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A closed-ring isomer of a diarylethene having sulfone group 

works as the reagent for SO2 gas generator with thermal 

stability even at 70 °°°°C, and it rapidly reverts to the open-ring 

isomer and generates the SO2 gas to induce the cell death 

upon UV irradiation.  10 

Since the development of the photochromic compounds in the 

late 1980s, diarylethenes have been attracted widespread attention 

as photocontrollable element in molecular devices and switches.1, 

2 This is due to the high fatigue resistance of the cyclization and 

cycloreversion reactions, which reversibly generate the open- and 15 

closed-ring isomers. However, the reports to the biochemical and 

biological applications were still very rare. Branda et al. 

demonstrated that the photoresponsive dithienylethene could be 

reversibly triggered in a living organism and that the photoswitch 

induced paralysis in Caenorhabditis elegans only when the 20 

closed-ring isomer was generated by exposure with UV light (365 

nm).3 Until today, the mechanism of the photoswitchable 

paralysis is not clear.  

Some diarylethenes with sulfone groups are known as fatigue 

resistant photochromic compounds with dramatic fluorescence 25 

intensity changes upon alternate irradiation with UV and visible 

light.4-6 We found that one of the diarylethene derivatives having 

sulfone group 1o (Scheme 1), which was initially synthesized by 

S. I. Yang et al,7 works as SO2 gas generator to induce the cell 

death upon UV irradiation. Sulfur dioxide (SO2) is an 30 

environmental pollutant and toxic at elevated concentrations. 

Although the mechanism of its cytotoxicity is yet unclear, SO2 at 

elevated concentrations is known to induce oxidative damage to 

biomacromolecules such as proteins, lipids, and DNA.8-11 

Oxidation of SO2 to sulphate is known to occur through radical 35 

intermediates (such as ·SO3) in neutral pH conditions, which in 

turn can damage biomacromolecules.8-11 In such background, 

reagents to generate SO2 gas in situ have been developed.8   

Diarylethene 1o shows the reversible coloration and 

decoloration by alternate irradiation with UV and visible light. 40 

Open-ring isomer 1o has the λmax at 229 nm (ε: 1.67 × 104 M-1cm-

1) and the band extends to 400 nm, while the closed-ring isomer 

1c has the λmax at 477 nm (ε: 1.05 × 104 M-1cm-1) and the color is 

orange in hexane (Fig. 1), and quantum yields of the cyclization 

and cycloreversion reactions of 1 are 0.35 (366 nm) and 4.2 × 10-
45 

3 (533 nm), respectively.12,13 The isomer 1c is thermally stable 

and never generates the SO2 gas by heating nor by visible light 

irradiation. By contrast, 1o generate SO2 gas not only by light 

irradiation but also heating. Therefore the fatigue resistance of the 50 

photochromism of 1 in hexane was poor (ESI†). The quantum 

yield of SO2 gas generation of 1o was estimated as 0.1 (ESI†). 

Herein we propose 1c as the thermally stable unique regent for 

SO2 gas storage and generator. 

Although diarylethenes are generally known as thermally 55 

irreversible photochromic compounds,1 we confirmed the thermal 

stability of both isomers 1o and 1c. The hexane solution of the 1c 

was heated at 70 °C for 7 days in the dark, SO2 gas formation and 

thermal cycloreversion reaction from 1c to 1o were not observed. 

Upon visible light (λ> 480 nm) irradiation, only cycloreversion 60 

reaction to 1o was observed without gas formation. In contrast, 

UV (300 nm <λ< 365 nm) irradiation to the hexane solution of 1o, 

gas was detected accompanied with the cyclization reaction to 1c. 

We identified the generated gas by the GC-Mass spectroscopy for 

the chloroform solution of 1o in a closed-vessels upon irradiation 65 

with UV (300 nm<λ<365 nm). The gas consisted of SO, SO2, 

Scheme 1. Molecular structures of the two isomers of diarylethene 1 
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Fig. 1 Absorption spectral changes of 1o in hexane solution (4.24×10-5 

M).  (a) Absorption spectrum of 1o (black solid line), (b) absorption 
spectrum of 1c (red solid line), and (c) photostationary state upon 365 

nm light irradiation (1o: 1c=34:66) (red dashed line). 
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(CH3)3Si-OH, and the solvent (Fig. S1, ESI†). Then we used SO2 

gas test tube for the quantitative measurement (Fig. S2,S3 ESI†). 

By increasing the duration of UV irradiation, the amount of the 

generated SO2 gas was increased (Fig. S4, ESI†). The SO2 gas 

was also detected by heating the hexane solution of 1o in a sealed 5 

tube at 70 °C for 1 day. These results indicate that the SO2 

generation ability was locked in the closed-ring isomer 1c and 

unlocked by visible light irradiation (one way 

photoisomerization).  

 The protection was also unlocked by UV light irradiation 10 

(back and forth photoisomerization) and SO2 gas was generated 

from 1o after photo-converted from 1c. The formation of SO2 gas 

upon UV irradiation to the hexane solution of 1o as well as 1c are 

measured by a gas detector and summarized in Fig. 2 (Tables S1-

S3, ESI†). Therefore, it is possible to use 1c as the thermally 15 

stable regent for SO2 gas storage. One of the useful applications 

of this finding for cell biological reserches is that, once UV light 

is irradiated, it works as photoinduced on-demand killing of 

adherent cells on culture substrates.  

