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Abstract: The stoichiometric reaction of trityl cation with two 

equivalents of Ph2PH affords the phosphine stabilized 

phosphenium salt [Ph2(H)PPPh2][B(C6F5)4] via hydride 

abstraction, while catalytic amounts of B(p-HC6F4)3 effects 

catalytic phosphine dehydrocoupling with the liberation of 

H2. This reaction is accelerated by the presence of olefin or 

imine, effecting concurrent hydrogenation.  

Phosphorus coordination chemistry is dominated by the donor 

behaviour of trivalent, tricoordinate phosphines. However, very 

recently the Lewis acidity of P(V) phosphonium cations has 

garnered much attention as these species can be employed in a 

variety of catalytic reactions.1  In a related sense, the donor-acceptor 

properties of low-coordinate phosphenium cations, R2P:
+ has also 

drawn attention in recent years.2 These species provide an interesting 

isolobal analogy to carbenes.3 Phosphenium cations are typically 

readily prepared by halide abstraction or displacement from a 

suitable precursor using either weakly-coordinating anion or a 

suitable Lewis base.2b, 4, 5  

P-H bond activation typically involves treatment with a strong 

base resulting in proton abstraction and generation of a phosphide 

anion6 although Wright and coworkers have described the 

stannocene, mediated dehydrocoupling of a range of primary 

phosphines.However, the similarities of the Pauling 

electronegativities of hydrogen and phosphorus (2.20 and 2.19, 

respectively),7 suggest that it should also be possible to generate a 

hydride and phosphenium cation from a phosphine. Nonetheless, 

attempts to abstract hydride8 with trityl borate to generate a 

phosphenium cation failed.9 Herein, we report the first hydride 

abstraction from secondary and primary arylphosphines by the 

concurrent action of a Lewis acid and excess phosphine, affording a 

route to a phosphine-stabilized phosphenium salt. Moreover, this 

reactivity is extended to effect the catalytic dehydrocoupling of 

phosphines and even concurrent transfer hydrogenation using the 

Lewis acid as a catalyst.  

The reaction of Ph2PH with [Ph3C][B(C6F5)3] in 2:1 ratio  in 

C6H5Br for 3 hours at 130 °C afforded Ph3CH and [Ph2(H)PPPh2] 

[B(C6F5)4] (1) [Eq. (1)]. The concurrent formation of Ph3CH was 

clearly indicated by the 1H NMR signal at 5.4 ppm. Compound 1 

was separated and isolated as oil and its formulation confirmed by 

the observation of the two signals in 31P NMR spectrum, a doublet at  

4.5 ppm (J(PH) = 417 Hz) and singlet at  δ = -25.4 ppm. 

Interestingly, this stands in contrast to a previous report of a 1:1 

reaction of  Ph2PH with [Ph3C][B(C6F5)4] which afforded the adduct 

[Ph2(H)PCPh3][B(C6F5)4].
9   

 

This prompted further efforts to employ Lewis acids to effect P-

P dehydrocoupling. To that end, the Lewis acid B(p-C6F4H)3 2 
10 was 

employed as the common electrophilic borane. B(C6F5)3 is known to 

undergo reaction with phosphines to give para-attack products of the 

form R2P(H)(C6F4)BF(C6F5)2.
11 In an initial stoichiometric reaction 

2 was added to two equivalents of Ph2PH and heated to 130 °C. This 

resulted in slow formation of (Ph2P)2 as evidenced by the 31P NMR 

signal -15 ppm. The concurrent formation of H2 was evident from 

the 1H NMR peak at 4.5 ppm. Under catalytic conditions, reaction of 

10 mol % of the borane 2 with Ph2PH was heated to 130 °C for 12 h 

in a closed vessel. This afforded a 38% conversion to (Ph2P)2 3. 

Prolonged heating of the reaction mixture did not increase 

conversion, however, removal of H2 from the reaction vessel, 

furthered conversion to 54%. Subsequent and continuous removal of 

H2 led to quantitative formation of 3. This observation infers that the 

Lewis acid mediated hydrogenation of the biphosphine regenerates 
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Ph2PH. While the reduction of P-P bonds has been previously 

reported,12 the present result is the first to describe the reverse 

reaction, namely the Lewis acid mediated dehydrocoupling of 

phosphines.  

R2PH
10 mol %

R2P-PR2 + H2
C6H5Br
130°C

R = Ph 3: 88%, 120 h; 
p-tol 4:80%, 120 h

P

P P

P
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Ph
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B(p-C6F4H)3
(2)
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C6H5Br
130°C

+ H2

B(p-C6F4H)3
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Scheme 1. Catalytic dehydrocoupling of phosphines 

Analogous dehydrocoupling of (p-tol)2PH at 130 °C for 120 h 

proceeds in a similar fashion to give ((p-tol)2P)2 4 in 80% while 

PhPH2 undergo dehydrocoupling to give (PhP)5 5 in 98% yield 

(Scheme 1). Interestingly, the sterically demanding phosphines (o-

tol)2PH or Mes2PH  groups did not lead to P-P coupling, rather only 

the phosphine-borane adducts were observed. Similarly efforts to 

dehydrocouple secondary alkylphosphines gave only the phosphine-

borane adducts. These latter observations indicated the steric and 

electronic limits for this Lewis acid mediated P-P dehydrocoupling.    
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Figure 2. LUMO of (p-C6F4H)3B(PHR2) (isovalue = 0.033)  

Interestingly, the present dehydrocoupling reactions can also be 

exploited to effect transfer hydrogenation of organic unsaturates. 

