ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Iron oxide cluster induced barrier–free conversion of nitric oxide to ammonia †

Keisuke Takahashi*a

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

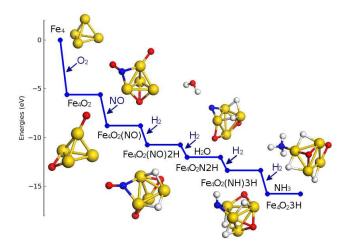
Nitrogen oxide (NO) conversion to ammonia (NH₃) over iron oxide cluster is investigated within the density functional theory calculation. The introduction of NO and H_2 over gas-phase Fe_4O_2 results in the formation of NH_3 and H₂O without activation barriers. The key reaction is barrier free conversion of NO to N and H₂O where the physical origin rests on negative-negative repulsion of NO over iron oxide clusters. The by-product H₂O can be a hydrogen source by electrolysis or re-visiting Fe₄O₂, hence, the reaction is self-sustainable. Furthermore, the above reactions are performed depositing Fe₄O₂ cluster on graphene/Cu(111) where the barrier free conversion of NO to NH₃ is also observed, predicting that such reaction can be applicable. Thus, low temperature conversion of NO to NH_3 over Fe_4O_2 can be predicted. The detailed reaction path and mechanism are presented.

Ammonia (NH₃) is a key chemical compound used when addressing the growing human population and its demands for food as its primary use is towards the production of fertilizers¹. Ammonia synthesis is a prototype reaction in heterogeneous catalysts and extensively investigated because of technological and social importances²⁻⁴. The Haber-Bosch process is a successful process used to synthesize ammonia from nitrogen and hydrogen gas. However, the reaction requires high pressure and high temperature in order to maintain the reaction and dissociate N2 as N2 has a strong triple bond. Tremendous amounts of catalysts were screened where Fe based catalysts were found to accelerate the reaction process; however, the reaction still takes place at high temperature⁵. Sustainable production of ammonia is a critical matter for efficient food production. Here, nitric oxide (NO) gas is proposed as a nitrogen source for ammonia production instead of N₂ gas in order to seek low temperature reactions.

NO is an undesirable chemical compound that is produced from automobile exhaust, fossil fuel plants, and industrial factories. NO is considered to be the origin of countless environmental issues including acid rain, ozone depletion, and photochemical smog⁶. Thus, the reduction of NO has been extensively investigated including the selective catalytic reduction⁷. In general, NO reduction is performed with NH₃ and O₂ over catalysts where H₂O and N₂ are produced at relatively high temperature⁸. Passive selective catalytic reaction is a newly introduced technology where NH₃ is generated from the reaction of NO and H₂ over catalysts within the selective catalytic reaction⁹. This suggests that NO can be a potential candidate as a nitrogen source for ammonia production if the dissociation of NO can occur and sufficient amount of ammonia can be produced.

Iron oxide clusters are proposed as a potential catalyst for converting NO to NH₃ as the catalytic effect of iron oxide clusters have found to be effective towards NO reduction and CO oxidation^{10,11}. In particular, the Fe₄O₂ cluster is investigated as such clusters are able to be synthesized within experiments where synthesis of Fe₄O₂ clusters is experimentally generated by using a laser vaporization and analysis conducted by photoelectron spectroscopy¹². Furthermore, for practical applications, the conversion of NO to NH₃ over supported Fe₄O₂ clusters is studied. In particular, Fe₄O₂ clusters are deposited on a single layer graphene/Cu(111) where graphene/Cu(111) is experimentally producible as graphene can preserve the properties and structures of Fe clusters^{13,14}.

Here, a novel reaction path of the conversion of NO to NH_3 with Fe_4O_2 clusters is proposed. The reaction step is screened and investigated by using the density functional theory calculation in order to reveal the precise reaction path.

