CrystEngComm
Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Hydrated anion glued capsular and non-capsular assembly of a tripodal host: solid state recognition of bromide-water \([\text{Br}_5-(\text{H}_2\text{O})_6]^-\) and iodide-water \([\text{I}_2-(\text{H}_2\text{O})_4]^-\) clusters in cationic tripodal receptor

Md. Najbul Hoque* and Gopal Das*

ABSTRACT: Herein, we have described a flexible polyammonium tripodal (N4 unit) receptor for hydrated anions. Multiple protonation sites increased the degree of pronation and allowed to study binding of multiple anions towards the receptor in aqueous medium. All three arms are projected in the same direction in the protonated receptor and formed bowl shaped conformation. Whereas the free receptor occupied an orientation in between open and bowl shaped conformation. We observed anion or anion-water assisted capsular and non-capsular assembled supramolecular structures and stabilized by several H-bonding interactions. We have shown fluoride-water and chloride ion belt induced bimolecular capsular assemblies in complexes 1 and 3. On the other hand, we have established chloride-water, bromide-water and iodide-water templated non-capsular aggregations of the protonated receptor in complexes 2, 4 and 5. Most interestingly, a long chain fluoride-water cluster \([\text{F}_7-(\text{H}_2\text{O})_8]^-\) in capsular complex 1, unique extended bromide-water \([\text{Br}_5-(\text{H}_2\text{O})_6]^-\) and discrete iodide-water \([\text{I}_2-(\text{H}_2\text{O})_4]^-\) clusters in non-capsular complexes 4 and 5 are also examined structurally. All supramolecular complexes are characterized by FTIR, NMR, TGA-DSC and X-ray analysis.

Introduction

Since decades it is well known the role of inorganic anions in biological, atmospheric, environmental chemistry. Aqueous solvation of inorganic anions is highly active area for understanding their structures, activities and energetics in solvated state. The random orientation of molecules in aqueous network that results hydrated anions is very complex due to strong stability of H-bonding interaction. The behaviors of hydrated anions are interestingly different from those of free anions or anions in non-polar media as its reactivity largely depends on surrounding hydration networks and molecular hosts. Therefore, a molecular level perspective of ordered anion-water cluster in synthetic receptor allows us to explore the molecular interaction of anions with water molecules.

Halide ions are ubiquitous and plays diverse role in nature and physiology. For example hydration of fluoride ion is interesting due to its smaller size and high electronegativity. In reality it remains in strongly hydrated form due to its high hydration enthalpy. So consumption of fluoride containing drinking water is a concerning matter as its high level causes skeletal and dental fluorosis. An important aspect of chloride ion in CIC (Charcot Leyden crystal) channels in transportation of chloride ion across cellular membrane is well established. Another halide ion iodide remains dissolved in sea water and believed to be main source of iodide ions in atmosphere which increases ozone level in upper atmosphere. Apart from that study of iodide-water cluster have been emphasized due to high polarizability and large ionic radii of iodide ion. Hence study of hydrated anions in terms of solvation and recognition is of great importance. As a result in the past decades care full attention have been given in recognition of hydrated anions in polar or non-polar medium by several synthetic receptors containing multiple anions like \([\text{F}_2-(\text{H}_2\text{O})_6]^-\), \([\text{F}_3-(\text{H}_2\text{O})_6]^-\), \([\text{F}_4-(\text{H}_2\text{O})_4]^-\), \([\text{F}_5-(\text{H}_2\text{O})_4]^-\), \([\text{Cl}_2-(\text{H}_2\text{O})_4]^-\), \([\text{Cl}_3-(\text{H}_2\text{O})_4]^-\), \([\text{Cl}_4-(\text{H}_2\text{O})_4]^-\), \([\text{Cl}_5-(\text{H}_2\text{O})_4]^-\), \([\text{Br}_2-(\text{H}_2\text{O})_6]^-\), \([\text{Br}_3-(\text{H}_2\text{O})_6]^-\), \([\text{Br}_4-(\text{H}_2\text{O})_4]^-\) and \([\text{I}_2-(\text{H}_2\text{O})_4]^-\). It is worth to mention that anion-water cluster mediated assembly has been less extensively studied with few exceptions of halide-water cluster mediated supramolecular capsules. So in this direction anion-water induced assembly process is particularly a new window and can provide much more informations about the behavior of hydrated anions in various supramolecular systems. In our continuing study on anion-water clusters and their role in formation of supramolecular architectures, herein, we present capsular and non-capsular assembly of polyammonium based tripodal receptor triggered by anion or anion-water cluster. In addition we report fluoride-water chain \([\text{F}_5-(\text{H}_2\text{O})_4]^-\), an unique formation of bromide-water \([\text{Br}_5-(\text{H}_2\text{O})_6]^-\) cluster containing chair like bromide-water hexamer and iodide-water \([\text{I}_2-(\text{H}_2\text{O})_4]^-\) clusters consisting water tetramer in cationic tripodal receptor.

Experimental section

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/
Materials and Methods

1H and 13C NMR spectra were recorded on a Varian FT-400 MHz spectrometer in CD$_3$OD or D$_2$O at 298 K. The IR spectra were recorded on a Perkin-Elmer-Spectrum One FT-IR spectrometer with KBr disks in the range 4000-500 cm$^{-1}$. The starting materials triethanol amine, thionyl chloride and p-nitrophenol were purchased from Sigma-Aldrich, USA and were used as received and tris[2-(4-nitrophenoxy)ethyl]amine was prepared according to our previously reported procedure. Solvents were purchased from Spectrochem Ltd., India. Chemical shifts for 1H and 13C NMR were recorded on a Perkin-Elmer-Spectrum One FT-IR spectrometer with KBr disks in the range 4000-500 cm$^{-1}$.

