv  is the velocity of the (i+1)-th step (see Fig. 

8); k is a proportional constant. Equation (24) is not a new model of step-flow growth. But it 

is found in this work that it is appropriate to use this model to study the step-flow growth of 

AlN. Since the rate of the increase of the terrace width is equal to the velocity difference 

between the two steps bounding the terrace, the evolution of il  obeys the following equation:   

Page 22 of 37CrystEngComm



 23

1

d

d
i

i i

l
v v

t −= − , (i = 1, 2, 3, …)       (25) 

According to Eq. (24) and Eq. (25) il  can be solved as the following: 

( ) ( )
1 1

0

0 0

i i
kt kt kt kt

i m i m m
m m

v
l e E e L e E e

k

− −
−

−
= =

  = ⋅ + −  
  

       (26) 

where iL  is the initial value of ( )il t ; ( )kt
mE e  is the m-th term of the Taylor expansion of 

kte ; 0v  is the velocity of the 1st step. From Eq. (26) the terrace width of any step at any time 

can be obtained when the flux of gAl  is homogeneous.  

 

3.2. Validation of the analytical model by comparing the KMC results with the results of the 

analytical model  

In order to check if the analytical model agrees with the vapor diffusion coupled KMC model, 

the solution of the analytical model is compared with the numerical results from the KMC 

simulation. The growth of a train of 17 steps was simulated by the KMC model. The periodic 

boundary condition is applied along the direction of the steps. Along the direction vertical to 

the steps the quasi-periodic boundary condition is applied to reactions and diffusions but not 

to the movement of the steps. The displacement evolution curves, ( )is t , of the points on the 

3rd, 4th, 5th and 6th step are recorded. The displacement ( )is t  is the distance to the starting 

position of the i-th step. The relative positions of the i-th step can be found in Fig. 8. The 

velocity of the 1st step, 0v , is kept as 0 during the KMC simulation. The initial widths of the 

steps, iL , are all equal to 1.34 nm. k  of Eq. (24) is r41.8R , where r4R  is the rate of 

reaction (4) and expressed by Eq. (12). The prefactor 1.8 is from the property of (0001) 
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surface that the ratio of the number of available positions of adAl  to the number of the 

positions where adAlN  can attach to the crystal is about 1.8. The analytical formula of the 

displacement evolution of the i-th step is expressed as  

( ) ( )10
d

t

i is t v t t− ′ ′=   (i = 1, 2, 3, ...)      (27) 

where ( )iv t  is expressed by Eq. (24) and Eq. (26). Figure 9a–d shows the comparison for 

the 3rd, 4th, 5th and 6th step, respectively. The blue lines are the KMC results and the red 

lines with dots are the analytical results. Because of the randomness of the KMC method each 

analytical ( )is t  curve is compared with seven KMC results obtained using different sets of 

random numbers so that it can be ensured that the comparison is not a result of coincidence. 

From Fig. 9 it can be seen that the analytical solution agrees well with the KMC simulation. 

Therefore the basic assumption of the analytical model, Eq. (24), is correct.  

 

3.3. Growth of a train of steps with random initial terrace widths  

The growth of a train of steps with random initial terrace widths under the homogeneous and 

linearly inhomogeneous flux of gAl  is studied numerically in this section. In the following 

numerical simulations 0v  = 0 in Eq. (26), which is generally realistic because no train of 

steps can move forward forever and it will stop at a place anyway. The place could be the 

boundary of a crystal surface, an obstacle in the way of the movement etc. In fact the 

step-flow growth with the assumptions of Eq. (24) and (25) has been studied intensively [25]. 

However to the best knowledge of the authors there have no studies on the growth of a train 

of steps whose first step is immobile. Due to this boundary condition, Eq. (26) is different 
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from the analytical solutions using periodic boundary condition [26]. The focus of this section 

is to study numerically if the growth instability can be introduced by the fluctuation of the 

initial terrace widths and the linearly inhomogeneous flux to the surface under the boundary 

condition that the first step of a train of steps is immobile. 

 

3.3.1. Under the homogeneous flux of gAl   

The random initial terrace widths iL  is expressed as  

i iL L ε= +           (28) 

where L  is the average terrace width and iε  is the random fluctuation whose average is 0. 

