ChemComm

ChemComm

A Crystallographically-Characterized Salt of Self-Generated N-Protonated Tetraethylurea

Journal:	ChemComm
Manuscript ID:	CC-COM-11-2014-008801.R1
Article Type:	Communication
Date Submitted by the Author:	24-Nov-2014
Complete List of Authors:	Marchetti, Fabio; Universita' di Pisa, Dipartimento di Chimica e Chimica Industriale Bortoluzzi, Marco; Università Ca' Foscari venezia, Scienze Molecolari e nanosistemi Pampaloni, Guido; Universita di Pisa, Dipartimento di Chimica e Chimica Industriale Zacchini, Stefano; Universita di Bologna, Dipartimento di Chimica Fisica e Inorganica

A Crystallographically-Characterized Salt of Self-Generated N-Protonated

Tetraethylurea

Marco Bortoluzzi, ^a Fabio Marchetti, ^{b,*} Guido Pampaloni, ^b and Stefano Zacchini ^c

Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT] *Publication data* [DO NOT ALTER/DELETE THIS TEXT] DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

The reaction of 1,1,3,3-tetraethylurea (teu) with WCl₆ in dichloromethane afforded [teuH][WCl₆], 1, in 50-60% yield. The X-ray structure determined for 1 includes the first example of ¹⁰ crystallographic characterization of a *N*-protonated urea. According to spectroscopic and DFT outcomes, the formation of

1 is the result of an electron transfer/C–H activation process.

Urea, the first synthetic organic compound, and its nitrogensubstituted derivatives ¹ possess peculiar structural properties, ¹⁵ which have encouraged a recent renaissance of their use in chemistry.² In fact they have found versatile application in organocatalysis ³ and as scaffolds for supramolecular chemistry,⁴ and for their possible biologic actions.⁵ Ureas are weakly Lewis bases bearing two potential sites accessible to the first proton

²⁰ attack, *i.e.* the O and N atoms, and numerous studies have contributed to this debate.⁶

Protonated ureas are believed to exist as intermediates in the related decomposition reactions,⁷ may act as crucial intermediates in organic synthesis ⁸ and are suitable guest species for nanoporous

- ²⁵ supramolecular skeletons built up from a water environment.⁹ Experimental and theoretical outcomes agree in indicating the oxygen atom as the generally privileged site for proton addition, irrespective of the degree of *N*-substitution. Indeed *O*-protonated species have been observed in solutions in the presence of strong
- ³⁰ *Brönsted* acids thus allowing, in a number of cases, solid-state isolation and subsequent crystallographic characterization.¹⁰ In the framework of our interest in the chemistry of high-valent transition metal halides,¹¹ herein we describe a new synthetic approach to obtain a stable *N*-protonated urea (1,1,3,3-
- $_{35}$ tetraethylurea, teu) salt. The synthesis takes advantage of the oxidative power of WCl₆ 12 and, thus, does not make use of *strong protonating* agent (*Brönsted* acid).

Tungsten hexachloride slowly dissolved in dichloromethane in the presence of one equivalent of teu at room temperature, under

⁴⁰ strictly anhydrous conditions; the crystalline compound [teuH][WCl₆], **1**, was isolated in 53% yield and identified by analytical and spectroscopic methods (see Eqn. 1 and Supporting Information). Experimental and theoretical outcomes agreed in that teu itself represented the main source of protonation (*vide infra*).

Montanari", Viale Risorgimento 4, I-40136 Bologna (Italy).

WCl₆ + teu
$$\xrightarrow{48 \text{ h}}$$
 [teuH][WCl₆] (1)