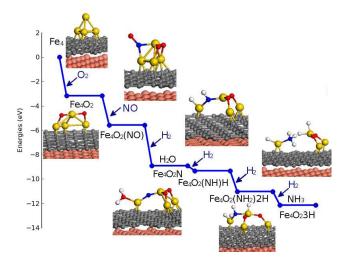

The grid-based projector-augmented wave (GPAW) method is implemented within density functional theory¹⁵. The exchange correlation of PBE and vdW-DF are applied for gasphase and supported cluster case, respectively^{16,17}. The ground state structure of gas phase and supported Fe₄ clusters are searched by implementing the basin-hopping algorithm^{14,18}. See Supporting Information for further details.

The conversion of NO to NH_3 over gas phase Fe_4 is investigated. The reaction path with corresponding atomic models and adsorption energies is shown in Figure 1. The ground state structure of gas phase Fe_4 is found to have a pyramidal structure. The structure and spin multiplicity of Fe_4 have

[†] Electronic Supplementary Information (ESI) available:

^a Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8278, Japan. E-mail: keisuke.takahashi@eng.hokudai.ac.jp

ChemComm Accepted Manuscript


Fig. 1 The reaction path of the conversion of NO to NH_3 over the gas phase Fe_4 clusters with corresponding adsorption energies. Atomic color codes: Fe, yellow; O, red; N, blue; H, white.

good agreement with previous work¹⁹. Oxidation of Fe₄ is performed where the approaching O_2 molecule is dissociated and adsorbed onto Fe₄ with -5.62 eV adsorption energy. The dissociated O atoms are adsorbed on the bridge site and top site of Fe atoms. Adsorption of NO forms Fe₄O₂NO with -3.17 eV of adsorption energy. The bond length of adsorbed NO is elongated from 1.16 Å, the bond length of gas phase NO, to 1.21 Å. The elongation of NO over Fe_4O_2 is considered to be a critical step for the NO dissociation. Bader analysis indicates that electronic structures of NO over Fe₄O₂ is changed compared to the gas phase NO. The bond type of gas phase NO is a polar covalent bond where O is positively charged by 0.4 electrons while N is negatively charged by 0.4 electrons. However, N is negatively charged by 0.6 electrons which are transfered from the Fe atoms while O is negatively charged by 0.4 electrons upon NO adsorption onto Fe₄O₂. Thus, both N and O are negatively charged resulting in the repulsion of N and O. The adsorption of H₂ molecule is then performed over Fe_4O_2NO where H_2 is dissociative and forms $Fe_4O_2(NO)2H$. Additional H₂ adsorption induces the formation of H₂O and Fe₄O₂N2H. This is particularly interesting since the dissociation of NO upon H₂ adsorption occurs without activation barriers. The origin of the formation of H₂O from NO and H₂O without activation barriers is due to the contribution of charge state of NO. Upon the introduction of H_2 over $Fe_4O_2(NO)2H$, the O atom in NO is negatively charged by 1.2 electrons while N atom in NO is negatively charged by 0.8 electrons. Thus, both N and O in NO are negatively charged, resulting in the negative-negative repulsion towards dissociation of NO and the formation of H₂O. Hence, undesirable NO is predicted to be dissociated and form H₂O and N at low temperature. The produced H₂O could be a potential hydrogen source for the reaction through using electrolysis or re-visiting Fe₄O₂ if a sufficient amount of water can be produced. In particular, calculations predict that one H atom is dissociated from H_2O and form H and OH upon H_2O adsorption onto Fe_4O_2 . In that sense, hydrogen gas can be self re-supplied by using Fe₄O₂. At this stage, the formation of N₂O is considered over Fe₄O₂N2H where the adsorption of NO over Fe₄O₂N2H leads to the formation of N₂O without activation barriers. This indicates that N₂O can be a possible by-product during the reaction. Further adsorption of H₂ on to Fe₄O₂N2H is also dissociative and forms Fe₄O₂(NH)3H. In this step, one of the dissociated H forms NH. Adsorption of another H2 molecule is also dissociated over Fe₄O₂(NH)3H and both of the dissociated H atoms form a bond with N, resulting in the formation of NH₃. It must be pointed out that the whole reaction is a barrier free process meaning that the reaction is active at low temperature. Thus, the formation of NH₃ from NO is achieved over Fe₄O₂ at low temperature.