The maximum of iε  is less than L  because otherwise iL  will be negative, which is 

unphysical. From Eq. (28) and (26) it can be derived that  

( ) ( )
1 1

0 0

i i
kt kt kt kt

i m i m m
m m

l e E e e E e Lε
− −

− −
−

= =

= ⋅ + ⋅          (29) 

Equation (29) indicates that the evolution of il  is from two parts. One is the second term in 

Eq. (29) which is exactly the same with the formula for il  in the case where the initial 

terrace widths of all the steps are L . The other part is the first term in Eq. (29) which is the 

deviation from the step evolution whose initial terrace widths are all L . This deviation is 

caused by the fluctuation in the initial terrace widths, iε . Since there is no analytical solution 

available for the case where the terrace widths have fluctuation the motion of the steps is 

solved numerically using the analytical model Eq. (24) and (25). 
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Figure 10 shows the comparison of the growth of a train of steps A, which has randomness in 

the initial terrace widths, to the growth of a train of steps B, whose initial terrace widths are 

all equal. The average and the randomness of the terrace widths of train A are AL  = 1.34 nm 

and A0.5L± , respectively. The terrace widths of train B are all equal to AL . The flux of gAl  

is homogeneous and it is 2.69 × 10-4 mol m-2 s-1 which is equal to the steady flux of Alg of the 

KMC simulation in Subsection 2.5. Figure 10a shows the initial positions of train A (crosses) 

and that of train B (line with circles). The number of the steps is 30 and 0v  = 0 for the both 

trains. Figure 10b shows the comparison of the step positions of train A and train B at t  = 

14848 s. It can be seen that the randomness in the terrace widths of train A disappears during 

the growth. In addition it is shown that at t  = 14848 s the step positions of train A almost 

overlap those of train B completely. This means il  with the initial fluctuation iε  will tend 

to the evolution path of the case where the initial terrace widths are equal to L , which is  

( )
1

0

i
kt kt

i m
m

l e E e L
−

−

=

= ⋅          (30) 

From Eq. (30) it can be seen that when the index i is large, ( )
1

0

1
i

kt kt
m

m

e E e
−

−

=

≈  and therefore 

il L≈            (31) 

This means for the step terrace far behind the beginning of a train of steps the randomness of 

the terrace widths will disappear and additionally they will move with the same terrace width 

which does not change with time and this is just the step-flow growth even though the 

beginning of the train of steps does not move ( 0v  = 0). Therefore the solution of the terrace 
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widths with the periodic boundary condition can be reproduced by Eq. (30) when the step 

index, i, is large. 

 

Figure 11 shows the numerical calculation of the evolution of the step-positions of train A 

according to the analytical model. The calculation parameters are the same with the 

calculation in Fig. 10. Figure 11a is the initial condition of train A and it shows in a different 

way the same step-positions of train A in Fig. 9a. Figure 11b is the cross section of Fig. 11a. 

The positions of A and B in Fig. 11b corresponds to the positions of A and B in Fig. 11a, 

respectively. Figure 11c shows the growth morphology at t  = 14848 s. Near the end of the 

train (the part near the line B) the steps have the same terrace width, which is the same as 

what the analytical analysis indicates (see Eq. (31)). Near the beginning of the train (line A) 

there is a step-bunching, which is caused by the deceleration of the step-motion close to the 

beginning of the train which does not move ( 0v  = 0). Figure 11d is the cross section of Fig. 

11c, which shows the step-bunching at the beginning of the train more clearly. Figure 11e 

shows the growth morphology at t  = 23808 s. Compared with Fig. 11c it can be seen that the 

steps near the end of the train moves forwards with the same terrace width as t  = 14848 s 

(see Fig. 11c). This is the step-flow growth predicted by the analytical model (see Eq. (31)). 

Figure 11f is the cross section of Fig. 11e.  

 

3.3.2. Under the inhomogeneous flux of gAl   

The flux of gAl  changes linearly from the beginning to the end of a train of steps. Two cases 

are studied. One is that the flux at the beginning of the train has the highest value. The other 
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case is opposite. Since the objective is to study the influence of the linear inhomogeneigy of 

the flux of Al(g) on the stability of the step-flow growth the slope of the linear 

inhomogeneigy of the flux of Al(g) is the parameter that really matters. Due to the fact that a 

train of steps can grow from the edge of the (0001) crystal plane to the inner of the crystal 

plane (e.g. nucleate at the edge of the crystal plane) or from the inner to the edge (e.g. spiral 

growth) it would be both possible for a train of step to grow along the flux gradient or against 

the flux gradient on the (0001) crystal plane. Therefore both of the cases can occur in the 

reality. The slope of the change of the flux is estimated in the following way. The radius of the 

AlN single crystal is assumed to be 2 cm. In the centre the flux is the highest and at the edge 

the flux is 0. Or vice versa. The highest value of the flux is 2.69 × 10-4 mol m-2 s-1 which is 

equal to the steady flux of Alg of the KMC simulation in the Subsection 2.5. Therefore the 

slope of the change of the flux is 1.345 × 10-2 mol m-3 s-1. All the other parameters used are 

the same with the ones in the numerical calculation in Subsection 3.3.1. According to the 

result, the randomness of the terrace widths disappears under the linearly inhomogeneous flux 

of gAl  for both of the cases that are studied.  

