ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Easy and Quantitative Access to Fe(II) and Fe(III) Diarylalkynylphosphine Oxides Featuring [Fe(dppe)Cp*] Endgroups: Terminal P=O Functionality Blocks the Dimerisation of the Fe(III) Derivatives

Ayham Tohmé^{*a*}, Charles T. Hagen^{*a*}, Stéphanie Essafi (née Labouille)^{*b,c*}, Arnaud Bondon^{*a*}, Thierry ⁵ Roisnel^{*a*}, Duncan Carmichael^{*b*} and Frédéric Paul^{*a*}

Dedicated to S. Sinbandhit on the occasion of his retirement.

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: xx.xxx/xxxxxx

A series of paramagnetic diarylalkynylphosphine oxides 3a-10 c[PF₆] featuring an open-shell $[Fe(\kappa^2-dppe)(\eta^5-C_5Me_5)]^+$ endgroup were obtained by oxidation of their neutral Fe(II) parents 3a-c, themselves obtained in a simple and nearly quantitative fashion from the corresponding Fe(II) metallophosphines 1a-c. The new organometallic radicals were 15 characterised by NMR and ESR and were shown to be perfectly stable in solution, in contrast to species such as 1ab[PF₆] which readily dimerise.

New functional phosphines have always attracted attention because of their outstanding performance in selected metal-²⁰ catalysed processes,¹ but research in phosphine chemistry has recently extended into many new and non-classical areas, for instance supramolecular phosphines.²⁻⁷ Redox-active metallophosphines,^{8, 9} also constitute a subclass that is of current interest because they present appealing potential for switching various ²⁵ kinds of molecular-based processes,¹⁰ including catalysis.^{11, 12} In studies to develop metallaphosphines that show relatively

- emphatic switching, we have shown that oxidising the iron(II) centre in metallophosphines **1a-b** (Ar = Ph and *p*-Tol, resp.) to transiently generate **1a-b**[PF₆] switches the electronic properties ³⁰ of the phosphorus atom sufficiently to provoke instant dimensioning to the comparator of the phosphorus dimensional dimension
- dimerisation to the corresponding *bis*-{Fe(II) phosphonium} dications **2a-b**[PF₆]₂. These were fully characterised (Scheme 1).¹³

Scheme 1: Equilibrium between the Fe(III) monomer $1[PF_6]$ and the $_{40}$ corresponding bis-Fe(II) dimer $2[PF_6]_2$

Whilst this result is encouraging, it is probably more interesting for coordination chemists to have a full understanding of the paramagnetic monomers **1a-b**[PF₆] than the dimers **2a**-⁴⁵ **b**[PF₆]₂, because such monomers will constitute the ligands that

- are generated when a suitable coordination compound of **1a-b** is reduced.¹⁴ Preliminary cyclic voltammetry (CV) and UV-vis measurements indicate that these monomers are probably present in a strongly right-shifted equilibrium with the dimeric species
- ⁵⁰ **2a-b**[PF₆]₂ (Scheme 1) whose massive dominance in solution complicates monomer identification and characterisation. Some electronic signatures that have been tentatively attributed to the

monomers have been obtained by spectroscopic studies from very dilute solutions of **2a-b**[PF₆]₂ (conditions under which the ⁵⁵ equilibrium (1) is displaced to the left), but an unequivocal confirmation of their nature and properties has proved elusive in the absence of an adequate frame of reference.¹³ We therefore present an enlarged study here that aims to treat the properties of the related Fe(III) phosphine oxides (**3a-b**[PF₆]), a set of ⁶⁰ compounds whose saturated phosphorus valence shell is designed to allow the preparation of dimerisation-inert paramagnetic monomer oxides (**3a-b**; Scheme 2).

Scheme 2: Synthesis and one-electron oxidation of 3a-c to give 3a-c[PF₆].