Crystallographic Refinement Details

The crystallographic data and details of data collection for free receptor L and complexes 1, 2, 3, 4 and 5 are given in Table S1. In each case, a crystal of suitable size was selected from the mother liquor and immersed into silicone oil, then mounted on the tip of a glass fiber and cemented using epoxy resin.

Preparation of tris[2-(4-aminophenoxy)ethyl]amine (L)

The tripodal receptor L (Scheme 1, ESI) was prepared by the following procedure. Yellow crystalline tris[2-(4-nitrophenoxy)ethyl]amine (1.0 g) was taken into RB containing 50 ml ethanol and heated for 1 hr to dissolve the crystals. The solution was allowed to reach room temperature and to this solution 2 ml hydrazine and 0.02 g Pd/C was added and finally the whole mixture was refluxed at 80 °C for another 24 hrs for the completion of the reaction. The Pd/C was filtered off and the filtrate was kept into beaker which afforded the colorless crystals of tripodal amine L within 24 hrs (Scheme 1, ESI).

Preparation of different salts

$[^{13}$H$_4$·4F·5H$_2$O]$: To a 1 ml water of L in a small plastic container (0.052 g, 0.125 mmol) was added 1-2 drops of hydrochloric acid (HCl) and stirred for 1 hr to obtain a clear solution. Finally the aqueous mixture kept for crystallization in open atmosphere. After rapid evaporation it afforded colorless X-ray mountable single crystal just within a day.

$[^{13}$H$_4$·8Cl·5H$_2$O]$: Yield = 90%, M. P: 175-177 °C. 1H-NMR (600 MHz, CD$_3$OD:DO$_2$:1, 2) δ (ppm): 7.319 (d, J = 8.4 Hz, 2H, C—H$_1$), 7.021 (d, J = 8.4 Hz, 2H, C—H$_2$), 4.492 (t, J = 4.6 Hz, 2H, C—H$_3$), 3.938 (t, J = 4.8 Hz, 2H, C—H$_4$). IR spectra (KBr pellet): broad and sharp band at 3435 cm$^{-1}$ vs(N—H and O—H), 3140 cm$^{-1}$ vs(N—H), broad band at 2875 cm$^{-1}$ (N—H), 2590 cm$^{-1}$ (C—H), 1620 cm$^{-1}$ νb(N—H), 1510 cm$^{-1}$ vs(C—C), 1259 cm$^{-1}$, 1222 cm$^{-1}$, 833 cm$^{-1}$, 740 cm$^{-1}$. [213H$_4$·8Cl·5H$_2$O]$: To a 1 ml water of L in a small beaker (0.052 g, 0.125 mmol) was added 1-2 drops of hydrochloric acid (HCl) and stirred for 1 hr to obtain a clear solution. Finally the aqueous mixture kept for crystallization in open atmosphere. After rapid evaporation it afforded colorless X-ray mountable single crystal just within a day.

$[^{13}$H$_4$·4Cl]$: To a 1 ml DMF of L in a glass vial (0.052 g, 0.125 mmol) was added 1-2 drops of HCl acid and stirred for 1 hr. Finally glass vial kept for crystallization in open atmosphere. It afforded colorless X-ray mountable single crystal after 1-2 weeks.

$[^{13}$H$_4$·5H$_2$O$]$: Yield = 70%, M. P: 255-256 °C. 1H-NMR (600 MHz, CD$_3$OD:DO$_2$:1, 2) δ (ppm): 7.367 (d, J = 9.0 Hz, 2H, C—H$_1$), 7.069 (d, J = 9.0 Hz, 2H, C—H$_2$), 4.545 (t, J = 3.6 Hz, 2H, C—H$_3$), 3.985 (t, J = 3.6 Hz, 2H, C—H$_4$). IR spectra (KBr pellet): broad band at 3440 cm$^{-1}$ vs(N—H and O—H), 3150 cm$^{-1}$ vs(N—H), broad band 2882 cm$^{-1}$ (N—H), 2580 cm$^{-1}$ (C—H), 1611 cm$^{-1}$ νb(N—H), 1510 cm$^{-1}$ vs(C—C), 1259 cm$^{-1}$, 833 cm$^{-1}$. [213H$_4$·5H$_2$O$]$: To a 1 ml water of L in a small beaker (0.052 g, 0.125 mmol) was added 1-2 drops of hydrochloric acid (HCl) and stirred for 1 hr to obtain a clear solution. Finally the aqueous mixture kept for crystallization in open atmosphere. After rapid evaporation it afforded colorless X-ray mountable single crystal after 1-2 weeks.

