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Abstract. A logic gate based on a bistable [c2] daisy chain 
rotaxane decorated with lateral triarylamine units is 
described, giving rise to an INHIBIT logic function using 
proton concentration and light as inputs, and producing dual 
color change and supramolecular self-assembly as outputs. 

Since the pioneering work of de Silva and collaborators,1 processing 

information by applying Boolean logic to chemical systems has been 

extensively developed.2 A large variety of synthetic molecules, even 

as simple as 8-methoxyquinoline, has been reported to achieve and 

integrate various kinds of Boolean operations.3 More advanced 

molecular machines, such as [2]pseudorotaxanes and [2]rotaxanes 

which present switching abilities upon chemical or physical 

stimulation, have also been designed with a particular focus on 

electronic devices with memory effects.4 Switchable molecular 

machines act by essence as logic gates and can reset a device to its 

initial state by taking advantage of their reversible bistability. 

Although various stimuli such as pH, metal ions, voltage, or even light 

have been used to activate these molecular logic units, examples 

combining light and pH inputs are limited.5 Outputs usually consist in 

an optical response such as UV/Vis absorption, fluorescence, 

phosphorescence, or circular dichroism as it provides an easy read-

out of the molecular computation. However, examples in which an 

optical output is accompanied by the formation of a supramolecular 

self-assembly built on the molecular logic unit are scarce and mainly 

consist in the formation of physical gels.6 

Recently we have discovered that triarylamine derivatives, when 

decorated with appropriate lateral amide groups, can self-assemble 

upon simple visible light exposure in the presence of chlorinated 

solvents thanks to a combination of various supramolecular 

interactions (hydrogen bond, π-π stacking, and van der Waals).7 

Although the detailed mechanism of this unique supramolecular 

polymerization process is very complex, it can be summarized as 

follows: i) oxidation upon light irradiation of a catalytic quantity of 

triarylamines to their radical cations associated with a chemical 

reduction of the chlorinated solvent; ii) formation of a nucleus of a 

minimum number of triarylammonium radicals; iii) stacking of neutral 

triarylamines onto the nucleus and subsequent growth of columnar 

primary fibrils; and iv) lateral secondary aggregations of fibrils up to 

the formation of larger bundles of fibers.8 Interestingly, the formation 

of these self-assembled structures is accompanied by a strong 

increase in NIR absorption at around 790 nm corresponding to the 

formation and stabilization of the triarylammonium radical cations in 

charge transfer complexes. We have also shown that this 

nucleation/growth process leads to doped supramolecular polymers 

which display outstanding electric conduction properties with 

optical, magnetic, and electronic signatures of metallic materials.9 

Finally, we have reported that these triarylamine units can be 

modified with various chemical units such as terpyridine, fullerene, or 

gallate moieties while retaining their general ability to self-assemble 

upon light stimulation in chlorinated solvents.10 However, during the 

course of our studies, we noticed the importance of the steric 

hindrance close to the amide function which is of importance to 

stabilize the self-assembled structures by intermolecular hydrogen 

bonds. Here we envision modulating the accessibility of this amide 

moiety by integrating a vicinal mechanical bond in order to further 

control the ability of the resulting switchable structure to self-

assemble. For this purpose, we have designed bistable [c2] daisy 

chain rotaxanes decorated with triarylamine units as stoppers, and 

which can be actuated upon pH modulation. 

Two closely related [c2] daisy chain rotaxanes (6 without an amide 

group, and 7 incorporating an amide group) were synthesized from 

previously reported bisalkyne pseudorotaxane 311 and triarylamines 

1 (see ESI†) and 27 using two key reactions: a copper-catalysed 

Huisgen [3+2] cycloaddition and a selective methylation of the 

triazole units (Scheme 1). The bistable nature of these rotaxanes is 

provided by the two binding sites on their axles: i.e. the secondary 

ammonium and the triazolium ions which have different affinity 

constants with the dibenzo-[24]crown-8 macrocycle.12 Whereas the 

secondary ammonium displays higher affinity for the macrocycle in 

extended 6 and 7, its deprotonation using a 0.1 M sodium hydroxide 

solution induces a shuttling of the crown ether to the triazolium site, 

as confirmed by 1H NMR of contracted 8 and 9. 
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Scheme 1. Synthesis of [c2] daisy chain rotaxanes 4‐9 decorated with triarylamine units as stoppers.

We then studied the behavior of triarylamine derivatives 4-9 upon 

visible light stimulation (in deuterated acetonitrile with 2.5% 

chloroform as electron acceptor, excepted for 4 and 5 which could be 

easily solubilized in pure chloroform). When the solutions were kept 

in the dark, all derivatives displayed the expected set of proton 

resonance signals, as illustrated by their 1H NMR spectra (Figure 1a (7) 