The barrier free NO conversion to NH_3 over gas phase Fe_4O_2 is achieved. However, one has to confirm if the reaction in gas phase Fe_4O_2 is also possible over supported Fe_4O_2 clusters for practical applications. Graphene/Cu(111) is a proposed substrate that can preserve the structure and properties of Fe clusters¹⁴. Hence, Fe_4 is placed on graphene/Cu(111) substrate. The superlattice of graphene and Cu(111) is constructed where (4 × 4) supercell of Cu(111) and graphene consisting of 32 C atoms are constructed. The lattice mismatch is only 3.6%.

The ground state structure of Fe_4 on graphene/Cu(111) also has a pyramidal structure which is similar to one in gas phase Fe₄¹⁴. O₂ adsorption over Fe₄ on graphene/Cu(111) is performed where O₂ is dissociative over Fe₄. However, O₂ adsorption energy is calculated to be -3.17 eV which is slightly lower than one found for gas phase Fe₄. This is considered to be due to the charge transfer from Fe to graphene where Fe atoms over graphene/Cu(111) are positively charged by 0.6 electrons. Therefore, supported Fe atoms are less reactive than gas phase, resulting in low O_2 adsorption energies. NO is then adsorbed at the bridge site of Fe_4O_2 . The bond length of adsorbed NO onto Fe_4O_2 is elongated by 0.01 Å compared to the bond length of gas phase NO. The slight elongation of NO bond over Fe₄O₂ is considered due to the negativenegative repulsion as N is negatively charged by 0.4 electrons while O is negatively charged by 0.2 electrons. H₂ adsorption over Fe₄O₂NO induces the formation of H₂O, a different reaction step from gas phase Fe_4O_2 where H_2 is adsorbed onto Fe₄O₂NO before the formation of H₂O. One can expect that the electronic structure of Fe₄O₂NO is affected by the graphene/Cu(111) substrate, resulting in the direct formation of H₂ while the gas phase case requires extra H₂ adsorption to modify the electronic structure of gas phase Fe₄O₂NO. More

importantly, the conversion of NO to H₂O is also observed for the supported cluster case. The origin of the barrier free conversion of NO to H₂O and N rests on negative-negative repulsion of NO as seen in gas phase reaction. N is negatively charged by 0.8 electrons while O is negatively charged by 1.2 electrons upon the H₂ adsorption over Fe₄O₂NO. Additionally, in contrast to the gas phase case, the formation of N₂O over supported Fe₄O₂N upon the adsorption of NO requires overcoming the activation barrier where the activation barrier is calculated to be 1.78 eV. Further H₂ adsorption is performed on Fe₄O₂N. H₂ adsorption on Fe₄O₂N is dissociative and one of the dissociated H adsorbed on Fe and another formed a N-H bond. Introducing another H2 is also dissociative where one of the dissociated H atoms forms a Fe-H bond and another forms a N-H bond, resulting in NH₂. Finally, additional H₂ adsorption is dissociative and forms NH₃ and Fe₄O₂3H shown in Figure 2. The reaction step for the conversion of NO to NH₃ between the gas phase and supported Fe₄O₂ cases is slightly different. However, barrier free conversion of NO to NH₃ is still achieved over supported Fe_4O_2 .

Fig. 2 The reaction path of the conversion of NO to NH_3 over supported Fe_4 clusters on graphene Cu(111) with corresponding adsorption energies. Atomic color codes: Fe, yellow; O, red; N, blue; H, white; C, gray; Cu, reddish brown.

