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Dibenzo[b,h][1,6]naphthyridines were synthesized in one pot 
by reacting 2-acetylaminobenzaldehyde with methyl ketones 
under basic conditions via four sequential condensation 
reactions.  This method was also applied to the synthesis of 1,2-
dihydroquinolines.  6-Methyl-1,6-dibenzonaphthyridinium 
triflates showed strong fluorescence, and the fluorescence 
intensities were changed upon intercalation into double-
stranded DNA.   

Cyclic polyaza compounds, such as quinolines, dihydroquinolines, 
naphthyridines, benzonaphthyridines, and phenanthridines, are 
important structural components of naturally occurring alkaloids and 
synthetic analogues possessing interesting biological activities.1,2 
Ethidium bromide (EtBr) and the analogues of phenanthridine and 
benzonaphthyridine are used for the visualization of nucleic acids in 
agarose gels.  Those dyes produce red-orange fluorescence under 
ultraviolet light and show enhanced fluorescence when bound to 
double-stranded DNA.  Because of their fluorescence properties, 
those dyes are used as DNA intercalating agents.3  In this regard, the 
development of efficient routes for the preparation of phenanthridines 
and benzonaphthyridines is of great importance in synthetic organic, 
pharmaceutical, and material chemistry.4  It is well known that 
benzaldehyde reacts with acetophenone under basic conditions to 
afford chalcone.5  We have reported a one-pot synthesis of quinolines 
and 2-arylquinoline N-oxides that involved reacting 2-nitrochalcones 
with Sn/HCl or Zn/HCl, the intermediates of which were 2-
aminochalcones, or the Friedländer reaction.6  Methods for the 
synthesis of dibenzo[b,h][1,6]naphthyridines (1) include the reaction 
of quinolines with 2-aminobenzoic acid or 2-aminoacetophenone7 and 
the reaction of quinolinones with 2-aminoacetophenones,8 all of 
which are based on the Friedländer reaction that proceeds at a high 
reaction temperature (160-180 oC).  Recently, three-component 
reactions that yielded naphthyridine derivatives were reported.9  

Although 2,2,4-trimethyl[1,2]dihydroquinoline was obtained by 
reacting aniline with acetone and iodine,10 there is no report on the 
direct synthesis of dibenzo[b,h][1,6]naphthyridines 1 from easily 
available starting materials, such as 2-aminobenzaldehydes.  Those 
results prompted us to look into ways for the synthesis of 
dibenzo[b,h][1,6]naphthyridines 1 and their alkylation.  Our synthetic 
plan consists of four sequential condensation reactions (aldol, 
imination, aza-Morita-Baylis-Hillman, and intramolecular imination) 
of 2-acetylaminobenzaldehyde (2) with methyl ketones (3), as shown 
in Figure 1.  In this communication, we report the synthesis of 1, their 
fluorescence properties, and their DNA intercalation properties. 
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Figure 1. Retrosynthetic analysis of dibenzonaphthyridine 1. 
 

2-Acetylaminobenzaldehyde 2 was synthesized by reducing 2-
nitrobenzaldehyde with Sn/HCl or Fe/HCl and subsequently adding 
acetic anhydride.11  Treatment of 2 with 2 eq of 4-
methylacetophenone 3a in the presence of aq NaOH (5 M solution, 2 
eq) in refluxing EtOH gave 2-(2-acetylaminophenyl)-3-(4-
methylbenzoyl)-1,2-dihydroquinoline (4a) in 80% yield.12  The 
structure of 4a was confirmed by 1H NMR, 13C NMR, and MS 
analyses.  The 1H NMR spectrum of 4a showed a singlet at 6.06 ppm, 
which unambiguously indicated the existence of a methine proton, 
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along with peaks of 13 aromatic protons.  Other reactions were carried 
out in a similar manner (55-99% yields, Scheme 1, Table S-1). 
Compound 4e was finally determined by X-ray crystallographic 
analysis (Figure S-5).   Compound 4c was gradually oxidized in 
CH2Cl2 solution to give the corresponding quinoline 4c’ after 24 h at 
rt.  1,2-Dihydroquinoline 4c was gradually oxidized upon stirring in 
CH2Cl2 solution for 24h to give quinoline 4c’. 
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Scheme 1. Reaction of 2-acetylaminobenzaldehyde 2 with 3. 
 