 

The disappearance of the randomness of the terrace widths under the homogeneous and the 

linearly inhomogeneous flux of Alg reveals that the conditions under which our analytical 

model is valid are the suitable conditions for the stable step-flow growth. Since crystals 

growing in the stable step-flow mode typically have better structural quality, these conditions 

are also the suitable conditions for the PVT growth of AlN. The condition under which the 

analytical model is valid is that the rates of the surface events including both the surface 
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reactions and the surface diffusion should be much faster than the rate of the supply of Al 

atoms from the vapor. Therefore there are two directions to fulfill this condition in the process 

of AlN growth. One is to decrease the rate of the supply of gAl . The other is to increase the 

rates of the surface events. Preliminary growth experiments indicate that increasing the N2 

pressure will enlarge the (0001) surface facet and improve the quality of the crystal. This 

agrees with our results because increasing the N2 pressure will decrease the vD  and therefore 

decrease the flow of gAl  at the static state and then the step-flow growth is more stable.  

 

4. Summary and conclusions  

A KMC model for the growth of AlN by the PVT method is developed. This KMC model is 

coupled with a vapor diffusion model for gAl . By this coupling, the events on the crystal 

surface and the vapor diffusion of gAl  can interact with each other and the multi-scale 

simulation of the growth of AlN can be carried out. The growth of the Al-polar (0001) plane 

of AlN by the PVT method is studied by this diffusion coupled KMC model. The events that 

are accounted for in the model include the vapor diffusion of gAl , surface diffusion of gAl , 

adN  and adAlN  and reactions (4) to (8). Based on the simulation results of the vapor 

diffusion coupled KMC model, an analytical model for the step-flow growth is proposed. The 

influence of the randomness of the terrace widths on the step-flow growth was studied by the 

analytical model. According to results obtained by the diffusion coupled KMC model and the 

analytical model of the step-flow grow the following conclusions are drawn:  

 

1. By the results of the diffusion coupled KMC model, it is found that under the growing 
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conditions of this work the rate limiting step for the PVT growth of AlN is the supply of Al 

atoms due to the tiny flow of Alg at the steady state.  

 

2. The energy barriers for the growth of AlNad with different neighboring AlN dimers of 

crystal can influence the growth morphology significantly. To have step-flow growth, the 

energy barrier for the growth of AlNad to the crystal with more neighboring AlN dimers of 

crystal should be significantly lower enough than the growth barrier with less neighboring 

AlN dimers. 

 

3. For the step-flow growth, the step-bunching caused by the randomness of the terrace widths 

can be avoided for both homogeneous and linearly inhomogeneous flux of gAl  if the rates of 

the surface events are much faster than the rate of the supply of Al atoms from the vapor.  
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List of table and figure captions 

Table 1: The events included in the KMC model and their instantaneous rates in the 
simulation at t = 6.0 s. 

Table 2: Different situations where reaction [8] can occur. Grey points (always in the centre) 
represent adAlN  particles. Black points represent the cAlN  molecules. White points 
represent the empty sites. 

 

Figure 1: (Color online) Schematic illustration of the PVT growth of an AlN single crystal. 

cT  is the temperature of the AlN single crystal seed. sT  is the temperature of the AlN source 
material.  

Figure 2: Illustration of the area of one available position for the adAl , ad
AlS . The area of the 

regular triangle ABC is ad
AlS . The circles of the solid line is one layer higher than the circles of 

the dotted line.  

Figure 3: (Color online) The estimated potential energy surface (PES) of adAlN , which is the 
overlapping of PESs of adAl  and adN  on N-terminated (0001) surface of AlN [15]. 

Figure 4: (Color online) The influence of the growth-barrier vector { }g
iE  on the growth 

morphology. (a) Initial condition. (b)–(d) Growth morphologies obtained with { }g 1

iE  = (2.13, 
2.13, 2.13, 2.13, 2.13, 2.13), { }g 2

iE  = (2.53, 2.33, 2.13, 1.93, 1.73, 1.53) and { }g 3

iE  = (3.13, 
2.63, 2.13, 1.63, 1.13, 0.63), respectively. (b)–(d) were output when the number of adAlN  
growing to the crystal reaches 98.  

Figure 5: (Color online) KMC simulation of the growth morphology of (0001) surface of the 
AlN single crystal. (a) Initial condition (b) Growth morphology at t  = 10.0 s The adN  atoms 
are shown in red.  