$[^{13}$H$_4$·4Br·5H$_2$O$]$: Yield = 85%, M. P: 282-284 °C. 1H-NMR (600 MHz, CD$_3$OD:DO$_2$:1, 2) δ (ppm): 7.401 (d, J = 6.6 Hz, 2H, C—H$_1$), 7.142 (d, J = 6.6 Hz, 2H, C—H$_2$), 4.578 (t, J = 4.2 Hz, 2H, C—H$_3$), 4.011 (t, J = 4.2 Hz, 2H, C—H$_4$). IR spectra (KBr pellet): broad band at 3435 cm$^{-1}$ vs(N—H and O—H), 3145 cm$^{-1}$ vs(N—H), broad band at 2882 cm$^{-1}$ (N—H), 2585 cm$^{-1}$ (C—H), 1611 cm$^{-1}$ νb(N—H), 1510 cm$^{-1}$ vs(C—C), 1259 cm$^{-1}$, 833 cm$^{-1}$. [213H$_4$·4Br·5H$_2$O$]$: To a 1 ml water of L in a small beaker (0.052 g, 0.125 mmol) was added 1-2 drops of hydrobromic acid (HBr) and stirred for 1 hr to obtain a clear solution. Finally the aqueous mixture kept for crystallization in open atmosphere. After rapid evaporation it afforded colorless X-ray mountable single crystal just within a day.
CrystEngComm Accepted Manuscript

Page 3 of 12

Table 1 Crystallographic data and refinement details for compounds 1-6

<table>
<thead>
<tr>
<th>Code name</th>
<th>L</th>
<th>Complex 1</th>
<th>Complex 2</th>
<th>Complex 3</th>
<th>Complex 4</th>
<th>Complex 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(C_2H_2OHN_2O_3)</td>
<td>(C_2H_2OHF_2N_2O_3)</td>
<td>(C_2H_2OHCH_2N_2O_3)</td>
<td>(C_2H_2OHClN_2O_3)</td>
<td>(C_2H_2OBnN_2O_3)</td>
<td>(C_2H_2OH_2N_2O_3)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>422.52</td>
<td>592.63</td>
<td>1224.77</td>
<td>568.35</td>
<td>836.22</td>
<td>3862.67</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Hexagonal</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Hexagonal</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>a (Å)</td>
<td>19.227(4)</td>
<td>23.201(3)</td>
<td>11.496(3)</td>
<td>12.739(8)</td>
<td>12.646(4)</td>
<td>12.681(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>19.227(4)</td>
<td>11.150(3)</td>
<td>12.233(9)</td>
<td>12.739(8)</td>
<td>11.535(4)</td>
<td>13.038(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.275(2)</td>
<td>24.777(10)</td>
<td>13.081(11)</td>
<td>62.039(5)</td>
<td>24.273(5)</td>
<td>20.993(10)</td>
</tr>
<tr>
<td>α (degree)</td>
<td>90.00</td>
<td>90.00</td>
<td>111.373(5)</td>
<td>90.00</td>
<td>90.00</td>
<td>75.377(2)</td>
</tr>
<tr>
<td>β (degree)</td>
<td>90.00</td>
<td>114.561(6)</td>
<td>113.194(5)</td>
<td>90.00</td>
<td>104.935(2)</td>
<td>87.245(2)</td>
</tr>
<tr>
<td>γ (degree)</td>
<td>120.00</td>
<td>90.00</td>
<td>94.457(4)</td>
<td>120.00</td>
<td>90.00</td>
<td>88.453(2)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3289.61(12)</td>
<td>5830.00(5)</td>
<td>1521.28(14)</td>
<td>8720.20(10)</td>
<td>3421.50(2)</td>
<td>3354.50(3)</td>
</tr>
<tr>
<td>Z value</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(\rho (\text{cal} \text{g/cm}^3))</td>
<td>1.280</td>
<td>1.350</td>
<td>1.337</td>
<td>1.229</td>
<td>1.621</td>
<td>1.909</td>
</tr>
<tr>
<td>(\mu (\text{M}) \text{Kα} (\text{mm}^{-1}))</td>
<td>0.086</td>
<td>0.116</td>
<td>0.430</td>
<td>0.438</td>
<td>4.751</td>
<td>3.750</td>
</tr>
<tr>
<td>(T (K))</td>
<td>298(2)</td>
<td>298(2)</td>
<td>298(2)</td>
<td>298(2)</td>
<td>298(2)</td>
<td>298(2)</td>
</tr>
<tr>
<td>Reflection measured</td>
<td>16238</td>
<td>13715</td>
<td>11469</td>
<td>12681</td>
<td>30309</td>
<td>14556</td>
</tr>
<tr>
<td>Good-of-fit</td>
<td>0.906</td>
<td>0.980</td>
<td>0.604</td>
<td>0.548</td>
<td>0.451</td>
<td>3.107</td>
</tr>
<tr>
<td>Residual electron density</td>
<td>0.122/-0.170</td>
<td>0.783/-0.364</td>
<td>0.604/-0.537</td>
<td>0.548/-0.172</td>
<td>0.604/-0.537</td>
<td>3.107/-3.423</td>
</tr>
<tr>
<td>CCDC No.</td>
<td>961078</td>
<td>961079</td>
<td>961080</td>
<td>961081</td>
<td>961082</td>
<td>978948</td>
</tr>
</tbody>
</table>

Results and discussion

The big advantages of polyammonium based anion receptors are high degree of protonation that enhance the possibility of binding of multiple anions. The solubility of such protonated receptors in protic solvent. The interesting outcome of this report is that we are able to isolate anion or anion-water assisted capsular and non-capsular supramolecular assembly and most significantly anion-water clusters by tripodal receptor in aqueous medium.

