ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

Chemical Communications

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Construction of tetralin skeletons based on rhodiumcatalysed site-selective ring opening of benzocyclobutenols

Naoki Ishida, Norikazu Ishikawa, Shota Sawano, Yusuke Masuda and

bond is formally inserted into the $C(sp^3)-C(sp^3)$ bond of the cyclobutene ring. followed bv OH

HO **3** 60%. dr > 20:1 Scheme 1 Thermal reaction of 1a and 2a On the other hand, we have reported a different type of ring opening reaction of benzocyclobutenols; a rhodium complex prompts ring opening selectively at the $C(sp^2)-C(sp^3)$ bond to furnish an orthoacylmethyl-substituted arylrhodium intermediate.5,13,14 The subsequent intermolecular addition across the C-C triple bond of alkynes generates alkenylrhodium species, which then undergoes intramolecular addition onto the carbonyl group to construct dihydronaphthalene frameworks. In a formal sense, a C–C triple bond is inserted into the $C(sp^2)-C(sp^3)$ bond of the cyclobutene ring in an atom-economical way. This finding led us to explore new synthetic pathways leading to tetralins

We first carried out a thermal reaction of 1a and 2a at 100 °C for 30 min in the absence of a rhodium catalyst. The thermal ring-opening reaction of 1a was so slow that 90% of 1a was recovered. Next, 1a was reacted with 2a in the presence of [Rh(OH)(nbd)]2 under otherwise identical conditions. The C-C double bond of 2a was successfully inserted into the $C(sp^2)-C(sp^3)$ bond of **1a** to produce 2-hydroxytetralin 4a in 82% yield with a trace amount of the minor diastereomer (diastereomeric ratio, dr = 15:1).

(tetrahydronaphthalenes) from benzocyclobutenol derivatives.

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Tetralins (tetrahydronaphthalenes) are synthesised from benzocyclobutenols based on the rhodium-catalysed siteselective ring opening intermolecular/intramolecular conjugate addition of the resulting arylrhodium species to electron-deficient alkenes. The produced structures make a remarkable contrast with those available from the same compounds under thermal reaction conditions.

Masahiro Murakami*

Tetralin is a key structural motif found in a wide variety of bioactive molecules including natural products such as heritonine,¹ cycloolivil,² morphine³ and daunorubicin.⁴ The development of efficient methods for the construction of tetralin skeleton has been a subject of intense research. We report herein a new protocol to prepare tetralin derivatives from benzocyclobutenols based on their site-selective ring opening under the catalysis of rhodium.5-8 2-Hydroxytetralins are stereoselectively synthesised by an insertion reaction of vinyl ketones into the $C(sp^2)-C(sp^3)$ bond of benzocyclobutenols. The rhodiumcatalysed rearrangement of 1-alkenylbenzocyclobutenols furnishes 2tetralones. The produced structures make a remarkable contrast with those available from the same compounds under thermal reaction conditions

A [4+2] cycloaddition reaction of o-quinodimethanes with alkenes presents one of the most reliable synthetic pathways to tetralin skeletons.⁹ For example, when benzocyclobutenols are heated, a thermal ring opening reaction takes place with outward rotation of the hydroxyl group¹⁰ to stereoselectively furnish the hydroxy-substituted oquinodimethanes. A regioselective [4+2] cycloaddition reaction with electron-deficient alkenes follows in an endo fashion.¹¹ Thus, simple heating of a toluene solution of benzocyclobutenol 1a and methyl vinyl ketone (2a) at the refluxing temperature (bath temperature: 130 °C) gave 1-hydroxytetralin 3 in a diastereoselective fashion (Scheme 1). It has been also known that treatment of benzocyclobutenols with butyllithium generates an oxyanion intermediate, which follows an analogous pathway even at -78 °C.12 In these cases, the C-C double

Scheme 2. Rhodium-catalysed reaction of 1 and 2.