X-ray quality crystals could be collected from a 1,2-50 dichloroethane/hexane mixture: the molecular structure of 1 is shown in Figure 1, together with its main geometric parameters. It consists of an ionic packing of $[teuH]^+$ cations and $[WCl_6]^-$ anions. The anions are slightly distorted octahedra rather similar to the ones previously described in miscellaneous salts.13 Otherwise the ⁵⁵ [teuH]⁺ cation represents, to the best of our knowledge, the first example of a crystallographically characterised N-protonated alkylurea.14 The hydrogen atom bonded to N(2) has been located in the Fourier map and refined isotropically. As a consequence of the protonation of N(2), the C(1)-N(2) bond [1.523(4) Å] is 60 considerably elongated compared to C(1)-N(1) [1.319(5) Å], and N(2) displays sp^3 hybridization [sum angles excluding H(2) $329.0(5)^{\circ}$ whereas the sp^2 N(1) is perfectly planar [sum angles 360.0(5)°]. The C(1)-O(1) distance [1.212(4) Å] is typical for a double bond,¹⁵ and C(1) displays a perfect sp^2 hybridization [sum 65 angles 360.0(5)°]. An inter-molecular H-bond is present between the N(2)-H(2) group (donor) of the cation and a chloride ligand (acceptor) of the anion [N(2)-H(2) 0.898(18) Å, H(2)···Cl(5)#1 2.53(3) Å, N(2)···Cl(5)#1 3.288(3) Å, N(2)H(2)Cl(5)#1 142(3)°, symmetry transformation #1 x-1, y, z].

Figure 1. ORTEP drawing of $[Et_2NC(O)NHEt_2][WCl_6]$, 1. Displacement ellipsoids are at the 30% probability level. Selected bond lengths (Å) and angles (deg): W–Cl 2.2944(10)-2.3865(9), average 2.328(2); C(1)–O(1) 75 1.212(4); C(1)–N(1) 1.319(5); C(1)–N(2) 1.523(4); C(2)–N(1) 1.480(4); C(4)–N(1) 1.476(4); C(6)–N(2) 1.512(4); C(8)–N(2) 1.523(4); C(2)–C(3) 1.517(5); C(4)–C(5) 1.513(5); C(6)–C(7) 1.508(5); C(8)–C(9) 1.515(5); sum angles at C(1) 360.0(5); sum angles at N(1) 360.0(5); sum angles at N(2) (excluding H(2)) 329.0(5).

The IR spectrum of 1 (in the solid state) exhibits diagnostic absorptions at 3196 and 1750 cm⁻¹, assigned to the stretching

^a Ca' Foscari University of Venice, Dipartimento di Scienze Molecolari e Nanosistemi, Dorsoduro 2137, I-30123 Venezia (Italy).

^b University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 3, I-56124 Pisa (Italy). Tel: +39 050 2219245;

e-mail: <u>fabio.marchetti1974@,unipi.it;</u>

webpage: http://www.dcci.unipi.it/fabio-marchetti.html.

^c University of Bologna, Dipartimento di Chimica Industriale "Toso

[†] Electronic Supporting Information (ESI) available: Experimental details, NMR spectra, DFT calculated structures, cartesian coordinates of the computed structures in *xyz* format.

vibrations of NH and C=O bonds, respectively. The $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra, recorded in CD_2Cl_2 solution, contain broad

- 85 resonances due to the presence of the W(V) paramagnetic anion (Figures S1-S2). The NMR pattern is consistent with the structure elucidated for the solid state by X-ray diffractometry; indeed three resonance groups have been found corresponding to the ethyl units. More precisely, the ethyls bound to non-protonated nitrogen
- ⁹⁰ resonate as two distinct ones (at 52.3 and 46.2 ppm in the ¹³C spectrum) due to inhibited rotation around C(1)=N(1). Conversely the ethyls on the protonated nitrogen appear equivalent (δ = 58.7 ppm in the ¹³C spectrum). The ¹H resonance of the *N*-bound proton occurs at 6.37 ppm. The presence of the [WCl₆]⁻ anion was ⁹⁵ recognized by magnetic analysis, which was as expected for such a

W(V) species.^{13,16} In order to shed light into mechanistic aspects, we carried out a joint spectroscopic and DFT study. In agreement with NMR data recorded on a CD_2Cl_2 reaction mixture (SI, page S4), the formation

- ¹⁰⁰ of **1** from WCl₆/teu takes place in 55-60% yield and does not involve the solvent. Accordingly, **1** was obtained in comparable yields by using CCl₄ or hexane as reaction medium. IR and NMR outcomes agreed in indicating the generation of by-products presumably bearing the [N=CH] moiety (SI, pp S4 and S7). The
- ¹⁰⁵ proposed, DFT-calculated, main reaction pathway is shown in Figure 2. It implies the possible interaction of the products/intermediates with the reactants, coherently with the long time required for the synthesis of 1.

Figure 2. Calculated Gibbs free energy profile related to the proposed main reaction pathway leading to 1.