Figure 6: Al vapor concentration profile evolution obtained by the vapor transportation model 
coupled with the KMC model. 0 mm is the position of the source material. 16 mm is the 
position of the single crystal seed. After about 1.5 s, the diffusion of gAl  evolves to a steady 
state.  

Figure 7: (a) Time evolution of s
Alc  which is the vapor concentration of gAl  next to the 

surface of the AlN source material. (b) Time evolution of c
Alc  which is the vapor 

concentration of gAl  next to the surface of the AlN single crystal. Both of the concentrations 
first increase from 0.0 mol m-3 and then reach to a constant value after about 1.5 s. The state 
with the constant s

Alc  and c
Alc  corresponds to the steady state shown in Fig. 6 (see the 

straight line there at t  = 1.5 s).  

Figure 8: Schematic illustration of the step-flow growth. li is the terrace width of the i-th step. 

iv  is the velocity of the (i+1)-th step. is  is the displacement of the i-th step from its starting 
position.  

Figure 9: (Color online) Comparison between the analytical model (red lines with dots) and 
the KMC simulation (blue lines). (a) to (d) are the comparison of the displacement evolution 
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curves of the 3rd step to the 6th step, respectively. Please refer to Fig. 8 for the relative 
step-positions in the step-train. Each analytical solution is compared with seven KMC results. 
The analytical solution and the KMC results are in good agreement.  

Figure 10: (Color online) Comparison of the growth of a train of steps A, which has 
randomness in the initial terrace widths (crosses), to the growth of a train of steps B, whose 
initial terrace widths are all equal (line with circles). The flux of Alg is homogeneous. (a) 
comparison at t  = 0 s. (b) comparison at t  = 14848 s. The randomness in the terrace widths 
of train A disappears. The step positions of train A tends to be the same with that of train B.  

Figure 11: (Color online) The growth of the train of steps A (the same one in Fig. 10) with 
homogeneous flux of Alg. (a) Initial step positions of train A. t  = 0 s. (b) The cross section of 
(a). The positions of A and B corresponds to the positions of A and B in (a), respectively. (c) 
Step positions at t  = 14848 s. Near the end of the train (the part near line B) the steps have 
the same terrace width. Near the beginning of the train (line A) there is a step-bunching, 
which is caused by 0v  = 0. (d) The cross section of (c). (e) Step positions at t  = 23808 s. 
The steps near the end of the train moves with the same terrace width as in (c), which 
indicates this is step-flow growth. (f) The cross section of (e).  
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Table 1: The events included in the KMC model and their instantaneous rates in the 
simulation at t = 6.0 s.  

Events in the KMC model Rate of the events (s-1) 

Diffusion of Alad 1.90 × 107 

Diffusion of Nad on the same terrace 5.10 × 107 

Diffusion of Nad across the step downwards 1.90 × 107 

Diffusion of Nad across the step upwards 1.90 × 107 

Diffusion of AlNad 1.51 × 108 

Reaction (1): Adsorption of Alg  

g adAl Al  

1.08 × 101 

Reaction (1): Desorption of Alad  

g adAl Al⇐  

1.33 × 10-1 

Reaction (2): 

Alad + N2 = AlNad + Nad 

2.63 × 106 

Reaction (3): 

Alad + Nad = AlNad  

7.00 × 107 

Reaction (4): 

Nad + Nad = N2 (g) 

1.02 × 108 

Reaction (5):  

AlNad => AlNc with 1 neighbor (m = 1) 

1.84 × 10-2 

Reaction (5):  

AlNad => AlNc with 2 neighbors (m = 2) 

1.36 × 105 

Reaction (5):  

AlNad => AlNc with 3 neighbors (m = 3) 

2.64 × 107 

Reaction (5):  

AlNad => AlNc with 4 neighbors (m = 4) 

3.68 × 108 

Reaction (5):  

AlNad => AlNc with 5 neighbors (m = 5) 

1.79 × 109 

Reaction (5):  

AlNad => AlNc with 6 neighbors (m = 6) 

5.14 × 109 
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Table 2: Different situations where reaction [8] can occur. Grey points (always in the centre) 
represent adAlN  particles. Black points represent the cAlN  molecules. White points 
represent the empty sites.  

Number of neighbors Configurations 

n = 1 

 

n = 2 

, ,  

n = 3 

, ,  

n = 4 

, ,  

n = 5 

 

n = 6 
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The step-flow growth of the PVT-grown AlN single crystal is studied by a multi-scale model 

developed in this work which takes into accounts both surface reactions and material transport in 

vapor phase.  
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