Structural study of free receptor L

The free receptor L was crystallized during evaporation of the ethanolic solution within 24 hrs. Structural study obtained from single crystal X-ray shows that L crystallizes in highly symmetric hexagonal \(R3c\) space group. Solid state structure indicates the asymmetric unit contains only the receptor and a \(C_3\) axis passes through the apical N-atom. The average bond distance between apical nitrogen and adjacent carbon in free receptor \((N—C)\) is 1.477 Å. The ethereal separation \((O—O = 4.798 Å)\) of three identical oxygen atom and torsion angle value \((N_\text{apical—C—C—O_ether} = 81.1^\circ)\) suggest that receptor adopted an orientation in between folded and open conformation as depicted in Fig. 1a. Interaction pattern shows all three ethereal oxygen form highly directed C—H···O (C5···O1 = 3.536(2) Å) H-bond. All three —NH2 groups are involved in H-bonding with aliphatic CH2, phenyl ring with distances N2···C2 = 4.798 Å and N—H···O (Napical···O1 = 1.605(9) Å) interaction. The receptor is stabilized by all these weak interactions in solid state. Close inspection in the crystal packing indicates that each tripodal unit is surrounded by six neighbored tripodal units that form a cyclohexane like highly symmetric hexagonal structure which is very relevant to realistic phenomenon. We have designed very important and new receptor considering the same plat form of having apical nitrogen atom and three amine groups forming a \(N_3\) unit. Another famous \(N_3\) unit (tren based receptor) has widely been studied where apical nitrogen atom does not get protonated. But in our case proper decoration by placing of ethereal function in the tripodal amine helps for the protonation of the apical nitrogen and allow the binding of multiple anions in protic solvent. The interesting outcome of this report is that we are able to isolate anion or anion-water assisted capsular and non-capsular supramolecular assembly and most significantly anion-water clusters by tripodal receptor in aqueous medium.

Structural Study of Halide Complexes of L

Structural Study of Complex \([\text{LH}_4\text{F-5H}_2\text{O}]\)

Single crystal X-ray study of the complex \([\text{LH}_4\text{F-5H}_2\text{O}]\) shows it crystallizes in monoclinic system with centrosymmetric space group \(C2/c\). The asymmetric unit contains one protonated receptor \([\text{LH}_4]^+\), four fluoride ions and five water of crystallization. The protonated receptor contains a...
interacts with one fluoride ion (F2) and two water molecules (O5w and O8w) having bond length N2···F2 = 2.680(5) Å, N2···O5w = 2.734(6) Å, and N2···O8w = 2.606(6) Å. Whereas three hydrogen of [N(3)H3]+ interacts with two fluoride ions F3, F5 and one water molecule O4w via strong N3···F3 = 2.691(3) Å, N3···F5 = 2.603(3) Å, and N3···O4w = 2.828(4) Å H-bonds. The other [N(4)H3]+ also forms three H-bonds with two fluoride ions (F2, F5) and one water molecule (O7w) having close contacts N4···F2 = 2.766(5) Å, N4···F5 = 2.683(4) Å, and N4···O7w = 2.767(5) Å (Fig. S20b). Very interestingly complex I in the solid state form bimolecular capsule by association of two [LH4]+ unit via these H-bonding interactions and stitched by fluoride-water cluster depicted in Fig. 2a. A top view shown in Fig. 2b describes the formation of fluoride-water belt in the bimolecular capsule. One fluoride ion (F1) perfectly buried at the center of the bimolecular capsule and interacts with two neighbouring water molecules (O5w). The capsule is built mainly from H-bonding interactions of [NH3]+ groups with fluoride ions and water molecules. Close up view of fluoride-water belt and several H-bonding interactions involved in the capsule are shown in Fig. 2c. The distance between two apical N-atoms in the bimolecular capsular is 17.157 Å. It is evident from the Fig. 2d that each bimolecular capsule is held by the neighbour capsule which is accompanied by several strong and weak H-bonding interactions arising from fluoride ions and water molecules. This would actually lead the formation of supramolecular structure made of the protonated tripodal receptor. Close inspection shows two capsules are assembled by fluoride-water cluster and with the help of [NH3]+ group it actually resulted the structural motif consisting of [F4-H2O-NH3]+ backbone. A backbone of [F4-H2O-NH3]+ motif having fused hexameric (one) and pentameric ring (two) gave [F4-(H2O)4-NH3]12 twelve membered cyclic motif existing between two capsules. The starting feature in the crystal structure of complex I is the formation of a long fluoride-water chain [F7-(H2O)4]− which is highlighted in Fig. 2e. The chain is mainly stabilized by strong O···F, N···O and N···F H-bonding interactions. The chain contains a mirror plane passing through F1. Further aromatic hydrogen C—H ar···F and aliphatic hydrogen C—H alp···F, C—H alp···O also takes part in weak interactions and plays a crucial role to grow supramolecular assembly. Crystal packing along b-axis shows [LH4]+ unit form cationic bilayer and surrounded by fluoride-water hydrophilic channel (Fig. S20c). All H-bonding details are given in Table S1. IR spectra of complex I exhibit a peak at 3435 cm−1 expected for water molecule in crystal lattice (Fig. S9). The comparable simulated and experimental PXRD pattern suggested to the bulk phase purity of the crystalline complex (Fig. S15).