Barrier free ammonia production from NO over gas phase and supported Fe_4O_2 clusters is proposed. If a sufficient amount of ammonia can be produced by the proposed reaction, undesirable nitric oxide can be converted to ammonia at low temperature. The reaction requires hydrogen gas which can be produced and recycled from the by-product H_2O by using electrolysis or re-visiting Fe_4O_2 . Thus, the production of ammonia can be operated at low temperature and a recyclable self-sustainable reaction could be achieved. In addition, barrier free NO conversion to ammonia is also observed over Fe_8O_2 and $Fe_{12}O_2$ clusters. This suggests that a barrier free reaction over iron oxide clusters is generic and is predicted to occur for larger iron oxide clusters.

In conclusion, barrier free conversion of NO to NH₃ over Fe_4O_2 is proposed. In particular, NO and H₂ over Fe_4O_2 produce NH₃ and H₂O. The whole reaction occurs without activation barriers, making it active at low temperature. The key reaction is barrier free NO conversion to N and H₂O where negative–negative repulsion of NO over Fe_4O_2 is considered to be a physical origin. Therefore, undesirable NO can potentially be used as a nitrogen source for ammonia production. The by-product H₂O can be a potential hydrogen source by electrolysis or re-visiting Fe_4O_2 , therefore, the reaction is self-sustainable. The conversion of NO to NH₃ over supported Fe_4O_2 on graphene/Cu(111) is also investigated where the conversion also occurs without activation barriers. Thus, low temperature and environmentally friendly production of ammonia can be designed using iron oxide clusters.

CPU time is funded by the Japan Society for the Promotion of Science and is performed at Hokkaido University.

References

- 1 J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont and W. Winiwarter, *Nature Geoscience*, 2008, 1, 636–639.
- 2 P. Stoltze and J. Nørskov, *Physical Review Letters*, 1985, 55, 2502.
- 3 G. Marnellos and M. Stoukides, Science, 1998, 282, 98-100.
- 4 K. Honkala, A. Hellman, I. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen and J. K. Nørskov, *Science*, 2005, **307**, 555– 558.
- 5 P. Emmett and S. Brunauer, *Journal of the American Chemical Society*, 1934, **56**, 35–41.
- 6 M. Gómez-García, V. Pitchon and A. Kiennemann, *Environment Interna*tional, 2005, 31, 445–467.
- 7 M. Shelef, Chemical Reviews, 1995, 95, 209–225.
- M. Koebel, M. Elsener and M. Kleemann, *Catalysis Today*, 2000, **59**, 335–345.
 C. D. DiGiulio, I. A. Pibl, I. F. P. II, M. D. Amiridis and T. I. Toops.
- 9 C. D. DiGiulio, J. A. Pihl, J. E. P. II, M. D. Amiridis and T. J. Toops, *Catalysis Today*, 2014, **231**, 33–45.
- 10 B. Reddy and S. Khanna, *Physical Review Letters*, 2004, 93, 068301.
- 11 W. Xue, Z.-C. Wang, S.-G. He, Y. Xie and E. R. Bernstein, Journal of the American Chemical Society, 2008, 130, 15879–15888.
- 12 L.-S. Wang, H. Wu and S. R. Desai, *Physical Review Letters*, 1996, 76, 4853.
- 13 L. Gao, J. R. Guest and N. P. Guisinger, *Nano Letters*, 2010, 10, 3512– 3516.
- 14 K. Takahashi, Y. Wang, S. Chiba, Y. Nakagawa, S. Isobe and S. Ohnuki, *Scientific reports*, 2014, 4, year.
- 15 J. Mortensen, L. Hansen and K. Jacobsen, *Physical Review B*, 2005, **71**, 035109.
- 16 J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865.
- 17 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I. Lundqvist, *Physical review letters*, 2004, **92**, 246401.
- 18 K. Takahashi, S. Isobe and S. Ohnuki, *Applied Physics Letters*, 2013, 102, 113108.
- 19 Ž Šljivančanin and A. Pasquarello, *Physical Review Letters*, 2003, 90, 247202.