It is well known that the reaction of 2-aminobenzaldehyde with 
acetophenones gives 2-arylquinolines via the Friedländer reaction.13  
However, there is no report on the synthesis of 1,2-dihydroquinolines 
by reacting 2-aminobenzaldehyde derivatives with acetophenones.  
There are several methods for the synthesis of dihydroquinolines.1,9  
Recent examples include the AuCl3/AgSbF6-catalyzed intramolecular 
allylic amination of 2-tosylaminophenylprop-1-en-3-ols,14 the 
electrocyclization of N-methyl-2-hydroxyalkylanilines,15 the 
intramolecular cyclization of o-(1-hydroxy-2-alkenyl)phenyl 
isocyanides in the presence of BF3

.Et2O as catalyst,16 and the tandem 
Michael-aldol reaction of N-tosyl-2-aminobenzaldehyde with -
unsaturated carbonyl compound.17  A synthesis conducted under mild 
basic conditions is expected to offer more advantages than the above-
mentioned methods.  In the method developed in this study, readily 
available 2 and 3 were used as substrates. 

If the N-acetylamino group of 4 could be hydrolyzed and condensed 
with a carbonyl group, it would be possible to synthesize 
dibenzo[b,h][1,6]naphthyridines 1.  Because only aq NaOH was used 
as the base for the synthesis of dihydroquinolines 4, we reacted 2 with 
3 in the presence of NaOH hoping that 1 would be obtained in a one-
pot operation (Scheme 2).  Treatment of 2a with 3a in the presence of 
20 M NaOH (1 eq) in refluxing ethanol for 6 h furnished polymeric 
products.  When 2 eq of 5 M NaOH was added to refluxing ethanol 
followed by 20 eq of 20 M NaOH, and then reflux was conducted for 
10 h, naphthyridine 1a was formed in 70% yield.  Under similar 
conditions, naphthyridines 1b-j were synthesized as well (Scheme 2, 
Table S-2).  However, as the yields of 1f-1j were low (21-23%), 
aerobic oxidation, deacetylation, and imination of 4 at an elevated 
temperature (~230 oC) were performed, and the yields of 1f-1j were 
improved to 75-96% (Scheme 3, Table S-3).  The structure of 1a was 
confirmed by 1H NMR, 13C NMR, MS, and elemental analyses.  As 
single crystals of 1a were obtained by reacting with 4-
methylacetophenone, X-ray crystallographic analysis was performed 

(Figure S-6).18 

   The reaction is speculated to proceed as follows: the aldol reaction 
of benzaldehyde 2 with acetophenone 3 furnished chalcone, which 
underwent hydrolysis and imination with 2 to give imine a.  
Intramolecular aza-Morita-Baylis-Hillman cyclization of imine a 
produced dihydroquinoline derivative 4.  Under specific conditions 
(20 eq NaOH in refluxing ethanol for 10 h), dihydroquinoline 4 was 
hydrolyzed, oxidized, and intramolecularly condensed to give 
naphthyridine 1 (Scheme 4). 
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Scheme 2.  One-pot synthesis of dibenzo[b,h][1,6]naphthyridines 1. 
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Scheme 3. Thermal transformation of 4f-4j. 
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Scheme 4. Plausible reaction mechanism. 
 

Previously, dibenzo[b,h][1,6]naphthyridines 1 were synthesized in 
two steps: the reaction of formylquinolin-2-one with aniline and the 
reaction of this imine with polyphosphoric acid.19  1,6-
Dibenzonaphthyridin-6-ones were synthesized by reacting diethyl 2-
(3-methylbut-2-enyl)malonate with anilines in refluxing diphenyl 
ether, but the yields were very low at 2-4%.20  The present reaction 
requires only one step using commercially available substituted 
methyl ketones 3 and N-acetyl o-aminobenzaldehyde 2, which was 
synthesized from o-nitrobenzaldehyde.  Thus, this method provides a 
versatile alternative for the synthesis of substituted naphthyridines in 
a one-pot operation.  
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If dibenzonaphthyridines 1 were selectively methylated at 6-
position, their structures would be very similar to that of EtBr, a 
well-known DNA intercalating agent.  Then, the alkylation of 
those compounds with methyl triflate was carried out (Scheme 
5).  As expected, the methylation proceeded regioselectively at 
6-position to afford N-methylation products (5a-c) almost 
quantitatively. 