¹¹⁵ In order to explain the formation of the W(V) salt **1**, initial electron transfer should be envisaged affording [teu][WCl₆], **2** (Figure S5, Table S3).¹³ This appears a thermodynamically unfavourable process (Eqn. 2), basically due to entropic reasons ($\Delta S = +16.0$ kcal mol⁻¹). Nevertheless, exergonic steps may follow (see in particular ¹²⁰ Eqn. 4).

$$WCl_6 + teu \rightarrow [teu][WCl_6]$$

$$2$$

$$\Delta G = +16.8 \text{ kcal mol}^{-1}$$
(2)

The radical cation [teu]^{+•} is a potential *H*-abstractor from still unreacted teu,^{13,17} leading to [teuH]⁺ and the radical species [Et₂NC(O)N(Et)(CHCH₃)][•], **3** (Eqn. 3). The latter is shown in Figure S6 together with its spin density surface. The reaction ¹³⁰ reported in Eqn. 3 is associated with a negligible variation of Gibbs free energy.

$$[\text{teu}][\text{WCl}_6] + \text{teu} \rightarrow [\text{teuH}][\text{WCl}_6] + [\text{Et}_2\text{NC}(\text{O})\text{N}(\text{Et})(\text{CHCH}_3)]^{\bullet}$$
(3)
2 1 3

$$\Delta G = +0.4 \text{ kcal mol}^{-1}$$

125

Alternative H-capture by $[teu]^+$ from CH_2Cl_2 or H_2O seems to be unlikely.¹⁸ The calculations indicate that the newly formed **3** may

act as a powerful reducing agent towards unreacted WCl_6 (Eqn. $_{\rm 140}$ 4). $^{\rm 17}$

$$[Et_2NC(O)N(Et)(CHCH_3)]^{\bullet} + WCl_6 \rightarrow 3 [Et_2NC(O)N(Et)(CHCH_3)][WCl_6] (4)$$

$$_{145} \Delta G = -36.2 \text{ kcal mol}^{-1}$$

The optimized structure of **4** is shown in the SI (Figure S7 and Table S5). The cation in **4** is an iminium which can be viewed as a vinyl-urea protonated at the alkene moiety. In principle, **4** is more ¹⁵⁰ stable than the related *N*- and *O*-protonated isomers.¹⁹ Subsequent reactivity of **4** might contribute to increase the yield of synthesis of **1** (Eqn. 5); it should be remarked that the possible occurrence of more than one vinyl-containing products is in accordance with NMR evidences (see above).

$$4 + [teu][WCl_6] \rightarrow 1 + [Et_2NC(O)N(Et)(CH=CH_2)][WCl_6]$$
(5)
$$\Delta G = -2.5 \text{ kcal mol}^{-1}$$

In addition, the adventitious presence in the reaction medium of ¹⁶⁰ HCl, produced by undesired hydrolysis, offers opportunity for **3** to **1** conversion.²⁰ Nevertheless it should be noticed that HCl formation from WCl₆/H₂O systems is typically accompanied by the generation of [W=O] containing species,²¹ not recognised in the present case. This point, together with DFT outcomes,¹⁸ suggests ¹⁶⁵ that water plays a minor role in the protonation process.

We tried to extend the results regarding the WCl₆/teu system to 1,1,3,3-tetramethylurea (tmu). Former calculations indicated the tmu oxygen as the preferential site for H⁺ addition,²² in agreement with thermodynamic measurements.²³ Accordingly, our ¹⁷⁰ calculations have pointed out that the most stable form of [tmuH][WCl₆], in the presence of dichloromethane as implicit solvent, is the *O*-protonated one (Figure S8, structure **5A**).²⁴

The 1:1 molar reaction of WCl₆ with 1,1,3,3-tetramethylurea was carried out in conditions similar to those employed for the synthesis of **1**. After work-up, a red solid was isolated whose IR spectrum suggested the formation of a complicated mixture of products (see SI). The presence of both **5A** [IR absorptions at 3329 (v_{OH}) and 1661 (v_{CN}) cm⁻¹] and of its *N*-protonated isomer [**5B**, IR absorptions at 3127 (v_{NH}) and 1771 (v_{CO}) cm⁻¹] has been hypothesized upon comparison of the experimental IR data with the

corresponding ones provided by the calculations. The ¹H NMR spectrum of the 1:1 reaction mixture WCl₆/tmu (in CD₂Cl₂) exhibited a resonance at 8.30 ppm which was assigned to a [N=CH₂] group with the assistance of 2D NMR experiments (SI,

185 page S5). This feature confirms the idea that C–H bond activation, as a source of protonation, is operative in the course of the interaction between WCl₆ and tetraalkylureas.