and ESI†). However, after light irradiation using a 20 W lamp (power 

density: 0.07 W.cm-2), the disappearance of the proton resonance 

signals corresponding to the self-assembly of the triarylamine core 

was observed for compounds 5 and 7 only (Figure 1b (7) and Figure 

S9 (5, ESI†)). This observation is in accordance with our previous 

studies showing the strong anisotropy of the triarylamine stacks and 

the paramagnetic contribution of the delocalized radical.7,10 For 

compounds 4, 6, and 8, which do not contain an amide group, the 

unchanged NMR signal upon light irradiation is in agreement with 

our previous studies mentioning the importance of the hydrogen 

bond interactions in the self-assembly of triarylamine derivatives. In 

the particular case of compound 9, the amide group necessary for 

self-assembly is strongly hindered by the spatial proximity of the 

macrocycle in this contracted form, thus precluding supramolecular 

polymerization. Importantly, treatment of the self-assembled 

structure made of 7 with NaOD led to the reappearance of NMR 

signals corresponding to the triarylamine core, thus demonstrating 

the reversibility of the self-assembly upon deprotonation of the 

rotaxane unit (Figure S6 (ESI†)). Another signature of the self-

assembly process was revealed by UV-Vis-NIR measurements, which 

are suitable to probe the stabilization of triarylammonium radicals in 

the self-assembly as a function of time upon light irradiation, owing 

to their characteristic broad absorption band centered at ~760 nm 

(Figure S11 (ESI†)). Whereas compounds 4, 6, 8 and 9 did not 

produce more than traces of radicals after 60 min of light irradiation, 

compounds 5 and 7 displayed a strong increase of the 760 nm 

absorption band, in correlation with their expected propensity to 

stack triarylamine moieties in charge transfer complexes but with 

different kinetics of aggregation (Figure 2a).13 This experiment also 

confirmed the inability of compound 9 to stabilize radical cations, 

and thus to self-assemble, as determined by 1H NMR experiments. 

Similar conclusions were also made when compound 5 was 

deprotonated (i.e. contracted) using NaOH. In this case, NMR 

experiments suggest that the amide is also acting as a station for the 

macrocycle, thus increasing the steric hindrance nearby the 

triarylamine core and precluding hydrogen bond interactions 

necessary for the self-assembly process (Figure S10 (ESI†)). Dynamic 

light scattering (DLS) experiments were then used to confirm the 

formation of supramolecular aggregates. In correlation with previous 

spectroscopic experiments, a single population of objects was 

observed for 5 and 7 after 60 min of light irradiation in a chloroform 

solution, displaying average hydrodynamic radii of 436 and 579 nm, 

respectively (Figure 2b).  

 
Figure 1. Typical 1H NMR spectra of 7 obtained immediately after purification (a) 

and after 4 hours of exposure to a 20 W power halogen lamp (b), [7] ≈ 5 mM in 

CD3CN  with  2.5%  CDCl3.  The  red  lines  indicate  the  disappearance  of  the 

characteristic triarylamine signals upon light irradiation. 

Transmission electron microscopy (TEM) was then used to image the 

structure of these self-assemblies (Figure 2c (7) and 2d (5)). In both 

cases, the high contrast of the aggregates without staining agent 

revealed the presence of bundled fibrils of several microns length. 
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Importantly, for compounds 4, 6, 8 and 9, DLS and TEM experiments 

confirmed the absence of self-assembled structures. Overall, the 

above results highlight that rotaxanes 5 and 7 execute an INHIBIT 

logic function with NIR absorption (green color of the solution) and 

fibrillar self-assembly as outputs. Indeed, changes in NIR absorption 

are only observed for their protonated forms and with light 

stimulation, thus defining light and base as inputs. The truth table 

corresponding to this INHIBIT logic gate can be defined as follows: a) 

presence or absence of light stimulation as 1 and 0; b) addition or not 

of base as 1 and 0; c) presence or absence of NIR absorption at 

760nm (green color of the solution) as 1 and 0; d) formation or not of 

a supramolecular self-assembly as 1 and 0, respectively (Table 1). 

 
Figure 2. a) Irradiation kinetic experiment plotted from NIR absorption at 760 nm 

for 0.1 mM solutions of compounds 4‐9. The corresponding UV‐Vis‐NIR spectra 

are  reported  in  ESI;  b)  Distributions  of  hydrodynamic  radii  observed  for 

compound 7  (red) and 5  (black) after 60 min  irradiation  ([5] =  [7] = 0.1 mM  in 

CHCl3  at  T=25°C  and  θ=173°);  c‐d)  Transmission  electron  micrographs  of 

irradiated  solutions  of  compounds  7  (c)  and  5  (d)  (prepared  from  0.1  mM 

solutions in CHCl3). 

Table 1. Truth table for compounds 5 and 7 

Input 1 
(white light) 

Input 2 
(base) 

Output 1  
(760nm absorption) 

Output 2 
(self-assembly) 

0 0 0 0 
0 1 0 0 
1 0 1 1 
1 1 0 0 

 

In summary, we have reported the synthesis of bistable [c2] daisy 

chain rotaxanes decorated with amide substituted triarylamine units 

as stoppers. Using a combination of 1H NMR, UV-Vis absorption, DLS 

and TEM microscopy, we have demonstrated their light-triggered 

self-assembly into entangled micrometer-long supramolecular fibers 

thanks to the presence of light-induced triarylammonium radical 

cations. Furthermore, we have revealed their behavior as logic gate 

using a combination of pH and light as inputs. To the best of our 

knowledge, this work represents the first example of a molecular 

logic unit based on a [c2] daisy chain rotaxane, thus enlarging the 

scope of molecular machines applied to the field of molecular logic. 

Moreover, we expect that the formation of well-defined 

supramolecular self-assemblies could constitute an interesting new 

way to read out a logic device. Finally, these results enlarge the scope 

of chemical modifications that can be made on triarylamine cores 

while retaining their light-triggered self-assembly properties with 

potential interests in material science. 
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