When we reduced the light intensity by using neutral density 20 

(ND) filters (Fig. S5, S6), the amount of SO2 gas generation from 

1c was much suppressed than that from 1o. This is attributed by 

the following reason. For the hexane solution of 1c, the first 

photon absorbed by 1c is used for the cycloreversion reaction to 

1o. The produced 1o can generate SO2 gas but the concentration 25 

of 1o is low because of the reduced intensity of UV light at the 

initial stage of the experiment. Consequently, the ratio between 

the generation of SO2 from 1o initially and that from 1c is larger 

for the reduced intensity of UV light (Fig. 2).  

Fig. 2 SO2 gas formations by the UV irradiation to the hexane solution of 30 

1o and 1c with changing the UV intensity using ND filters.  

 

The photoinduced SO2 gas generation from 1o is much easier 

compared to other diarylethene derivatives.4-6 This is most likely 

due to the shorter conjugation length in the molecular backbone. 35 

The thiophene 1,1-dioxide in which no lone pair electrons exist 

on the sulfur atom is not aromatic.14,15 The SO2 gas generated 

vigorously upon UV irradiation as well as on heating (ESI†). 

 Here, we further studied photoinduced cell damage on the 

substrates and found the cell death upon UV irradiation to the 1o 40 

coated substrates with NIH/3T3 and MDCK cells. The 

phenomena were also observed for the cells on the 1c coated 

substrates. At the photo-toxicity experiment, NIH/3T3 and 

MDCK cells were disseminated onto thin layers of 1o and 1c, 

respectively. The photoirradiation to the thin layers containing 1o 45 

or 1c can be controlled by selecting the wavelengths of irradiation 

light at 365 and 436 nm which are switchable on our PC-

controlled microprojection system.16 To both cells, 365 nm light 

was irradiated to the patterned area (four band shaped area) 

through the filter from bottom side of the culture substrate. Fig. 50 

3a shows the NIH/3T3 cells on the thin layer of 1o. The 365 nm 

light was irradiated on the patterned area (Fig. 3b, fluorescence 

from base polystyrene substrate was observed in the irradiated 

area), and the cells on the area were damaged and detached from 

the surface as shown in Fig. 3c. Also MDCK cells on the thin 55 

layer of 1o were damaged after 365 nm irradiation (Fig. 3d, e), 

while no damage was observed with 436 nm light irradiation. Fig. 

3d shows that the adhesion of the cells decreased in the irradiated 

area. Some of these cells were stained with Trypan which can 

stain the dead cells only. These results suggested that the cells 60 

were damaged significantly by 365 nm irradiation on the thin 

layer of 1o. On the 1c film, NIH /3T3 cells were also damaged 

upon 365 nm irradaition (Fig. 3f). The more magnified images 

(Fig. 3g, h) show cleary that the  shape of the cells in the 

irradaited area were  totally deformed indicating their critical 65 

damage. 

Fig. 3 Influence of patterned UV irradiation (wavelength: 365 nm, 

intensity: 90 mW/cm2) on NIH/3H3 (a-c, f-h) and MDCK (d, e) cells on 
1o coated substrate (a-e), and 1c coated substrate (f-h). Phase contract 

images of NIH/3T3 cells on 1o coated substrate (0.44 µg/cm2) before the 70 

irradiation (a), during the 365 nm light irradiation for 8 min (b), and 3 
hours after the irradiation (c). Phase contrast image of MDCK cells on 1o 
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coated substrate (0.44 µg/cm2) 2 hours after 365 nm light irradiation for 

12 min (d) and transmission image after subsequent Trypan blue dyeing 

(e). Phase contrast image of NIH/3T3 cells on 1c coated substrate (0.30 

µg/cm2) 2 hours after 365 nm light irradiation for 12 min (f), phase 

contrast image after subsequent Trypan blue dyeing (g) and transmission 5 

image of the same view field (h). (Scale bars in all figures: 500 µm)  

 

 

We then carried out the cell damage experiment on the PMMA 

films containing 1c. The cells were attached before UV 10 

irradiation. UV light (365 nm, 95 mW/cm2) was irradiated to the 

central part for 8 min (Figure 4). 

Two hours later the irradiation, the cells in the irradiated area 

were damaged and departed from the surface. In the control 

experiment, such cell damage was not observed on the PMMA 15 

film without 1c under the same UV irradiation conditions. 

The by-products formed during the SO2 gas generation were 

similar to those reported by Kobatake et al, and the by-products 

were maintained in PMMA matrix.17  

Fig. 4 Optical microscopic images of NIH/3T3 cells on a PMMA (64 20 

µg/cm2) film containing 1c (7.2 µg/cm2). (a) Before 365 nm light 

irradiation, (b) 2 h later after 365 nm (95 mW/cm2) light irradiation for 8 

min. (Scale bars: 500 µm) 

 

The diarylethenes having longer conjugations showed high 25 

fatigue resistance even they possess the SO2 groups.5,6 The 

effective photoinduced elimination of sulfur dioxide will be 

limited within simple structured derivatives. Diarylethene 1o is 

the special compound in that the SO2 gas generation is moderate 

and the absorption wavelength is longer compared to that of 30 

thiophene 1,1-dioxide, and the degradation process is prohibited 

by forming the closed ring structure. Therefore, diarylethene 1c 

has desirable characteristics as the photoinduced cell killing 

culture substrate for cell control. 

Conclusions 35 

Photoinduced elimination reaction of sulfur dioxide was found 

as biologically useful SO2 gas generator accompanied with the 

photochromism of diarylethene 1o. For the closed-ring isomer 1c, 

the gas generation was prohibited without UV irradiation even at 

70 °C, however once UV light (365 nm) was irradiated, it reverts 40 

to 1o and sulfur dioxide gas was generated. Due to the generated 

gas, selective cell damage was observed. Such photoinduced on-

demand killing of adherent cells on culture substrates will be 

applicable as one of the noncontact cell control technique. 

 45 
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