Structural Study of Complex [2LH4·8Cl·5H2O](2)

Crystallographic analysis reveals that complex 2 crystallizes in triclinic P-1 space group with an asymmetric unit containing one independent tetra-protonated receptor [LH4]+, four chloride ions and three water molecules. The receptor possesses a C3v symmetry axis passing through apical N-atom. In solid state structure we observed, half part (green) is related to other half by forming an inversion center through the water molecule (O6w) giving molecular structure [2LH4·5Cl·5H2O] showed in Fig. 3a. The N—C bond distance (1.503 Å) in complex 2 is also parallel as observed for protonated receptor (apical N-atom). The proton on apical N-atom is directed towards the cavity and holds three arms in the same direction by forming H-bond with three ethereal oxygen atoms (average N1···O = 2.741 Å, N2···O = 2.734(6) Å, and N2···O5w = 2.734(6) Å).
Fig. S21a). Ethereal bond distance (O···O = 3.563 Å) and torsion angle value (N\textsubscript{apical}−C−C−O\textsubscript{ether} = 60°) is comparable with complex 1 which is in good agreement for folded conformation. The orthogonal C−H−n interactions among phenyl rings are also additive force in the formation of folded conformation. In solid state all three [NH\textsubscript{3}]+ groups interacts with water molecules and chloride ions by virtue of its donor ability explained in Fig. 3b. The [N(2)H\textsubscript{3}]+ donates all three hydrogen to three chloride ions through N2···Cl1 = 3.174(3) Å, N2···Cl2 = 3.072(4) Å and N2···Cl3 = 3.204(4) Å interactions. H-bonding mode of [N(3)H\textsubscript{3}]+ is similar with that of [N(2)H\textsubscript{3}]+ containing distances N3···Cl1 = 3.163(4) Å, N3···Cl3 = 3.225(3) Å and N3···Cl4 = 3.160(3) Å. Whereas the third ammonium group [N(4)H\textsubscript{3}]+ is surrounded by two chloride ions and one water molecule with H-bond distances N4···Cl3 = 3.218(3) Å, N4···Cl4 = 3.194(3) Å and N4···O\textsubscript{water} = 2.743(6) Å. All details of these H-bonding interactions are tabulated in Table S1. In complex 2 the protonated receptor [LH\textsubscript{4}]4+ slips from the face to a distant position and does not form any capsular assembly unlike the complex 1 which is illustrated in Fig. 3c. Each tripodal receptor interacts with the adjacent tripodal by several H-bonding interactions arising from N−H···Cl, N−H···O\textsubscript{water} and O\textsubscript{water}−H···Cl that generates the supramolecular structure. Close inspection in crystal structure shows three [NH\textsubscript{3}]+ groups of one [LH\textsubscript{4}]4+ unit interacts with other two [LH\textsubscript{4}]4+ unit via chloride-water bridge and such way they form non-capsular structure. The [LH\textsubscript{4}]4+ units are linked each other by chloride-water [Cl\textsubscript{2}−H\textsubscript{2}O ‘V’ shaped] bridge, with the help of [NH\textsubscript{3}]+ groups form several fused cyclic rings (octamer, hexamer, pentamer and tetramer) shown in Fig. 3d. The packing diagram of complex 2 along c-axis shows that the hydrophilic layer of chloride-water channel propagate through cationic bilayer generated by protonated receptor (Fig. S21b). The weak interactions mainly comprising of aromatic C−H\textsubscript{ar}···Cl and aliphatic C−H\textsubscript{alp}···Cl are also involved in supramolecular assembly. The presence of H-bonded water molecule has also been confirmed by solid-state FT-IR analysis. The presence of a moderate broad signal at 3440 cm-1 in complex 2 is attributed to the stretching frequency of the water molecule which is absent in free receptor (Fig. S10). Additionally, the bulk phase purity of the complex 2 has been established by PXRD experiment (Fig. S16).

Structural Study of Complex [LH\textsubscript{4}·4Cl](3)

The solid state structure of the chloride complex 3 displayed by X-ray analysis shows it crystallizes in highly symmetric hexagonal system of space group R-3c with crystallographically independent one third of the tetra-protonated receptor [LH\textsubscript{4}]4+ and four chloride ions as asymmetric unit. In this case the complex does not contain any water of crystallization. All three arms are identical and apical N-atom possesses C\textsubscript{3v} symmetry. The separation of N−C bond is 1.500 Å which confirmed the protonation on apical N-atom. The endo-oriented hydrogen atom interacts with all three ethereal oxygen and brings three arms closer by H-bonding (N1···O = 2.770 Å, Fig S22a). The ethereal bond distance (O···O = 3.575 Å) and torsion angle (N\textsubscript{apical}−C−C−O\textsubscript{ether} = 60°) value indicates the folded conformation. Similarly, three arms are posed each other vertically and form C\textsubscript{ar}−H···n interactions that also stabilized bowl shaped conformation. All three hydrogen of [NH\textsubscript{3}]+ are engaged in H-bonding with three chloride ions of distances N2···Cl1 = 3.041(3) Å, N2···Cl2 = 3.184(4) Å and N2···Cl3 = 3.038(3) Å (Fig. S22b). Unlike hydrated chloride complex 2, here, two [LH\textsubscript{4}]4+ units meet face to face and bimolecular capsule is built which is explained by top view in Fig. 4a. In this case total six chloride ions are involved in capsule and
holds two [LH₄][Br] unit firmly through formation of chloride ion belt enriched with Cl···H—N H-bonding interactions with [NH₃][+] groups which is depicted in Fig. 4b. Close view of H-bonding involved in the capsular assembly is shown in Fig. 4c. Detailed H-bonding parameters are given in Table S1. The distance between two vertical N-atoms in this capsule is dropped to 16.706 Å as compared to 1 presumably due to absence of water molecules in the capsular assembly. Each capsule attached with the adjacent capsule through the formation cyclic [Cl⁻-NH₃][+] motif highlighted in Fig. 4d. Crystal packing viewed along c-axis results star like assembly of the molecular capsules (Fig. S23a). The extended packing diagram along a-axis produced anionic channel surrounded by cationic bilayers (Fig. S23b). The IR spectrum of the dehydrated complex does not contain any peak in the region of 3400-3200 cm⁻¹ indicating absence of water molecule as expected (Fig. S11). The complex remains in pure phase even in larger quantity as observed from similar simulated and experimental PXRD pattern (Fig. S17).