⁽¹⁾ Despite their low metal oxidation potentials (close to -0.15 V vs. SCE),¹³ metallaphosphines **1a-c** react cleanly in THF solution with an excess of hydrogen peroxide to provide nearly quantitative yields of the corresponding metallaphosphine oxides ⁸⁵ in the Fe(II) oxidation state.¹⁵ The absence of any Fe(III) species formed by competitive oxidation of the electron-rich [Fe(κ^2 -dppe)(η^5 -C₅Me₅)] centre is noteworthy, given that H₂O₂ is usually considered to be a powerful oxidant.¹⁶

The new compounds were fully characterized by MS, CV and ⁹⁰ normal spectroscopic methods (Table 1). Crystals were obtained for **3a-c** and the single crystal structure was determined for **3a** by X-rays (Figure 1).¹⁵ The presence of the oxide is indicated by the characteristic downfield shift of the terminal phosphorus ³¹P NMR signal (*ca.* 12 ppm for **3a-b** and *ca.* 28 ppm for **3c** relative ⁹⁵ to the corresponding free phosphines) and by the appearance of a new absorption corresponding to the v_{PO} mode (near to 1175 cm⁻¹) in the IR.¹⁷⁻¹⁹ CV of **3a-b** reveals that the Fe^{II/III} oxidation potential lies *ca.* 0.3 V to more positive values than **1a-b**, in line with the enhanced electron affinity of the terminal γ -phosphorus atom that accompanies formation of the PO bond.

Fig 1. Above: X-ray- structure of the Fe(II) complex **3a**, with hydrogen atoms and an H₂O solvate omitted for clarity. Below: X-ray structure of ¹⁵ the Fe(III) parent **3a**[PF₆]. Hydrogen atoms have been omitted for clarity.

Fig 2. The B3LYP calculated natural spin distribution (a) and SOMO (b) for ${\bf 3a}[PF_6].$

The phosphine oxides **3a-c** were further oxidised at the metal centre by ferricinium hexafluorophosphate to give the corresponding Fe(III) complexes **3a-c**[PF₆]. Unlike the free phosphines **1a-b**[PF₆], the oxides **3a-c**[PF₆] are quite stable in solution and do not evolve further. Again, they were isolated and ²⁵ characterised fully (Table 1) with the structure of **3a**[PF₆] being ¹⁵.

confirmed by X-ray diffraction (Fig. 1).¹⁵

Scheme 3: Valence bond representation of **3a**.

85

The pronounced rhombic symmetry of the *g* tensor ($\Delta g \ge 0.6$) that is observed by ESR for the paramagnetic oxide species **3ac**[PF₆] (Table 1) shows that they are best described as metalcentred organometallic radicals,²⁰ and this is substantiated by DFT calculations (B3LYP level)¹⁵ which reveal that **3a-c**[PF₆] $_{40}$ are low spin (S = $\frac{1}{2}$) Fe(III) complexes.²¹ The majority of the spin density is calculated to reside on the metal centre but there is also a significant coefficient at the β -carbon atom (Figure 2). The DFT data predict a relatively small and negative spin density for the oxidised phosphorus centre, which is in accord with the observation of highly downfield shifted ³¹P NMR resonances at ca -800 ppm, and also indicate that less than 1% of the spin density is delocalised onto the aromatic rings of the terminal phosphine oxide. ¹H NMR studies, which probed experimental spin densities in **3a-c**[PF₆] further, confirm this. As expected for low-spin Fe(III) metal-based radicals, the paramagnetic ¹H NMR shifts of these compounds obey a Curie law in the 300-180K temperature range,²² and no evidence for nonsymmetrical rotamers was found at low temperatures.^{15, 23} A full attribution of all the paramagnetic signals for $3a[PF_6]$ could be made through a 55 combination of polarisation transfer experiments and by tracing how the averaged ¹H chemical shifts vary under the fast electron exchange conditions that operate when the Fe(II) complex is doped with increasing quantities of the corresponding Fe(III) compound;^{15, 22} the methyl-labelled compounds $3b-c[PF_6]$ 60 definitively confirmed the assignments of the protons within the aryl rings of the terminal phosphorus atom. The NMR data were in good agreement with the DFT results: the calculations predict a negligible spin density ($\leq 0.5\%$) on the carbon atoms bearing these protons, and this is supported by the very weak (contact) 65 paramagnetic shifts (< 1 ppm) that are observed for the protons of the terminal PAr₂ group by ¹H NMR.²⁴

