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Enantiocontrolled construction of B–E rings of penitrem E 

was accomplished from 4-iodoindole in 13 steps with an 

overall yield of 1.7%. Diastereoselective Tf2NH-catalyzed (2 + 

2)-cycloaddition between silyl enol ether and methyl acrylate 

furnished a tetracyclic product possessing the characteristic 

cyclobutane ring bearing a hydroxyl group. 

A family of indole diterpene alkaloids has attracted a great deal of 

interest from the synthetic community because of their biological 

activity and unique structure. Penitrems, isolated from Penicillium 

cyclopium and Penicillium crustosum by the Wilson and Steyn 

groups, possess strong neurotoxicity1 (Fig. 1). Compared with the 

structurally related indole diterpenes, such as paspalicine,2 

paspalinine,2c,2d,3 and paspaline,2a,2b,4 penitrems have a characteristic 

cyclobutane ring (B ring) and an eight-membered cyclic ether (A 

ring). Due to its highly fused cyclic structure, only Smith et al. have 

so far achieved the enantiocontrolled total synthesis of (–)-penitrem 

D (2) via [2 + 2]-photo-cycloaddition for the formation of the B 

ring.5 Curran et al. also reported construction of B–D rings of 

penitrem D (2) using a SmI2-mediated intermolecular radical cascade 

reaction.6 On the other hand, synthetic studies toward penitrems A 

(1) and E (3) having a hydroxyl group at the bridgehead of the B and 

C rings have not yet been reported. Recently, we developed a 

bis(triflic imide) (Tf2NH)-catalyzed smooth (2 + 2)-cycloaddition 

reaction of silyl enol ether to provide a fused-cyclobutane ring 

bearing a silyloxy group at the bridgehead position (Scheme 1).7 The 

major diastereomer of the bicyclic compounds has the opposite 

relative configuration at the α-position of the methyl ester to those of 

the B/C ring in penitrems A and E; however, we anticipated that the 

stereochemistry of this position could be isomerized and initiated 

synthetic studies toward penitrem E utilizing our (2 + 2)-

cycloaddition. Herein, we describe a novel strategy for an 

enantiocontrolled synthesis of the left segment 4 including B–E rings 

of penitrem E (3) featuring a palladium-catalyzed Catellani reaction8 

and Tf2NH-catalyzed (2 + 2)-cycloaddition reaction.7 

 
 

Fig. 1   Penitrems and related alkaloids. 

 

 
 

Scheme 1   Tf2NH-catalyzed (2 + 2)-cycloaddition of silyl enol ether 

and methyl acrylate.7c 

 

The retrosynthetic sequence in Scheme 2 demonstrates a 

stereocontrolled construction of the B and C rings, having a hydroxy 

group at the bridgehead position. To control the facial selectivity in 

the C–C bond formation of a silyl enol ether and methyl acrylate, we 

planned to use the stereochemistry of a hydroxymethyl moiety, 

which is a synthetic equivalent of exo-methylene according to 

Smith’s synthesis5 utilizing Grieco–Nishizawa elimination.9 The 

tertiary alcohol attached to the B ring would be derived from ester 6 

and two equivalents of methyl Grignard reagent, and the indole 
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could be synthesized from the protected indoline through 

deprotection and subsequent oxidation. The cyclobutane ring bearing 

the hydroxyl group would be constructed by the Tf2NH-catalyzed (2 

+ 2)-cycloaddition of silyl enol ether 7 and methyl acrylate.7 In this 

reaction, we expected that the hydroxymethyl side chain in the C 

ring should control the facial selectivity. Silyl enol ether 7 would be 

derived from the corresponding ketone, which should be prepared 

from unsaturated ester 8 through oxidative cleavage of the C=C. We 

planned to construct the C ring from 4-iodoindoline derivative 9 and 

optically active ε-iodo-unsaturated ester 10 by Catellani reaction,8 a 

one-pot palladium-catalyzed ring formation in the presence of 

norbornene. 

 

 
 

Scheme 2   Retrosynthetic analysis of left segment 4. 

 

First, we prepared optically active ester 16 from readily available 

1,3-diol 11,10 a coupling partner for Catellani reaction (Scheme 3). 

The synthesis commenced with lipase-mediated desymmetrization of 

meso-1,3-diol 11 at −15 °C to give monoacetate 12.11 Manipulation 

of oxygen functionalities provided mono-TIPS ether 14 in 90% ee.12 

Appel iodination13 of the alcohol and subsequent olefin cross 

metathesis with ethyl acrylate yielded ester 16. 

 

 
 

Scheme 3   Preparation of unsaturated ester 16. 

 

With the ε-iodo-unsaturated ester 16 in hand, we then examined 

Catellani reaction for the construction of the C ring14 (Scheme 4). 