Structural Study of Complex [LH₄·4Br·5H₂O](4)

Single crystal X-ray shows the complex 4 crystallizes in commonly available monoclinic system of space group P2₁/c with an asymmetric unit that contains one tetra-protonated [LH₄][Br]⁴⁻, four bromide ions and five lattice water molecules. One bromide ion (Br₃) lies on the C₃ᵥ symmetric apical N-atom. The N―C bond distance (1.505 Å) in complex 4 is ideal for apical nitrogen protonated receptor. The hydrogen on apical

N-atom is endo-oriented and interacts with all three ethereal oxygen atoms (average N1⋯O = 2.774 Å, Fig. S25a). Bowl shaped cavity of hydrated bromide complex 4 like other complexes also established from ethereal bond distance (O⋯O

Fig. 3 (a) Color scheme showing the centrosymmetric molecular structure having an inversion center with respect to O6w in complex 2. (b) Showing coordination environment and H-bonding interactions of three [NH₃][+] groups with chloride ions and water molecule. (c) Depicting non-capsular assembly and interaction of [LH₄][Br] with adjacent receptor mediated by chloride-water in complex 2. (d) Perspective representation of ‘V’ shaped small [Cl₂-H₂O]⁻ cluster that form several cyclic rings with the help of [NH₃][+] group in non-capsular assembly. H-atoms omitted from the pictures for clarity.

Fig. 4 (a) Side view depicting bimolecular capsular aggregate by chloride ions in complex 3. (b) Top view showing bimolecular capsule stitched by chloride ion belt. (c) Partial structure showing the H-bonding in anion belt of the bimolecular capsule in complex 3. (d) View depicting the interaction between two molecular capsules mediated by [Cl⁻-NH₃][+]. H-atoms omitted from the pictures for clarity.
Fig. 5 (a) Showing coordination environment and H-bonding interaction of [NH₃]+ groups with bromide ions and water molecules in complex 4. (b) View depicting minimum repeating fragment of bromide-water cluster [Br₅(H₂O)₆]⁻ containing hexameric chair [Br₂(H₂O)₄]⁻. (c) Infinite array of bromide-water cluster in which two [Br₅(H₂O)₆]⁻ met in an inversion center and formed fused decameric ring in complex 4. (d) Partial structure depicting interaction of bromide-water cluster with [LH₄⁺]. H-atoms omitted for clarity.

= 3.597 Å) and torsion angle value (N₃ apical–C–C–O ether = 62°). Three arms are connected each other by C–H···i interactions and also holds the three arms together to stabilize bowl shape conformation. Fig. 5a explains the binding mode of three [NH₃]+ groups with bromide ions and water molecules. Three hydrogen of [N(2)H₃]+ donate all hydrogen to bind three bromide ions via three N₂–Br1 = 3.225(5) Å, N₂–Br2 = 3.291(5) Å and N₂–Br4 = 3.321(5) Å H-bonds. The other [N(3)H₃]+ is surrounded by one bromide ion and two water molecules having distances N₃–Br3 = 3.415(5) Å, N₃–O5w = 2.809(6) Å and N₃–O6w = 2.782(7) Å. The third [N(4)H₃]+ is involved in H-bonding with two bromide ions and one water molecule having H-bonding parameters N₄–Br1 = 3.344(5) Å, N₄–Br4 = 3.388(5) Å and N₄–O4w = 2.771(8) Å. All H-bonding details are given in Table S1. Crystal structure study shows the [LH₄⁺] units displaced from the face to a distant position in such a manner that they form non-capsular assembly like hydrated chloride complex 2 (Fig. S24). Each units are connected each other by [Br⁻–H₂O] linker enriched with several H-bonding. The most noteworthy feature of complex 4 is that we isolated very significant anion-water cluster composed of bromide ions and water molecules. We observed an unique anion-water cluster [Br₅–(H₂O)₆]⁻ having cyclic six membered ring [Br₂–(H₂O)₄]²⁻ and tail [Br–(H₂O)₃]⁻ which is illustrated in Fig. 5b. A careful analysis reveals that centrosymmetric cyclic hexamer composed of one bromide ions (Br2), two water molecules (O7w, O5w) and their centrosymmetric equivalents and resulted the formation of cyclohexane chair like conformation (Fig. S25a). The hybrid cyclic hexamer is quite similar to purely water hexamers found in several hydrated crystal systems 24 where bromide ion replaces the water molecule and persist the similar conformation (chair like). In the chair conformation four water molecules lies on the basal plane, two bromide are on above and below of the plane. In the hexamer two hydrogen of O5w is accepted by Br2 and O7w, whereas one hydrogen of O7w is accepted by Br2 giving a H-bonded motif R₁⁺(12). The H-bonding involved in cyclic hexamer are as follows: Br2–O5w = 3.362(6) Å, Br2–O7w = 3.267(7) Å and O5w–O7w = 2.805(9) Å. The Br–O and O–O separation in this hybrid water cluster is comparable to reported value observed in bromide-water clusters 14,16,25 and water hexamers. Two type of bond angles found in cyclic hexamer viz. ζO5–Br2–O7 = 67.0(2)° and ζO7–O5–Br2 = 110.4(2)° are ideal for tetrahedral water molecule which is frequently observed in hexagonal ice. 26 Other bond angles like ζO–O–O, ζO–O–Br, ζBr–O–Br and ζBr–Br–O existing outside of the
hexameric ring span the range of 64.0(1)-131.5(1)°. Detail structural scrutiny of hybrid bromide-water hexamer shows that it is bi-substituted at O7w and mono-substituted at Br2. O7w contains bromide ion (Br4) in axial and water molecule (O6w) in equatorial position, Br2 contains one water molecule (O4w) in axial position from where a tail of [O4w-Br3-O6w]+ is extended. The tail along with hexamer meet each other at O7w of the next hexamer in a centrosymmetric fashion with perfect inversion center leading to the formation of fused decameric ring (with hexamer) and as a result extended polymer chain of hybrid bromide-water cluster is obtained in the crystal lattice as shown in Fig. 5c. The decameric ring is also substituted at Br3 by [O8w-Br1]+. The strong and medium H-bonds involved in decamer are Br2—O4w = 3.267(7) Å, Br3—O4w = 3.316(6) Å and Br3—O6w = 3.356(5) Å. This in cluster water molecules and bromide ions shows variety of coordination like four and three coordination with the help of protonated receptor. The coordination environment of bromide-water cluster [Br3-(H2O)6]+ is depicted in Fig. 5d which clearly shows that several tripodal arms are involved in stabilization of the cluster through its [NH3]+ end that form H-bonds with bromide ions and water molecules. Crystal packing along b-axis shows the propagation of hydrophilic bromide-water channel surrounded by cationic bilayer of the protonated receptor (Fig. S25b). In addition few other weak interactions like C9—H9w···Br1, C4—H4···Br4, C2—H2···O7w and C10—Cg also helps for aggregation of the protonated receptor. We confirmed the presence water molecule in crystal lattice of hydrated bromide complex 4 by IR spectra and broad vibration frequency appears at 3435 cm−1 corresponding to O—H stretching vibration (Fig. S12). The bulk phase purity of the complex is also confirmed by PXRD study where simulated and experimental pattern coincide each other (Fig. S18).