Moreover, the presence of a hydrogen atom acceptor serves to 

accelerate the dehydrocoupling reactions. Thus, reaction of Ph2PH in 

the presence of a stoichiometric amount of 1-phenyl-1-

trimethylsiloxyethylene or N-benzylidene-tert-butylamine and a 

catalytic amount of B(p-C6F4H)3 at 130 °C results in the complete 

transformation to (Ph2P)2 and hydrogenation of the organic species 

after 30 hours and 38 hours, respectively [Eq. (2 and 3)].  
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Scheme 2. Proposed mechanism of R2PH dehydrocoupling. 

A radical mechanism for this dehydrocoupling was excluded as 

performance of the reaction in the presence of the radical trap 

reagent cyclohexadiene,13 showed no formation of benzene; rather 

only 3 was formed. Thus, an ionic-polar mechanism is proposed in 

which both hydride and proton originate from R2PH. Coordination 

of a secondary phosphine to borane as in the adduct (Ph2PH)B(p-

C6F4H)3 presumably generates an electrophilic P center due to low 

lying but unoccupied molecular orbital (LUMO) formed at P 

centre1b, 1e prompting nucleophilic attack by free Ph2PH. This view is 

supported by DFT calculations of the molecular orbitals of the 

adduct (Ph2PH)B(p-C6F4H)3 performed at WB97XD/def2TZV level 

of theory.14 The LUMO is concentrated on the B and P centers. 

Attack by Ph2PH at the boron center would result in replacement of 

one phosphine by the other. On the other hand, attack at phosphorus 

center generates the proposed pentacoordinate P center. The 

transient five coordinate phosphorus atom transfers hydride to 

borane generating [Ph2(H)PPPh2][HB(C6F4H)3]. This salt can either 

evolve H2 or sequentially deliver proton and hydride to an organic 

unsaturate (Scheme 2). Hydrogenation of olefin or imine is thought 

to proceed in a manner similar to FLP reductions however in the 

present case [Ph2P-P(H)Ph2]
+ is the proton source and the anion 

[(HC6F4)3BH]- is the source of hydride. Calculations employing the 

conductor-like polarizable continuum solvation model (CPCM)15 

in bromobenzene were carried out. The reaction of 1 with 6 is 

slightly exothermic with ∆H = -5.2 kcal mol-1 and ∆G = 0.6 kcal 

mol-1. The subsequent generation of the intermediate salt 

[Ph2(H)PPPh2][HB(C6F4H)3] is slightly endothermic and endergonic 

with  ∆H = 1.3 kcal mol-1 and ∆G = 15.4 kcal mol-1 consistent with 

the thermal conditions required for dehydrocoupling.   

To put this reactivity in context P-P dehydrocoupling is typically 

achieved by either stoichiometric or catalytic processes.16 Würtz 
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type reduction of the phosphine halides, or dehydrohalogenation of 

R2PX and R2PH are well established.17 A variety of other 

stoichiometric methods have also been described.18 Metal catalyzed 

dehydrocoupling of phosphines has also been demonstrated 

employing Ti,19 Zr20 and Rh21-based catalysts. Wright and 

coworkers16c, 16f have described the stannocene, mediated 

dehydrocoupling of a range of primary phosphines, providing the 

first main-group mediated P-P dehydrocoupling. Very recently a 

radical route to phosphine dehydrocoupling was described 

employing 1,1-azobis[cyclohexane-1-carbonitrile] (VAZO®88) as 

the initiator.22 Thus the present work illustrates the first examples of 

metal-free, Lewis acid catalysed phosphine dehydrocoupling. It is 

also interesting to note that we have previously reported the reverse 

reaction that is the hydrogenation of P-P bonds. With the exception 

of frustrated Lewis pairs, the P2R4 and R2PH is a very rare case 

where both the incorporation and release of H2 are catalysed by main 

group species.   

In conclusion hydride abstraction from phosphines by Lewis 

acids is reported leading to phosphine stabilized phosphenium 

cation. This chemistry can be employed to effect the catalytic 

dehydrocoupling of phosphines by the borane B(p-C6F4H)3, a 

reaction that is accelerated in the presence of a hydrogen acceptor. In 

this fashion, this effects simultaneous metal-free hydrogenation 

catalysis. We are continiuing to study and develop new strategies for 

metal-free catalysis.  
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