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An unprecedented Ag(I)-catalyzed tandem [6 + 3] cycloaddi-
tion/isomerization of isocyanoacetates with fulvenes has been 
developed, affording the fused dihydropyridine derivatives in 
good yields with exclusive regioselectivities. 

Intermolecular cycloadditions are the most efficient and powerful 
tools for the straightforward synthesis of diverse carbo- and 
heterocycles with molecular complexity from simple and readily-
available starting materials.1 Cyclization of isocyanides with carbon-
carbon and carbon-heteroatom multiple bonds have proved to be a 
reliable platform for the concise construction of biologically active 
heterocycles.2 The unique divalent property of isocyano group 
renders isocynides functions as both nucleophilies and electrophiles, 
and has made them as indispensable reagents in organic synthesis.3 
In particular, -acidic isocyanoacetates, have been successfully 
utilized as crucial building blocks in [3 + 2]-cycloaddition reaction 
for the facile access to pyrrole,4 pyrroline,5 oxazoline,6 oxazole,7 
imidazole,8 and triazolines,9 etc (Scheme 1). 

+

Scheme 1. Isocyanoacetates as Hetero Three-Atom Synthons in [3 + 2],
[3 + 3] (Previous Work) and [6 + 3] Cycloaddition (This Work).
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In contrast, higher-order cycloaddition using isocyanides as the 
hetero three-atom synthons has received much less attention 
although such reaction models may provide the potential for the 
direct synthesis of a diverse array of non-five membered 
heterocycles. Most recently, a formal [3 + 3]-cycloaddition of 
isocyanoacetate with azomethine imines for the synthesis of 1,2,4-
trizaoles was reported by Liu and co-workers.10 However, to our 
knowledge, there has been no example of [6 + 3]-cycloaddition of 
isocyanoacetate so far. As part of our ongoing research interest in 
developing high order cycloaddition reactions,11 herein, we reported 
the first example of Ag(I)-catalyzed tandem [6 + 3]-cycloaddition of 
isocyanoacetates with fulvenes followed by isomerization, affording 
the bioactive dihydropyridines12 with exclusive regioselectivity. 
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CO2R

1a
R = Me (2a)
R = Bn (2b)

[M]/PPh3 (10 mol %)

Et3N (15 mol %)
solvent, rt

a All reactions were carried out with 0.6 mmol of 1a and 0.4 mmol of 2a

in 2 mL of solvent. b Isolated yield. c Without Et3N. d Without PPh3. e 3

mol % catalyst loading. f Benzyl 2-isocyanoacetate 2b was employed.
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Entry yield (%)b
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Time (h)

3

7

9e
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90

PhMe

CH2Cl2

AgOAc

AgOAc

24

12

4 traceCH2Cl2CuBF4 24

8 80Et2OAgOAc 24

6 78THFAgOAc 3

5 78CHCl3AgOAc 3

Table 1. Optimization of tandem [6 + 3] annulation/isomerization of

methyl 2-isocyanoacetate 2a with fulvene 1aa
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Our studies began with the examination of isocyanoacetate 2a and 
fulvene 1a with the AgOAc/PPh3 as the catalyst and Et3N as the base 
at room temperature in dichloromethane. To our delight, the reaction 
finished smoothly in 3 h, the tandem cycloaddition/isomerization 
product 3a was obtained in 87% yield (Table 1, entry 1). Control 
experiments revealed that the absence of PPh3 or base retarded the 
reaction remarkably (entries 2 and 3). No cycloaddition occurred 
when using Cu(I)/PPh3 as the catalyst (entry 4). Other silver salts, 
such as AgNO3, Ag2CO3 and AgClO4, promoted this annulation 
albeit with a slightly lower yields. The evaluation of the solvent 
effect indicated that dichloromethane is the best solvent in terms of 
reaction rate and the yield (entry 1 and 5-8). The catalyst loading 
was successfully reduced to 3 mol % without loss of the reactivity 
and yield (entry 9). Variation of the ester group from methyl to 
benzyl has marginal influence on this reaction (entry 10). 
 

