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A highly luminescent and highly oxygen-sensitive 
Tb(III) complex with a tris-aryloxide functionalised 
1,4,7-triazacyclononane ligand† 

H. Nakai,*ab T. Goto,a K. Kitagawa,ac K. Nonaka,ac T. Matsumotoabc and S. Ogo*abc 

 

This paper presents a new terbium(III) complex that shows 
the highest luminescence quantum yield in the oxygen-
sensitive lanthanide complexes (Φ  = 0.91 under N2, Φ  = 0.054 
under Air). 

Luminescent lanthanide complexes have attracted considerable 
interest because of their potential applications to probes for 
sensing in biological and environmental systems.1 To date, 
various ligands as sensitisers for lanthanide f–f emission have 
been developed to obtain the lanthanide complexes which are 
stable, luminescent and/or responsive to stimulations (H+, 
temperature, O2, etc.). However, it is still difficult to design the 
ligands for the lanthanide complexes with desired functions: for 
instance, the lanthanide complexes with high luminescence 
quantum yield (Φ = photons emitted/photons absorbed > 0.9) 
are still extremely rare despite the Φ is one of the important 
parameters for optical sensing applications.2 
     Macrocyclic polyamines such as 1,4,8,11-teraazacyclotetra-
decane (cyclam), 1,4,7,10-teraazacyclododecane (cyclen) and 
1,4,7-triazacyclononane (tacn) are widely employed as useful 
frameworks to construct functional chelating ligands in 
coordination chemistry.3 In this context, tacn-based tris-
aryloxide ligands ({(RR’ArO)3tacn}3– (R, R’ = Me (methyl), tBu 
(tert-butyl), Ad (adamantyl), etc.)) allow easy derivatisation of 
the ortho (R) and para (R’) positions of the phenolate ring and 
have been successfully utilised in f-element chemistry.4 
Although the ligands of this class would have a potential as 
tunable sensitisers suitable for the lanthanide f–f emission, their 
luminescent lanthanide complexes have not been reported so far. 
     We have now found that the tacn-based tris-aryloxide ligand, 
{(MeMeArO)3tacn}3–, efficiently sensitises f–f emission of Tb3+ 
ion (Φ = 0.91 under N2 in THF) and unexpectedly found that 
the emission is highly oxygen-sensitive (Φ = 0.054 under Air). 
To the best of our knowledge, the terbium(III) complex with 

{(MeMeArO)3tacn}3–, [{(MeMeArO)3tacn}TbIII(THF)] (1, Scheme 
1), shows the highest luminescence quantum yield in the 
oxygen-sensitive lanthanide complexes.5 Herein, we report the 
synthesis, structure and oxygen-sensitive luminescence 
properties of 1. 
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Scheme	   1	   Preparation	   of	   the	   highly	   luminescent	   and	   highly	   oxygen-‐sensitive	  
terbium(III)	   complex	   1	   with	   the	   tris-‐aryloxide	   functionalised	   1,4,7-‐
triazacyclononane	  ligand.	  	  