The oxidation of the metal to generate $3a[PF_6]$ provokes a shift of the $v_{C=C}$ stretching mode to higher wavenumbers (Table 1) and an increase in the v_{PO} stretch. These indicate that the mesomeric 70 form B makes a larger contribution to the valence bond (VB) description of the neutral complex 3a than it does for $3a[PF_6]$, which is indicative of a less electron releasing metal fragment in the Fe(III) form (Scheme 3). The strengthening of the CC and PO bonds upon oxidation to the Fe(III) complex that is implicit in 75 these IR data is reproduced in the DFT calculations, which show that the oxidation reaction induces only small structural changes. Comparison of the X-ray structures of 3a and $3a[PF_6]$ show minor changes in these bond lengths that fall short of significance at the 3σ confidence level, but which are nonetheless fully 80 consistent with this analysis. Thus, slightly shorter triple (1.226(3) vs. 1.230(3) Å) and P-O (1.4873(18) vs. 1.5008(15) Å) bonds are found in the Fe(III) derivative. The significant lengthening (0.084 Å) of the averaged P-Fe bonds upon oxidation is, however, diagnostic of the redox change at the metal centre.²⁵

Table	1. Specific	Spectroscopic	Signatures	of 3a-c	and 3a-c [PF ₆]. ^{a}
I GOIC	1. Specific	opeenobeopie	Signatures	01040	

Table 1. Specific Specific Signatures of Sa-c and Sa-c[116].												
Cpnd	CV^b	$V_{C\equiv C}^{c}$	$V_{P=O}^{c}$	$\delta_{ ext{dppe}}{}^{d}$	$\delta_{\! m P=0}$	$\lambda_{\max}(\mathrm{Vis})^{e}$	$\lambda_{\max}(\text{NIR})^{e}$	g_1	g_2	<i>g</i> ₃	Δg^{f}	
	[V]		[cm ⁻¹]		[ppm]	$[nm(10^{-3} \epsilon in M^{-1}cm^{-1})]^{c}$						
3a	0.14	1962	1175	99.0	-8.2 ^d	264 (sh, 21.4), 478 (sh, 0.6)	/	/	/	/	/	
$3a[PF_6]$		1991	1193	nd	-797 ^e	409 (3.0), 517(2.2), 602 (sh, 0.3)	1980(0.03)	1.957	2.019	2.574	0.617	
3b	0.12	1952	1177	99.6	-7.6 ^d	262 (sh, 20.7), 494 (sh, 0.3)	/	/	/	/	/	
3b [PF ₆]		1992	1177	nd	-790 ^e	404 (2.2), 520 (1.7), 620 (sh, 0.4)	1995(0.02)	1.960	2.022	2.569	0.609	
3c	0.11	1968	1174	99.4	-5.2 ^d	264 (sh, 20.2), 488 (sh, 0.5)	/	/	/	/	/	
3c [PF ₆]		1976	1174	nd	-795 ^e	409 (3.0), 519 (2.5), 632 (sh, 0.3)	1990(0.03)	1.960	2.020	2.579	0.619	

^{*a*} *nd*: Not detected. ^{*b*} CV performed in CH₂Cl₂ (0.1 M [*n*-Bu₄N][PF₆]) and E° values given *vs*. SCE ^{*c*} IR Measurements performed in KBr pellets. ^{*d*} Measurements performed in C₆D₆. ^{*e*} Measurements performed in CH₂Cl₂. ^{*f*} ESR measurements performed at 77 K in CH₂Cl₂/1,2-C₂H₄Cl₂ glasses.