N

N

R

 Me OTf

N
H2N

NH2

N

N

Br

Ethidium Bromide
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Scheme 5.  Synthesis of dibenzonaphthyridinium triflates 5a-c. 
   
    EtBr is characterized by its intrinsic fluorescence.  In contrast, 
the fluorescence properties of methylated naphthyridines 5a-c 
remain unexplored.  Therefore, we examined the differences in 
spectroscopic properties between 1a and 5a.  Although 
dibenzonaphthyridine 1a did not show significant fluorescence, 
methylated dibenzonaphthyridine 5a exhibited strong 
fluorescence (Figures 2a and 2b).  The fluorescence quantum 
yield of 5a is 0.15 (0.17 for 5b and 0.18 for 5c; see Figure S-1).   

 
    Figure 2a                                                    Figure 2b 

Figure 2a. UV/vis and fluorescence spectra of 1a (5 M, EtOH, excitation at 
360 nm) and 5a (5 M, EtOH, excitation at 400 nm).  Figure 2b. Photograph 
of EtOH solution of 1a (left, 0.1 mM) and 5a (right, 0.1 mM) under 365 nm 
light irradiation.  

We then examined the intercalation property of 5b with the 
expectation that it would behave as an EtBr-like DNA staining reagent.  
As shown in Fig. 3a, a titration experiment revealed a gradual 
decrease in the fluorescence intensity of 5b in response to the 
increasing concentration of plasmid DNA.  This result can be 
explained by considering the ability of the nitrogen-containing planar 
ring to coordinate to DNA, because the structure of the ring system is 
very similar to that of EtBr.  Interestingly, such a negative effect of 

the intercalation on the fluorescence is in contrast to the characteristics 
of EtBr, whose fluorescence is strongly enhanced by the intercalation 
into DNA.  The difference in fluorescence properties between 5b and 
EtBr was visually confirmed when DNA fragments electrophoresed 
on acrylamide gels were stained with those two reagents.  When 5b-
stained gel was observed under UV irradiation, DNA fragments were 
visible as dark bands against the bright background of the gel (Figures 
3b and 3c).  As typical DNA intercalators have planar aromatic rings, 
such as EtBr and acridinium derivatives,21,22 the interaction mode of 
5a is predicted as an intercalation.  The fluorescence of 5a was 
quenched with increasing DNA concentration, as observed in several 
intercalators.  Therefore, one of the possible mechanisms for this 
quenching is the photoinduced electron-transfer reaction between the 
excited compound and the nucleic bases.22,23   

 
Figure 3a.   
 

 
 

Figure 3b                                         Figure 3c 
Figure	3.	Change in fluorescence of compound 5b upon intercalation 
into DNA.  a) Fluorescence spectra of 0.10 M serial solutions of 5b 
containing the indicated concentrations of 31mer oligonucleotide, 
spanning from 440 nm to 600 nm (excitation at 370 nm).  b) Difference 
in DNA-intercalation-induced fluorescence between 5b and EtBr.  Upper, 
EtBr (0.5 M in water); lower, compound 5b (0.5 M in 0.1% DMSO in 
water); left, without DNA; right, containing 7.5 mg/mL pUC-18 plasmid 
DNA.  Fluorescence was observed by excitation with 254-nm UV light.  
c) DNA staining of 5b.  100 bp DNA ladder fragments electrophoresed 
on 8% acrylamide gels were stained with 5b (left) and EtBr (right).  The 
excitation conditions are the same as those for b. 

Conclusions 

We have synthesized dibenzo[b,h][1,6]naphthyridines in one pot 
by reacting 2-acetylaminobenzaldehyde with acetophenone 
under basic conditions.  This method was also applied to the 
synthesis of 1,2-dihydroquinolines.  6-Methyl-1,6-
dibenzonaphthyridinium triflates showed significant 
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fluorescence and intercalated into double-stranded DNA.  
Further studies on the novel features of those reagents are in 
progress.  
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