     Reaction of 1,4,7-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-
triazacyclononane {(MeMeArOH)3tacn}6 with Tb(OTf)3 in 
Acetone/THF (100/1) in the presence of NEt3 at room 
temperature led to the formation of the terbium(III) complex 1 
as a white powder (77%, Scheme 1, see ESI†). Colorless 
crystals suitable for X-ray diffraction analysis were grown from 
a saturated AcOEt/THF (9/1) solution of 1 at room temperature. 
The solid-state molecular structure of 1 is depicted in Fig. 1, 
along with selected interatomic data (Table S1, ESI†). The 
trivalent terbium ion in 1 is coordinated by the three nitrogen 
and four oxygen atoms. The coordination polyhedron of the 
seven-coordinate Tb3+ ion can be described as monocapped 
octahedron, in which the oxygen atom of THF caps the 
triangular face formed by the oxygen atoms of the 
{(MeMeArO)3tacn}3– ligand (O1, O2 and O3).7 The observed 
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geometry of 1 is similar to those of the previously reported 
seven-coordinate lanthanide and uranium complexes with tacn-
based N3O3-hexadentate ligands.4b,8 
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Fig.	  1	  An	  ORTEP	  drawing	  of	  terbium(III)	  complex	  1	  with	  50%	  probability	  ellipsoids.	  
Hydrogen	  atoms	  are	  omitted	  for	  clarity.	  Selected	  bond	  lengths	  [Å]	  and	  angles	  [°]:	  
Tb1–N1	  =	  2.557(4),	   Tb1–N2	  =	  2.527(5),	   Tb1–N3	  =	  2.535(5),	   Tb1–O1	  =	  2.189(3),	  
Tb1–O2	   =	   2.193(3),	   Tb1–O3	   =	   2.186(3),	   Tb1–O4	   =	   2.458(4),	   O1–Tb1–O4	   =	  
79.98(13),	   O2–Tb1–O4	   =	   80.90(14),	   O3–Tb1–O4	   =	   75.87(13).	   Inset:	   the	  
coordination	  polyhedron	  of	  Tb3+	  ion	  in	  1.	  

     The UV-vis absorption spectrum of 1 in THF at room 
temperature is shown in Fig. 2, black. The absorption band at 
302 nm (ε = 15 × 103 M–1 cm–1) is contributed to the π → π* 
transition of the phenolato moieties (MeMeArO–) and is slightly 
red-shifted relative to that of {(MeMeArOH)3tacn} (287 nm,  ε = 
7 × 103 M–1 cm–1, Fig. S1, ESI†).9  
     The luminescence spectrum (λex = 300 nm) of 1 under N2 in 
THF at room temperature is shown in Fig. 2, red. As expected, 
1 shows the f–f emission of the Tb3+ ion. The seven bands at 
490, 547, 588, 622, 653, 673 and 679 nm are assigned to the 
5D4 → 7FJ transitions (J = 6, 5, 4, 3, 2, 1 and 0, 
respectively).1c,1d The absence of broad luminescence arising 
from the {(MeMeArO)3tacn}3– indicates that the ligand-centred 
excited state was almost completely quenched by the Tb3+ ion. 
Furthermore, the excitation spectrum monitored at 547 nm (5D4 
→ 7F5

 transition) was identical to the absorption spectrum of 1 
(Fig. S2, ESI†). These findings support that an efficient 
intramolecular energy transfer occurs from the phenolato  
moieties (MeMeArO–) to the Tb3+ ion. 
     The luminescence quantum yield (Φ) of 1 was determined to 
be 0.91 under N2 in THF at room temperature using quinine 
bisulfate in 0.5 M H2SO4

 (Φ = 0.60) as a reference.5,10 The 
emission lifetime (τ) of 1 was determined to be 840 µs under N2 
in THF (Fig. S3, ESI†): the radiative rate constant (kr = Φ/τ) of 
1 is calculated to be 1.08 × 103 s–1, which is relatively high 
among the highly luminescent lanthanide complexes.11 Since 
the asymmetric environment of lanthanide(III) ions is known to 

promote f–f radiative transition and thereby provide high 
quantum yield,12 the seven-coordinate environment of Tb3+ ion 
in 1 (vide supra, Fig. 1) would dominantly contribute to the 
high quantum yield of 1.13 
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Fig.	   2	  UV–vis	  absorption	   (black)	  and	  corrected	   luminescence	   spectra	   (under	  N2	  
(red)	   and	   Air	   (blue),	   λex	   =	   300	   nm)	   of	   1	   in	   THF	   at	   room	   temperature.	   Inset:	  
reversible	   responses	   of	   the	   luminescence	   intensity	   of	   1	   (2.0	   x	   10–6	   M)	   to	  
alternating	  Air	  and	  N2	  exposures.	  The	  luminescence	  was	  monitored	  at	  547	  nm.	  