90

In the context of generating redox-switchable ligands, a major facet of this work lies in the comparison of the new paramagnetic Fe(III) derivatives **3a-c**[PF₆] with the elusive **1a-b**[PF₆] cations.¹³ The natural spin density distributions computed for 5 **3a**[PF₆] and **1a**[PF₆] are almost identical, with the most significant differences being a slight increase on iron (+4%) along with a small decrease on the β -carbon atom (-9%) for **3a**[PF₆]. Except for the absence of a weak NIR d-d band that is present at around 1990 nm in **3a-c**[PF₆],²⁵ the high dilution UV-

¹⁰ vis absorption spectrum of the proposed metallaphosphine $1a[PF_6]$ is entirely coherent with the data obtained for $3a-c[PF_6]$ (Figure 3), thus substantiating the formulation of $1a[PF_6]$ as the Fe(III) alkynylphosphine derivative.^{13, 14}

²⁵ Fig 3. Overlay of the UV-vis spectra of 10⁻⁵ M solutions of **2a**[PF₆]₂ (plain line) and **3a**[PF₆] (dotted line) in CH₂Cl₂ at 298 K. Inset: ESR spectra of frozen solutions of **2a**[PF₆]₂ (plain line) and **3a**[PF₆] (dotted line) in CH₂Cl₂/1,2-C₂H₄Cl₂ solvent glasses at 77K.

- To definitively establish the presence of a metal-centred ³⁰ Fe(III) radical corresponding to **1a**[PF₆] in dilute solutions of **2a**[PF₆]₂, we recorded the ESR spectrum of a low concentration solution of **2a**[PF₆]₂ trapped in a solvent glass. Gratifyingly, we observed a rhombic tensor (Fig. 3, inset) with $g_1 = 1.983$, $g_2 = 2.038$ and $g_3 = 2.425$ that resembles **3a**[PF₆] except for a slightly
- ³⁵ lower anisotropy ($\Delta g = 0.442$).^{20, 25} This more isotropic formulation is predicted by DFT (see ESI) and is to be expected for a less metal-centred radical.^{25, 26}

In conclusion, we report the characterisation of three $[Fe(x^2-dppe)(\eta^5-C_5Me_5)]^+$ -based Fe(III) alkynyl-phosphine oxide

- ⁴⁰ derivatives. Sequestering the phosphorus lone pair by a P-O bond clearly stabilises these organometallic species with respect to P-P dimerisation processes and allows their clean isolation. The compound **3a**[PF₆] constitutes a "stable" model for **1a**[PF₆] and provides overwhelming evidence for the formation of the latter in
- ⁴⁵ diluted solutions of **2a**[PF₆]₂, thereby clarifying the nature of the elusive Fe(III) monomeric species.

We thank the French ANR (10-BLAN-0719) for support; S L thanks MNERT and ENS (Cachan) for a scholarship. G. Argouarch (UMR 6226) ⁵⁰ is acknowledged for experimental assistance.

Notes and references

- ^a Institut des Sciences Chimiques de Rennes, CNRS (UMR 6226) Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France), Fax: 0(033)223236939, E-mail: <u>frederic.paul@univ-rennes1.fr</u>
- ⁵⁵ ^b Laboratoire Hétéroéléments et Coordination, CNRS (UMR 7653), Ecole Polytechnique, 91128 Palaiseau Cedex, France, Fax: 0(033)169334440, E-mail: <u>duncan.carmichael@polytechnique.edu</u>

^c Current location: School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.