In conclusion, we have presented the first structurally characterized salt comprising a discrete *N*-protonated urea cation. Remarkably, ¹⁹⁰ the main synthetic route to the salt does not involve any strong Brönsted acid. Instead, the urea reactant seems to act as the prevalent proton source *via* WCl₆-promoted C_{α} -H activation, as suggested by spectroscopic and DFT outcomes.

195 Notes and reference

- 1 The term "ureas" will be used in order to indicate both the simplest urea, (NH₂)₂C=O and its N-substituted derivatives.
- 2 N. Volz and J. Clayden, Angew. Chem. Int. Ed., 2011, 50, 12148-12155.
- 3 (a) M. Kotke and P. R. Schreiner, (*Thio*)urea Organocatalysis in Hydrogen Bonding in Organic Synthesis, P. M. Pihko, Ed., Wiley-VCH, Weinheim, 2009, 141-351; (b) Z. Zhang and P. R. Schreiner, Chem. Soc. Rev., 2009, 38, 1187-1198; (c) T. J. Auvil, A. G. Schafer

and A. E. Mattson, *Eur. J. Org. Chem.*, 2014, 2633-2646. (d) W. Nakanishi, *Related Organocatalysts (2): Urea Derivatives*, in *Superbases for Organic Synthesis*, T. Ishikawa, Ed., Wiley, New york, 2009, 273-293.