A probable mechanistic scenario for the diastereoselective formation of **4a** is depicted in Scheme 3. Initially, the hydroxylic proton of benzocyclobutenol **1a** is exchanged with rhodium to furnish the rhodium benzocyclobutenolate **A**. The benzene ring π -coordinates to the rhodium centre,¹⁵ and the π -coordination is retained during the subsequent β -carbon elimination so that the ipso carbon selectively migrates on rhodium. Thus, the C(sp²)–C(sp³) bond is selectively cleaved. The resulting arylrhodium species **B** undergoes conjugate addition across **2a**, which is taking an *s*-*cis* conformation to allow a sixmembered transition state. As a consequence, the (*Z*)-enolate **C** is generated. Then, an intramolecular aldol reaction follows again via a six-membered transition state, for which chair-like conformation is assumed to afford *syn*-aldolate **D** stereoselectively.^{16,17} Protonation of **D** with water, generated in the first step, or with **1a** produces **4a** and the next catalytic cycle starts over.

 $\label{eq:scheme 3.} Scheme \ \textbf{3.} Proposed mechanism for the formation of \ \textbf{4a}.$

The scope of the site-selective insertion reaction is shown in Table 1. Although non-substituted benzocyclobutenol (R = H) failed to afford the 2-hydroxytetralin, substituted benzocyclobutenols reacted with vinyl ketones to afford **4b-g** with dr ranging from 8:1 to >20:1. Cyclopropyl, methoxy and chloro groups remained intact under the reaction conditions. The site-selective ring opening was observed even when the migrating ipso sp² carbon was obstructed by its *ortho*-

Table 1 Rhodium-catalysed reactions of 1 and 2.^a

^{*a*} Reaction conditions: Benzocyclobutenol **1** (0.20 mmol), vinyl ketone **2** (0.40 mmol, 2 equiv), $[Rh(OH)(nbd)]_2$ (2.5 mol %), toluene (1 mL), 100 °C, 0.5 h. Isolated yields of the major diastereomer were shown. Dr were determined by NMR analysis of the crude reaction mixture. ^{*b*} 1 h. ^{*c*} $[Rh(OH)(cod)]_2$ (2.5 mol %) was employed as the catalyst.

Next examined was the construction of tetralones from 1alkenylbenzocyclobutenol **5a**, which was easily prepared by addition of alkenyllithium to benzocyclobutenone. When **5a** was simply heated at 80 °C in C₆D₆ for 4.5 h, 1-tetralone **6a** was obtained in 91% yield, as previously reported with analogous substrates (Scheme 4).¹⁸ 4 π -Ring opening of **5a** is followed by 6 π -electrocyclic ring closure to afford **6a**. In sharp contrast, treatment of **5a** with a catalytic amount of [Rh(OH)(cod)]₂ at 40 °C for 2 h gave 2-tetralone **7a** in 83% isolated yield.¹⁹ Mechanistically, it is assumed the site-selective cleavage of the C(sp²)–C(sp³) bond generates the arylrhodium intermediate **F** with the *ortho* position substituted by an α , β -unsaturated carbonyl group. An intramolecular conjugate addition reaction follows, and the resulting oxa- π -allylrhodium **G** is protonated with water, or with **5a** to give **7a**.

Thus, the pathway of the intramolecular rearrangement reaction of **5a** is also changed by a rhodium complex. In addition, the racemic mixture of **5a** was enantioselectively rearranged when electron-deficient chiral diphosphine (*R*)-MeO-F₁₂-BIPHEP²⁰ was employed as the ligand for rhodium. 2-Tetralone **7a** was obtained in 72% yield with the enantiomeric ratio (er) of 91:9. The reaction conditions were applied to the synthesis of **7b** (er = 84:16) and **7c** (er = 99:1).

Page 2 of 4

Journal Name

Journal Name

ChemComm

Scheme 4. Thermal rearrangement of 5a.

Scheme 5. Rhodium-catalysed rearrangement of 5a.

In summary, tetralin skeletons are constructed from benzocyclobutenols based on the rhodium-catalysed site-selective ring opening reaction. Vinyl ketones are site-selectively inserted into the $C(sp^2)$ – $C(sp^3)$ bond of benzocyclobutenols to produce 2hydroxytetralins. 1-Alkenylbenzocyclobutenols are restructured into 2tetralones. The obtained tetralins markedly contrast with those given by the conventional thermal reactions.