     Unexpectedly, the luminescence of 1 is highly oxygen-
sensitive (Φ = 0.054 and τ = 40 µs under Air, Fig. 2, blue). The 
luminescence intensities of 1 reversibly respond to alternating 
changes of oxygen concentration (under Air (21%) and N2 
(0%)) (Fig. 2, inset). This indicates that 1 has reversible oxygen 
quenching and nitrogen recovering properties without any 
degradation at least ten cycles. 
     The oxygen-sensing properties of 1 were further 
characterised by the Stern–Volmer quenching constant (Ksv) 
obtained from the following equation: I0/I = 1+ Ksv[O2] (I0 and I 
are the luminescence intensities at 0.00 M of O2 concentration 
(under N2) and at the indicated O2 concentrations, respectively; 
[O2] is oxygen concentration). The Stern–Volmer plot (I0/I vs. 
[O2]) of 1 exhibits good linearity (R2 = 0.9989) in the O2 
concentration range of 0.00 M (under N2) to 1.01 × 10–2 M 
(under O2) in THF (Fig. 3). The Ksv of 1 (8300 M–1) is 
comparable to that of the ruthenium(II) polypyridyl complex 
(10352 M–1) which is the most frequently studied class of 
oxygen-sensitive transition-metal complexes.14,15 Thus, the 
terbium(III) complex 1 has attractive features for oxygen 
sensing applications. 
     It is noteworthy that the lowest triplet energy of the 
phenolato moieties (MeMeArO–) in 1 is 26460 cm–1, which is 
estimated from the phosphorescence spectrum of the 
corresponding gadolinium(III) complex, [{(MeMeArO)3tacn} 
GdIII(THF)], in 2-MeTHF at 77 K (Fig. S4, ESI†).11,16 Thus, the 
energy gap (ΔE) between the lowest ligand-centred (MeMeArO–) 
and metal-centred (Tb3+, 5D4: 20490 cm–1, which is estimated 
from the luminescence spectrum of 1 in 2-MeTHF at 77 K (Fig. 
S5, ESI†)) levels in 1 is found to be 5970 cm–1. This value is 
much higher than those found in the previously reported 
oxygen-sensitive terbium(III) complexes (< 3500 cm–1): the 
oxygen-responsive mechanism of 1 can not be explained by the 
well-known mechanism that involves the thermally activated 
back-energy transfer.5,17 This intriguingly suggests that the 
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lowest triplet excited state of MeMeArO– in 1 should have long 
lifetime intrinsically. Further studies to elucidate the oxygen-
responsive mechanism of 1 are now in progress. 
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Fig.	   3	  Stern–Volmer	  plot	  of	   the	   luminescence	   intensity	   (I0/I)	  against	  the	  oxygen	  
concentration	   [O2]	   for	   1	   (4.1	   x	   10

–6	   M).	   The	   I0	   and	   I	   are	   the	   luminescence	  
intensities	   at	   0.00	   M	   of	   O2	   concentration	   (under	   N2)	   and	   at	   the	   indicated	   O2	  
concentrations,	  respectively.	  

     In conclusion, we have demonstrated that tacn-based tris-
aryloxide is useful ligand to construct the oxygen-sensitive 
luminescent terbium(III) complex. The essential properties for 
optical sensing applications are high luminescence and high 
sensitivity. Our findings offer attractive new insight into the 
development of not only highly luminescent lanthanide 
complexes but also highly oxygen-sensitive materials. 
     This work was supported by grants-in aid: 26000008 
(Specially Promoted Research), 26410074, 26810038 and 
24109016 (Scientific Research on Innovative Areas “Stimuli-
responsive Chemical Species”) and the World Premier 
International Research Centre Initiative (WPI Program) from 
the Ministry of Education, Culture, Sports, Science and 
Technology (MEXT) (Japan). 
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