- (a) J. W. Steed, *Chem. Soc. Rev.*, 2010, **39**, 3686-3699; (b) P. Dydio,
 D. Lichosyt and J. Jurczak, *Chem. Soc. Rev.*, 2011, **40**, 2971-2985; (c)
 R. Custelcean, *Chem. Commun.*, 2008, **3**, 295-307.
- 5 (a) M. J. McKay and H. M. Nguyen, *Carbohydrate Res.*, 2014, 385, 18-44; (b) G. Pasello, L. Urso, P. Conte and A. Favaretto, *The Oncologist*, 2013, 18, 1118-1125; (c) H.-Q. Li, P.-C. Lv, T. Yan and H.-L. Zhu, *Anti-Cancer Agents Med. Chem.*, 2009, 9, 471-480.
- 6 (a) G. Rasul, G. K. S. Prakash and G. A. Olah, J. Org. Chem., 1994,
 59, 2552-2556; (b) R. Spezia, J.-Y. Salpin, M.-P. Gaigeot, W. L. Hase, K. Song, J. Phys. Chem. A, 2009, 113, 13853-13862; (c) G. A. Olah and A. M. White, J. Am. Chem. Soc., 1968, 90, 6087-6091; (d) F. Wang, S. Ma, D. Zhang and R. G. Cooks, J. Phys. Chem. A, 1998, 102, 2988-2994.
- 7 (a) R. Laudien and R. Mitzner, J. Chem. Soc., Perkin Trans. 2, 2001, 2230-2232; (b) C. Beddie, C. E. Webster and M. B. Hall, Dalton Trans., 2005, 3542-3551.
- 8 (a) H. Wang, J. Zhao, J. Zhang, and Q. Zhu, *Adv. Synth. Catal.*, 2011, 353, 2653-2658; (b) L. Roecker, J. Akande, L. N. Elam, I. Gauga, B. W. Helton, M. C. Prewitt, A. M. Sargeson, J. H. Swango, A. C. Willis, T. Xin, and J. Xu, *Inorg. Chem.*, 1999, 38, 1269-1275.
- 9 (a) A. Müller, L. Toma, H. Bögge, C. Schäffer and A. Stammler, *Angew. Chem. Int. Ed.*, 2005, 44, 7757-7761; (b) A. Müller, S. Roy, M. Schmidtmann and H. Bögge, *Chem. Commun.*, 2002, 2000-2002; (c) M. H. Alizadeh, H. Eshtiagh-Hosseini, M. Mirzaei, A. R. Salimi, H. Razavi, *Struct. Chem*, 2008, 19, 155-164; (d) C. L. Hill, D. A. Bouchard, M. Kadkhodayan, M. M. Williamson, J. A. Schmidt and E. F. Hilinsk, *J. Am. Chem. Soc.*, 1988, 110, 5471-5479.
- 10 (a) R. V. G. Sundera-Rao, J. W. Turley and R. Pepin-Sky, *Acta Cryst.*, 1957, **10**, 435; (b) B. Lages Rodrigues, R. Tellgren and N. G. Fernandes, *Acta Cryst.*, 2001, **B57**, 353-358; (c) S. Harkema and D. Feil, *Acta Cryst.*, 1969, **B25**, 589-591; (d) J. E. Worsham and W. R. Busing, *Acta Cryst.*, 1969, **B25**, 572-578; (e) D. Henschel, T. Hamann, O. Moers, A. Blaschette, and P. G. Jones, *Z. Naturforsch.*, 2002, **57b**, 113-121; (f) C. J. Carmalt, L. J. Farrugia and N. C. Norman, *Z. Anorg. Allg. Chem.*, 1995, **621**, 47-56; (g) J. H. Bryden, *Acta Cryst.*, 1957, **10**, 714.
- 11 As recent references see: (a) M. Bortoluzzi, E. Ferretti, F. Marchetti, G. Pampaloni and S. Zacchini, *Chem. Commun.*, 2014, **50**, 4472-4474; (b) M. Hayatifar, F. Marchetti, G. Pampaloni and S. Zacchini, *Inorg. Chem.*, 2013, **52**, 4017-4025; (c) F. Marchetti and G. Pampaloni, *Chem. Commun.*, 2012, **48**, 635-653.
- 12 (a) S. Dolci, F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2013, **42**, 5635-5648; (b) N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877–910.
- 13 M. Bortoluzzi, F. Marchetti, G. Pampaloni and S. Zacchini, *Inorg. Chem.*, 2014, 53, 3832-3838, and references therein.
- 14 *ConQuest*, version 1.15, Cambridge Crystallographic Data Centre, Cambridge, UK, 2013.
- 15 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans.II, 1987, S1-S19.
- 16 a) W. Eichler and H.-J. Seifer, Z. Anorg. Allg. Chem., 1977, 431, 123-133; (b) R. S. Nyhlom, J. Inorg. Nucl. Chem., 1958, 8, 401-422; (c) B. Figgis, J. Inorg. Nucl. Chem., 1958, 8, 476-482
- 17 J. Hu, J. Wang, T. H. Nguyen, N. Zheng, Beilstein J. Org. Chem., 2013, 9, 1977-2001.
- 18 [teu][WCl₆] + H₂O → [teuH][WCl₆] + OH, ΔG = +25.4 kcal mol⁻¹; [teu][WCl₆] + CH₂Cl₂ → [teuH][WCl₆] + CHCl₂, ΔG = +3.1 kcal mol⁻¹.
- 19 Relative free energy values: $[Et_2NC(O)N(Et)(CHCH_3)]^+$, G = 0 kcal mol⁻¹; $[Et_2NC(O)NH(Et)(CHCH_2)]^+$, G = +18.9 kcal mol⁻¹; $[Et_2NHC(O)N(Et)(CHCH_2)]^+$, G = +14.7 kcal mol⁻¹; $[Et_2NC(OH)N(Et)(CHCH_2)]^+$, G = +14.8 kcal mol⁻¹.
- 20 Calculated ΔG for the reaction $3 + HCl \rightarrow teu + \frac{1}{2} Cl_2$ resulted -3.5 kcal mol⁻¹.

- 21 N. A. Ovchinnikova, A. E. Sinyakov, V. S. Sergienko, G. G. Alexandrov and M. Yu. Burtzev, J. Coord. Chem., 2003, 56, 995-1002.
- 22 (a) F. Berny and G. Wipff, J. Chem. Soc., Perkin Trans. 2, 2001, 73– 82; (b) B. Kallies, R. Mitzner, J. Mol. Struct. (Theochem), 1998, 428, 267-282.
- 23 C. Laurence, G. Guiheneuf and B. Wojtkowiak, J. Am. Chem. Soc., 1979, 101, 4793-4801.
- 24 G(O-protonated)-G(N-protonated) = -11.5 kcal mol⁻¹.