Structural Study of Complex [4LH4·16I·7H2O](5)
The complex 5 crystallizes in triclinic system with a P-1 space group. The asymmetric unit contains two crystallographic independent tetra-protonated receptor [LH4]+ (N1 and N5 unit; naming according to the numbering of apical N-atom), eight iodide ions and four water of crystallization. Each protonated tripodal receptor in the asymmetric unit possesses C3v symmetry passing through apical N-atom and an iodide ion (I1) lies on the C3v symmetric apical N-atom in N1 unit. The average bond distance between apical N-atom and adjacent carbon atom is 1.508 Å and 1.513 Å in N1 and N5 unit respectively which suggested protonation on apical N-atom. The hydrogen atom on apical N-atom in both cases are endo-oriented and H-bonded in trifurcated fashion with ethereal oxygen atoms (average N1—O = 2.766 Å and N5—O = 2.770 Å, Fig. S26), which helps to bring three arms in closer distance. Structural analysis shows one arm stay away from the other two arms by a small margin and not able to form any C—H···N interaction with other two arms, hence we observed only one orthogonal C—H···O interaction in N5 unit, whereas in N1 unit we observed three C—H···O interactions falling in acceptable distances (Fig. S26). Though ethereal bond distance (O—O = 3.586 Å) and torsion angle value (N(spacial)—C—C—Oether = 62°) suggest the bowl shaped conformation in both unit like all other complexes. The crystal structure shows that all six [NH3]+ group interacts with iodide ions and water molecules depicted in Fig. 6a and 6b. Coordination environments of [N(2)H3]+, [N(3)H3]+ and [N(6)H1]+ are same and each groups are surrounded by two iodide ions and one water molecule. On the other side each [N(4)H1]+ and [N(8)H3]+ are H-bonded with three and four iodide ions respectively. Only [N(7)H3]+ group interacts only with two iodide ions. All H-bonding interactions are summarized in Table S1. In iodide complex each tripodal unit displaced from the face and connected through iodide-water interactions to form non-capsular assembly like complex 2 and 4 (Fig. S27). Solid state structure shows two symmetry independent tripodal receptor form two types of non-capsular aggregations with the help of H-bonding substances like iodide ions, water molecules and [NH3]+ groups. It is noteworthy to mention that we observed a well-defined discrete iodide-water cluster in non-capsular assembly formed by N5 unit. The iodide ion (I4) and two water molecules (O7w and O10w) are involved in the formation of iodide-water cluster [I4-(H2O)2]+ containing cyclic water tetramer shown in Fig. 6c. The I—O separation observed in our study is comparable to the theoretically obtained value 3.67 Å.9 The water tetramer in iodide-water cluster contains a perfect inversion center at the center of the square. The four water molecules lie on a plane and two iodide ions occupy above and below of the plane forming chair like conformation. Hence two iodide ions are inversely related with respect to inversion center in the tetramer. To the best possible placement of H-atoms in this cluster we noticed O7w donate its two hydrogen atoms towards two symmetric O10w and O10w presumably donates its two hydrogen to I4 ion. From the contribution of donor-acceptor properties of water molecules a cyclic water tetramer is formed with a H-bonding motif R2(8). Four H-atoms from two water molecules (O7w) are only involved in the formation of cyclic water tetramer and H-atoms of other two water molecules (O10w) are directed just outside of the ring. Such type of water tetramer is not so common and rarely observed in crystal lattice.27 The discreet iodide-water cluster is surrounded by cationic tripodal and stabilized by several strong and weak H-bonding interactions shown pictorially in Fig. 6e. The water molecule O7w of tetramer accept two hydrogen from N6 and C42 of the tripodal receptor forming N6—O7w = 2.780(3) Å and C42—O7w = 3.270(2) Å H-bonding. On the other hand, iodide ion (I4) interacts with its neighbored tripodal receptor via N7—I4 = 3.600(2) Å, N7—I4 = 3.650(1) Å and C41—I4 = 3.850(1) Å contacts. With the best of our knowledge structural study of iodide-water cluster is very less,28 our report of iodide-water cluster [I4-(H2O)2]+ in organic system has not been reported previously. So iodide-water cluster [I4-(H2O)2]+ observed in organic receptor is unprecedented. Crystal packing motif of complex 5 as viewed down along a-axis showing the cationic bilayer assembly formation of cationic ligand moieties with the iodide-water channel being entrapped between the adjacent bilayers (Fig. S27c). The IR spectra of complex 5 indicate a broad band centered around 3420 cm−1 and that can be attributed to O-H stretching frequency suggesting presence of water molecule (Fig. S13). The bulk phase purity of the complex has also been confirmed by PXRD study where simulated and experimental pattern coincide each other (Fig. S19).