R1R1

CO2R3CN

R2

1
2

2a: R2 = H, R3 = Me
2b: R2 = H, R3 = Bn
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(3 mol %)

Et3N (15 mol %)
CH2Cl2, rt

a All reactions were carried out with 0.6 mmol of 1 and 0.4 mmol of 2 in

2 mL of CH2Cl2. b Isolated yield.
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(3b) (3c)

entry 1: 95% yieldb entry 2: 78% yieldb entry 3: 81% yieldb

(3d)

(3e) (3f)

entry 4: 86% yieldb entry 5: 78% yieldb entry 6: 67% yieldb

(3g)

(3h) (3i)

entry 7: 75% yieldb entry 8: 77% yieldb entry 9: 81% yieldb

(3j)

(3k) (3l)

entry 10: 73% yieldb entry 11: 72% yieldb

Table 2. Substrate scope for Ag(I)-catalyzed tandem [6 + 3] annulation/

isomerization of 2-isocyanoacetate 2 with symmetrical fulvenes 1a

 
With the optimal conditions established above, the substrate scope 

was investigated with various fulvenes and isocyanoacetates to test 
the generality of this annulation. As summarized in Table 2, the 
symmetrical fulvene 1b derived from pentan-3-one proved to be 

viable substrate giving rise to the desired adduct 3c in good yield 
(Table 2, entry 2). Symmetrical fulvenes derived from cyclic ketones 
were further evaluated. It was found that the tested fulvenes bearing 
different ring sizes have little influence on efficiency of the reaction 
(entries 3-8). Cyclic fulvenes derived from tetrahydro-4H-pyran-4-
one and 1-benzylpiperidin-4-one was also compatible in this 
transformation delivering the corresponding adducts 3g and 3h in 
good yield (entries 6 and 7). In order to probe the feasibility for 
constructing fused pyridines bearing a quaternary center, the bulky 
α-branched isocyanoacetates have been examined. To our delight, 
under the optimal reaction conditions, good yield and high reactivity 
were observed for various α-substitution groups (entries 9-11), 
which highlighted the generality of this novel annulation. 
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Et3N (15 mol %)
CH2Cl2, rt

a All reactions were carried out with 0.6 mmol of 1 and 0.4 mmol of 2 in

2 mL of CH2Cl2. b Isolated yield. c 2a was used instead of 2b.
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Table 3. Substrate scope for tandem [6 + 3] annulation/isomerization of

benzyl 2-isocyanoacetate 2b with unsymmetrical fulvenes 1a
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Encouraged by the results with the symmetrical fulvenes, we next 

focused on the unsymmetrical fulvenes derived from aldehydes, and 
the representative results are tabulated in Table 3. In general, the 
unsymmetric fulvenes bearing one terminal substituent group 
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displayed much higher reactivity compared with the symmetrical 
fulvenes bearing two substituent groups, probably due to the reduced 
steric hindrance at the terminal position. All tested unsymmetrical 
fulvenes were tolerated in this novel [6 + 3] annulation. However, 
the additionally generated tertiary center renders this tandem 
annulation more intricate, and the cycloadducts were separated in 
good yields as syn- and anti-isomers with 1:1 ratio. The relative 
configuration of cycloadduct (±)-4d was determined by the single X-
ray crystallographic analysis (Figure 2). 

 

Figure 2. X-ray Crystal Structure of ( )-4d

NH

CO2Me

OMe

 
 

The asymmetric version of this [6 + 3] cycloaddition was also 
preliminarily explored (Scheme 2). With AgOAc/TF-BiphamPhos 
complex13 developed by my group as the catalyst, the tandem 
cycloaddition/isomerization of isocyanoacetate 2a and fulvene 1a 
proceed smoothly at 0 oC, affording the adduct 3a in 71% yield and 
28% ee without further optimizations. 
 

 
Scheme 3. Proposed Mechanism for [6 + 3]-Cycloaddition/Isomerization
of Isocyanoacetates and Fulvenes
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Based on the experimental results and literature analysis,5,10 a 

postulated catalytic cycle was illustrated in Scheme 3. With the 
aid of the base, A or its tautomer A' was formed from 1a via 

metalation and α-deprotonation. Initial nucleophilic attack of A 
to the fulvene 2a delivered the zwitterionic intermediate B. 
Subsequent intramolecular cyclization followed by protona-
tion/isomerization gave 3a and regenerated the catalyst. 

In summary, we have successfully developed the first Ag(I)-
catalyzed [6 + 3] cycloaddition/isomerization of fulvenes and 
isocyanoacetates for the facile access to fused dihydropyridines 
with high functionality. The asymmetric fashion of this tandem 
annulation/isomerization can be also realized with AgOAc/TF-
BiphamPhos. Further improvement of the catalytic asymmetric 
version and application in organic synthesis are underway. 
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