- 60 † Electronic Supplementary Information (ESI) available: Full experimental, spectroscopic and selected crystallographic data. See DOI: 10.1039/b000000x/
 - P. C. J. Kamer and P. W. N. M. van Leeuwen, eds., *Phosphorus(III)* Ligand Effects in Homogeneous Catalysis: Design and Synthesis, J Wiley, Chichester, 2012.
 - 2. J. Wieland and B. Breit, Nature Chem., 2010, 2, 832-837.
 - 3. R. Bellini and J. N. H. Reek, Eur. J. Inorg. Chem., 2012, 4684-4693.
- 4. T. Besset, D. W. Norman and J. N. H. Reek, *Adv. Synth. Catal.*, 2013, **355**, 348-352.
- G. Guisado-Barrios, B. K. Munoz, P. C. J. Kamer, B. Lastdrager, G. van der Marel, M. Overhand, M. Vega-Vazquez and M. Martin-Pastor, *Dalton Trans.*, 2013, 42, 1973-1978.
- 6. P. J. Deuss, R. den Heeten, W. Laan and P. C. J. Kamer, *Chem. Eur. J.*, 2011, **17**, 4680-4698.
- N. C. Gianneschi, M. S. Masar, III and C. A. Mirkin, Acc. Chem. Res., 2005, 38, 825-837.
- N. Avarvari, K. Kirakci, R. Llusar, V. Polo, I. Sorribes and C. Vicent, Inorg. Chem., 2010, 49, 1894-1904.
- 80 9. A. Labande, N. Debono, A. Sournia-Saquet, J.-C. Daran and R. Poli, *Dalton Trans.*, 2013, 42, 6531.
 - O. R. Luca and R. H. Crabtree, Chem. Soc. Rev., 2013, 42, 1440-1459.
 - 11. I. M. Lorkovic, M. S. Wrighton and W. M. Davis, J. Am. Chem. Soc., 1994, **116**, 6220-6228.
 - A. M. Allgeier and C. A. Mirkin, Angew. Chem., Int. Ed. Engl., 1998, 37, 895-908.
 - A. Tohmé, G. Grelaud, G. Argouarch, T. Roisnel, S. Labouille, D. Carmichael and F. Paul, *Angew. Chem. Int. Ed.*, 2013, **52**, 4445-4448.
- A. Tohmé, S. Labouille, T. Roisnel, V. Dorcet, D. Carmichael and F. Paul, *Dalton Trans.*, 2014, 33, 7002-7005.
- See ESI.
 O. M. Bockris and L. F. Olfield, *Trans. Faraday Soc.*, 1955, 51, 259-267.
- R. M. Silverstein, T. C. Morrill and G. C. Bassler, Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, 1991.
- 18. J. C. Sheldon and S. Y. Tyree, Jr., J. Am. Chem. Soc., 1957, 80, 2117-2120.
 - 19. L. J. Bellamy, *The Infrared Spectra of Complex Molecules*, Methuen, London, 1955.
 - 20. F. Paul and C. Lapinte, Coord. Chem. Rev., 1998, 178/180, 431-509.
- F. Paul and C. Lapinte, in *Unusual Structures and Physical* Properties in Organometallic Chemistry, eds. M. Gielen, R. Willem and B. Wrackmeyer, Wiley, San-Francisco, 2002, pp. 219-295.
 - F. Paul, G. da Costa, A. Bondon, N. Gauthier, S. Sinbandhit, L. Toupet, K. Costuas, J.-F. Halet and C. Lapinte, *Organometallics*, 2007, 26, 874-896.
- 110 23. M. Schultz, J. M. Boncella, D. J. Berg, T. Don Tilley and R. A. Andersen, *Organometallics*, 2002, **21**, 460-472.
 - I. Bertini, C. Luchinat and G. Parigi, Solution NMR of Paramagnetic Molecules. Application to Metallobiomolecules and Models, Elsevier, Amsterdam, 2001.
 - 5 25. F. Paul, L. Toupet, J.-Y. Thépot, K. Costuas, J.-F. Halet and C. Lapinte, *Organometallics*, 2005, **24**, 5464-5478.
 - S. Le Stang, F. Paul and C. Lapinte, *Organometallics*, 2000, 19, 1035-1043.

Graphic Content Entry

- Preventing the Oxidatively-Induced Dimerization of Fe(III) ⁵ Metalloalkynyl phosphines can be achieved by Sequestring the Phosphorus Lone Pair.
- H_2O_2 [Fe]—C≡C [Fe]—C≣C 10 'Ar "Ar - e - e [Fe] = Ph₂P PPh Fe(II) Dimer Stable Fe(III) Monomer A 15 Ar c≡c--[Fe] 0 1/2 •+ [Fe]—C≡C [Fe]--c≡c Ar Ar А Ar 20

Page 4 of 4