Thermal analysis of the complexes
Nature of water molecules in the crystal lattice and thermal stability of the halide complexes are examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) experiments. The capsular and non-capsular
assembled supramolecular structures are a consequence of anion-water and anion-water-receptor interactions. Their stabilities are well explained by thermal analysis (Fig. 7). The fluoride complex 1, exhibited continuous weight loss (for water molecule) up to ~194 °C, there is a weight loss of 5.73% at ~104 °C, which matches very well with calculated value 6.07% corresponding to two water molecules. Partially dehydrated complex is stable up to ~135 °C and after this remaining three water molecules (found 8.45%; calcld. 9.01%) are lost and continue to ~194 °C along with the melting of the complex. In DSC clear endothermic peak is observed at ~97 °C and at ~188 °C corresponding to these weight losses (Fig. 7a). For the chloride complex 2, removal of all water molecules (five crystalline water molecules) are observed in a single step, with the weight loss of 6.26% (calcd. 7.34%) at ~88 °C. The indication of this weight loss is also noticed from endothermic peak at ~84 °C in its DSC curve. The dehydrated complex is stable up to ~240 °C and started to melt after ~240 °C (Fig. 7b). On other hand the anhydrous chloride complex 3 did not show any weight loss in the range of ~30-256 °C as expected from its crystal structure (absence of lattice water molecule) and is stable up to ~256 °C before it melts. This result is also achieved by the appearance of a sharp endothermic peak at ~256 °C in its DSC curve (Fig. 7c). The bromide complex 4 started to degrade lattice water molecules early stages at ~76 °C, a weight loss 10.15% (calcd. 10.78%) relative to five water molecules. This is further confirmed by an endothermic peak at ~76 °C in its DSC curve. The dehydrated complex is stable up to ~285 °C and then started to melt with an appearance of a endothermic peak at ~280 °C (Fig. 7d). Removal of water molecules from the iodide complex 5 occurred in single step. A one step weight loss of 3.70% (calcd. 3.26%) at ~105 °C for seven water molecules is observed and confirmed an endothermic peak at ~105 °C in DSC curve. The dehydrated salt is stable up to ~288 °C. After this temperature complex started to melt and for which an endothermic peak is appeared at ~275 °C in DSC curve (Fig. 7e).
Conclusions

In summary, we have shown the capsular and non-capsular assembly of the cationic tripodal receptor by hydrophilic anion-water cluster. We established fluoride-water cluster and chloride ion belt mediated supramolecular assembly in bimolecular capsular fashion. On the other hand formation of non-capsular supramolecular association of the receptor is observed by chloride-water, bromide-water and iodide-water clusters. Moreover our observations underscore extended polymeric bromide-water cluster $[\text{Br}_2-(\text{H}_2\text{O})_6]^{5-}$ having defined cyclohexane like chair conformation and discrete iodide-water cluster $[\text{I}_2-(\text{H}_2\text{O})_4]^{2-}$ containing water tetramer in solid state. Existence of hydrophilic anion-water channels surrounded by cationic bilayers of tripodal receptor can elucidate the behavior of hydrated anionic species in confined environment. Our results would also help to exploit the complex hydration phenomena and anion-water interactions observed in physiology and hybrid anion-water clusters. These results may be helpful for understanding anion-water mediated assembly process, stability and transportation of anions in water-membrane interfaces.

Acknowledgements

G.D. acknowledges CSIR (01/2727/13/EMR-II) and SERB (SR/S1/OC-62/2011) New Delhi, India for financial support, CIF IITG and DST-FIST for providing instrument facilities. N.H. thanks IITG for fellowship.

Notes and references

This is a page from a scientific journal, containing a list of references. The references are cited in the text that follows. The journal name is CrystEngComm, and the page number is 11.
In this report we described capsular and non-capsular assembly of polyammonium tripodal receptor into supramolecular network driven by anion or anion-water cluster and solid state recognition of unique bromide-water $[\text{Br}_2\cdot(\text{H}_2\text{O})_6]^{5-}$ and iodide-water $[\text{I}_2\cdot(\text{H}_2\text{O})_4]^{2-}$ clusters.