The known 4-iodoindole (17)15 was converted to the corresponding 

N-mesyl-4-iodoindoline (18) in a two-step sequence. Gratifyingly, 

subjection of the indoline 18 and the optically active ester 16 to the 

standard Catellani conditions8 provided the desired tricyclic 

compound 1916 in 96% yield. Oxidative cleavage of the trisubstituted 

electron-deficient olefin was effected by the combination of OsO4 

and NaIO4
17 to give tetralone 20 in good yield,18 which was 

converted to TBS enol ether 21a for the construction of the 

cyclobutane ring. 

 

 
 

Scheme 4   Synthesis of C ring by Catellani reaction. 

 

Having synthesized the requisite silyl enol ether, we then 

investigated construction of the B ring using Tf2NH-catalyzed (2 + 

2)-cycloaddition (Table 1). An aliquot of 80 mM solution of Tf2NH 

in toluene was added to a mixture of 21a and excess methyl acrylate 

(5 equiv) in CH2Cl2 at −78 °C. After 3 days, the reaction was 

quenched with Et3N, and the mixture was concentrated in vacuo, 

which was then purified to provide a mixture of cyclobutane cis-22a 

and trans-22a. Interestingly, unlike the previous report using the 

simple substrate (Scheme 1), the reaction of 21a gave the desired 

 

Table 1   Substituent effects on Tf2NH-catalyzed (2 + 2)-

cycloaddition. 

 

 
a Combined yield of cis- and trans-isomers. b Isolated yield. c Not detected. d 

Not isolated. e Not determined. f Calculated by 1H NMR. 
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diastereomer cis-22a19 as a major product even under the previously 

established conditions7 (Table 1, entry 1). Reduction of the catalytic 

amount of the triflic imide required a prolonged reaction time but 

gave 22a in better yield with concomitant generation of tetralone 20 

(Table 1, entry 2). TMS enol ether 21b was more prone to form 

tetralone 20, and none of the desired cyclobutane was isolated (Table 

1, entry 3). On the other hand, TES enol ether 21c was robust but 

less reactive under the conditions, resulting in recovery of 65% of 

the starting material 21c (Table 1, entry 4). We also found that the 

choice of a protecting group on the nitrogen was also important for 

the diastereoselectivity. Thus, tosyl amide 21d and Cbz carbamate 

21e were converted to the corresponding products 22b (cis-22b: 

trans-22b = 1.1: 1.0) and 22c (cis-22c: trans-22c = 2.4: 1.0), (Table 

2, entries 1 and 2).20 

 

Table 2   Effects of protective group on indoline nitrogen. 

 

 
a Combined yield of cis- and trans-isomers. b Isolated yield. c Not detected. d 
Calculated by 1H NMR. 

 

A plausible mechanism depicted in Scheme 5 would explain the 

observed diastereoselectivity, which was opposite to that of the 

former (2 + 2)-cycloaddition.7 First, Tf2N–TBS, generated from 

Tf2NH, reacted as a Lewis acid to promote Mukaiyama-type Michael 

addition of the silyl enol ether to methyl acrylate on the less hindered 

face.7,21 The possible conformers A and B in the second aldol 

reaction provided the corresponding cyclobutanes trans-22a and cis-

22a. Steric repulsion of the methyl ester and the aromatic ring 

disfavored chair-like conformer A, thus providing cis-22a (via the 

favored boat-like conformer B) as a major product.22 We attempted 

epimerization of trans-22a to obtain cis-22a; however, the treatment 

of the undesired trans-22a with either DBU in refluxing toluene or 

NaOMe in refluxing MeOH did not afford the desired cis-22a. 

 

 
 

Scheme 5   A plausible mechanism for the diastereoselectivity in (2 

+ 2)-cycloaddition. 

We then turned our attention toward the synthesis of the left 

segment 4 (Scheme 6). Addition of excess methyl Grignard reagent 

followed by protection of the resulting alcohol as its TMS ether 

provided the trisilylated compound 23. Deprotection of the mesyl 

group using LDA smoothly proceeded to give the desired 

unprotected indoline 24 in high yields,23 which was then treated with 

MnO2 to afford the indole 25. Synthesis of the left segment 4 was 

completed in a three-step sequence through Grieco–Nishizawa 

elimination.9 Thus, after removal of three silyl groups under basic 

conditions,24 the resultant triol 5, whose structure was confirmed by 

X-ray crystallographic analysis in Fig. 2,25 was subjected to 

selenation followed by oxidative elimination to provide the left 

segment 4 while leaving the unprotected indole intact. 

 

 
 

Scheme 6   Synthesis of the left segment 4. 

 

 
 

Fig. 2   X-ray crystallographic structure of triol 5. 

 

In conclusion, we have established an enantiocontrolled 

construction of B–E rings in penitrem E (3). Catellani reaction 

facilitated the one-step formation of the C ring. The B ring bearing a 

hydroxyl group was successfully constructed by our Tf2NH-

catalyzed (2 + 2)-cycloaddition, in which the desired diastereomer 

was obtained as a major product. 
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