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis", a Grant-in-Aid for Scientific Research (B) from MEXT, and the ACT-C program of the JST. This paper is dedicated to Professor Ming-Chang P. Yeh (National Taiwan Normal University) on the occasion of his 60th birthday.

Notes and references

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan. E-mail: murakami@sbchem.kyoto-u.ac.jp; Fax: (+81)-75-383-2748; Tel: (+81)-75-383-2747.

[†] Electronic Supplementary Information (ESI) available: Detailed experimental procedures, and spectral data for all compounds, including scanned images of ¹H and ¹³C NMR spectra. See DOI: 10.1039/c000000x/.

- Isolation: (a) D. H. Miles, A.-M. Ly, V. Chittawong, A. A. de la Cruz, E. D. Gomez, *J. Nat. Prod.*, 1989, **52**, 896. Synthesis: (b) K. Matsuo, M. Shindo, *Org. Lett.*, 2010, **12**, 5346; (c) S. P. Chavan, S. Garai, U. R. Kalkote, *Tetrahedron*, 2012, **68**, 8509 and referenced cited therein.
- Isolation: (a) H. Tsukamoto, S. Hisada, S. Nishibe, *Chem. Pharm.* Bull., 1984, **32**, 2730. Synthesis: (b) Y. Moritani, T. Ukita, H. Ohmizu, T. Iwasaki, J. Chem. Soc., Chem. Commun., 1995, 671.
- A review: (a) J. Zezula, T. Hudlicky, *Synlett*, 2005, 388. Recent examples: (b) B. M. Trost, W. Tang, F. D. Toste, *J. Am. Chem. Soc.*, 2005, **127**, 14785; (c) K. A. Parker, D. Fokas, *J. Org. Chem.*, 2006, **71**, 449; (d) H. Tanimoto, R. Saito, N. Chida, *Tetrahedron Lett.*, 2008, **49**, 358; (e) M. Varin, E. Barr, B. Iorga, C. Guillou, *Chem. Eur. J.*, 2008, **14**, 6606; (f) G. Stork, A. Yamashita, J. Adams, G. R. Schulte, R. Chesworth, Y. Miyazaki, J. J. Farmer, *J. Am. Chem. Soc.*, 2009, **131**, 11402; (g) P. Magnus, N. Sane, B. P. Fauber, V. Lynch, *J. Am. Chem. Soc.*, 2009, **131**, 16045; (h) H. Leisch, A. T. Omori, K. J. Finn, J. Gilmet, T. Bissett, D. Ilceski, T. Hudlicky, *Tetrahedron*, 2009, **65**, 9862; (i) H. Koizumi, S. Yokoshima, T. Fukuyama, *Chem. Asian. J.*, 2010, **5**, 2192.
- 4 (a) F. Cassinelli, P. Orezzi, G. Microbiol., 1963, 11, 167; (b) A. Di Marco, M. Gaetani, P. Orezzi, B. M. Scarpinato, R. Silvestrini, M. Soldati, T. Dasdia, L. Valentini, *Nature*, 1964, 201, 706; (c) A. Di Marco, M. Gaetani, L. Dorigotti, M. Soldati, O. Bellini, *Cancer Chemother. Rep.*, 1964, 38, 31.
- (a) N. Ishida, S. Sawano, Y. Masuda, M. Murakami, J. Am. Chem. Soc., 2012, 134, 17502. For theoretical investigations on the reaction mechanism, see: (b) Y. Li, Z. Lin, J. Org. Chem., 2013, 78, 11357;
 (c) L. Ding, N. Ishida, M. Murakami, K. Morokuma, J. Am. Chem. Soc., 2014, 136, 169.
- 6 For a rhodium-catalysed site-selective insertion reaction of carbenoids into benzocyclobutenols constructing indene skeletons: Y. Xia, Z. Liu, Z. Liu, R. Ge, F. Ye, M. Hossain, Y. Zhang, J. Wang, J. Am. Chem. Soc., 2014, **136**, 3013.
- 7 For a rhodium-catalysed insertion reaction of alkynes into cyclobutenols furnishing mupliply-substituted benzenes: T. Matsuda, N. Miura, Org. Biomol. Chem., 2013, 11, 3424.
- 8 For rhodium-catalysed intramolecular insertion reaction of unsaturated C–C bonds into benzocyclobutenones: (a) T. Xu, G. Dong, Angew. Chem., Int. Ed., 2012, 51, 7567; (b) T. Xu, H.-M. Ko, N. Savage, G. Dong, J. Am. Chem. Soc., 2012, 134, 20005; (c) P.-h. Chen, T. Xu, G. Dong, Angew. Chem., Int. Ed., 2014, 53, 1674.

Ω

- 9 (a) W. Oppolzer, Synthesis, 1978, 793; (b) J. L. Charlton, M. M. Alauddin, Tetrahedron, 1987, 43, 2873; (c) J. L. Segura, N. Martín, Chem. Rev., 1999, 99, 3199; (d) A. Flores-Gaspar, R. Martin, Synthesis, 2013, 45, 563.
- 10 A review on torquoselectivity of electrocyclisation reactions: W. R. Dolbier, Jr., H. Koroniak, K. N. Houk, C. Sheu, Acc. Chem. Res., 1996, 29, 471.
- 11 B. J. Arnold, P. G. Sammes, T. W. Wallace, J. Chem. Soc., Perkin Trans. 1, 1974, 409.
- 12 (a) W. Choy, H. Yang, J. Org. Chem., 1988, 53, 5796; (b) E. P. Kündig, G. Bernardinelli, J. Leresche, J. Chem. Soc., Chem. Commun., 1991, 1713.
- 13 For palladium-catalysed site-selective ring opening reactions of benzocyclobutenols: (a) A. Chtchemelinine, D. Rosa, A. Orellana, J. Org. Chem., 2011, 76, 9157; (b) D. Rosa, A. Chtchemelinine, A. Orellana, Synthesis, 2012, 44, 1885.
- 14 For other ring opening reactions of benzocyclobutenols with cleavage of the C(sp²)-C(sp³) bond, see: (a) R. V. Stevens, G. S. Bisacchi, J. Org. Chem., 1982, 47, 2396; (b) M. Brands, H. G. Wey, H. Butenschön, J. Chem. Soc., Chem. Commun., 1991, 1541; (c) A. Gokhale, P. Schiess, Helv. Chim. Acta, 1998, 81, 251.
- 15 For π-coordination of the benzene ring to rhodium in a rhodium benzyl alkolate: P. Zhao, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc., 2006, **128**, 3124.
- 16 For an aldol reaction of rhodium enolates: G. A. Slough, R. G. Bergman, C. H. Heathcock, J. Am. Chem. Soc., 1989, 111, 938.
- 17 For tandem conjugate addition-aldol reactions through rhodium enolates: (a) S. J. Taylor, M. O. Duffey, J. P. Morken, J. Am. Chem. Soc., 2000, 122, 4528; (b) K. Yoshida, M. Ogasawara, T. Hayashi, J. Am. Chem. Soc., 2002, 124, 10984; (c) D. F. Cauble, J. D. Gipson, M. J. Krische, J. Am. Chem. Soc., 2003, 125, 1110; (d) C.-K. Jung, M. J. Krische, J. Am. Chem. Soc., 2006, 128, 17051.
- (a) D. N. Hickman, K. J. Hodgetts, P. S. Mackman, T. W. Wallace, J.
 M. Wardleworth, *Tetrahedron*, 1996, **52**, 2235; (b) T. Suzuki, T.
 Hamura, K. Suzuki, *Angew. Chem., Int. Ed.*, 2008, **47**, 2248.
- 19 For a related rhodium-catalysed rearrangement reaction of 1alkenylcyclobutanols forming cyclohexanones: (a) T. Seiser, N. Cramer, Angew. Chem., Int. Ed., 2008, 47, 9294; (b) T. Seiser, N. Cramer, Chem. Eur. J., 2010, 16, 3383.
- 20 T. Korenaga, K. Osaki, R. Maenishi, T. Sakai, Org. Lett., 2009, 11, 2325.

Journal Name

4 | J. Name., 2012, 00, 1-3

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012