This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water

Tsuyoshi Minami,* Tsukuru Minamiki, Yuki Hashima, Daisuke Yokoyama, Tomohito Sekine, Kenjiro Fukuda, Daisuke Kumaki, and Shizuo Tokito

Saccharides in water are detected electrically using an extended-gate type organic field effect transistor (OFET) functionalised by a phenylboronic acid monolayer. The response patterns for the monosaccharides are significantly different, suggesting that OFET devices can successfully read out the saccharide recognition behaviour of boronic acids and be potentially applied to healthcare devices modified with supramolecular receptors.

Playing a fundamental role in metabolism, saccharides are one of the most important biomolecules. For example, glucose is the primary source of metabolic energy in cells. A decline in glucose transport is associated with serious health issues. For example, diabetes mellitus has now spread globally and causes complications such as blindness, heart disease, apoplectic stroke and kidney failure. Therefore, a significant amount of attention is being devoted to the development of saccharide sensors for use in healthcare applications. To date, one of the most popular glucose sensors has been based on an enzymatic reaction between glucose oxidase and glucose. The disadvantages of enzyme-based sensors is their stability, which is insufficient for long-term use and storage. In addition, they are influenced by dissolved oxygen in biological fluids.

Saccharide sensors based on artificial receptors are being researched extensively. Although smart artificial receptors can bind saccharides noncovalently, the noncovalent recognition of heavily solvated saccharides in water is generally difficult. In this context, our focus has been on the utilisation of phenylboronic acid (PBA) for saccharide detection. PBA derivatives not only serve as a Lewis acid metal centre, but also form cyclic boronate esters with cis-diol moieties of saccharides in aqueous media. Accordingly, colourimetric, electrochemical, and surface plasmon resonance detection of saccharides based on boronate esterification have been reported. Recently, inorganic or carbon nanotube transistors modified with PBA derivatives have also been developed as saccharide sensor devices. We are proposing new saccharide sensor devices based on organic field effect transistors (OFETs) that are modified with PBA receptors. OFETs can be applied to wearable and disposable healthcare devices.

Did you know that OFET sensors are one of the more promising candidates for use in healthcare devices? Although enzyme-based OFET saccharide sensors have been thoroughly investigated, the research of non-enzyme-based OFETs is still in its early stages. Herein, we report for the first time an enzyme-free detection of saccharides in water using an extended-gate type OFET device.

We designed an extended-gate type OFET saccharide sensor, based on research work that assumes saccharide detection is performed in water using OFETs. In the designed device, the transistor device portion is separated from the saccharide sensing site, hence degradation of the organic transistor in water can be prevented. A gold (Au) thin-film on a thin plastic film was used as the extended-gate electrode, allowing us to functionalise its surface with PBA derivatives. The device structure for the extended-gate type OFET is shown in Fig. 1(a). The transistor was specifically designed to achieve low-voltage operation. To fabricate the device, an Aluminum (Al) gate electrode was deposited onto a glass substrate using thermal evaporation (30 nm in thickness). A gate dielectric was then created consisting of an aluminum-oxide layer (5 nm) and a tetradecylphosphonic acid self-assembled monolayer (SAM). The aluminum oxide layer was formed by treating the Al gate electrode, with an oxygen plasma. The SAM layer was prepared by immersing the substrate in a 2-propanol solution of tetradecylphosphonic acid at room temperature. Au source-drain electrodes (30 nm)
were deposited on the gate dielectric layer using thermal evaporation and patterned using a shadow-mask, such that the resulting channel width and length of the OFET were 1000 and 50 μm, respectively. For preparation of the bank layers, an amorphous fluoropolymer (Teflon® AF1600) in fluorinert™ (FC-43) was applied using a dispensing equipment. Then, a semiconductive polymer, poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) in 1,2-dichlorobenzene was drop-cast, and then annealed at 175 °C in N₂ atmosphere. For passivation of the device, Cytop® was spin-coated onto the device (100 nm) and baked at 100 °C. Finally, an extended-gate electrode consisting of Au was prepared on a polyethylene naphthalate film substrate (125 μm) using thermal evaporation, such that the sensing area for the extended-gate electrode was 15 mm² (Fig. 1 (b)). The extended-gate Au electrode was immersed in a methanol solution containing 10 mM of 4-mercaptophenylboronic acid for 1 h at room temperature to form a SAM layer (Fig. 1(c)). The treated electrode was rinsed using ethanol and water and used for the saccharide detection in an aqueous solution.

First, we proceeded to inspect the PBA-SAM layer on the Au electrode surface with photoelectron yield spectroscopy measurements in air, which showed a higher ionisation potential on the SAM-treated Au electrode (5.00±0.06 eV) than an untreated Au electrode (4.79±0.05 eV) (Fig. 2), which indicated that the electron-withdrawing functional group (i.e. PBA) covered the Au surface. Additionally, X-ray photoelectron spectroscopy (XPS) revealed the presence of carbon, oxygen, sulfur, and boron with their expected binding energies (see Fig. 2 (inset) and the SI). Furthermore, we measured a water contact angle on the SAM-treated Au electrode using a contact angle goniometer. The water contact angle of the SAM-treated Au electrode (50.9±2.3°) was higher than that on the untreated Au electrode (40.5±1.3°) (see the SI), which was presumed to be due to the hydrophobicity of the phenyl moiety. The thickness of the PBA layer was estimated to be 0.8 nm (an assuming refractive index = 1.72) by using variable angle spectroscopic ellipsometry measurements at seven incident angles from 45 ° to 75 ° in steps of 5 °. Overall, characterisation results of the Au surface supported that the functionalisation of PBA on the Au was successfully accomplished.

The electrical characteristics of the OFET were measured. As anticipated, the fabricated OFET device functioned reproducibly at below 3 V, confirming that the device could be applied to saccharide detection in water. We next investigated the ability of the extended-gate type OFET to detect saccharides. Fig. 3 shows the transfer characteristics of the OFET upon titration with phosphate buffer solutions of saccharides. Fig. 3 inset exhibits no significant changes in the gate-source current (I_{GS}-V_{GS}), meaning that electrochemical reaction did not occur at the gate. We observed distinct positive shifts of the transfer curves with increasing the saccharide concentrations, although the changes in the field effect mobility for the OFET devices were very small. These observed positive shifts are attributed carrier concentration changes in the OFET channel by the negatively charged boronate esters on the extended-gate electrode, because the operation mechanism of extended-gate type FET sensors can be explained by an interfacial potential shift at the gate/solution interface. These results suggest that the OFET device could read out the molecular recognition behaviour of PBAs.
Fig. 4 Changes in threshold voltage for the OFET devices by the saccharides at various concentrations in a phosphate buffer solution (100 mM) with pH 7.4 at r.t. [Saccharide] = 0-20 mM.

The value of (V_{TH} - V_{TH0}) / V_{TH0} for glucose is larger than with the values for other saccharides under similar conditions by a factor of 2.1 for galactose, 2.3 for fructose, and 5.6 for mannose. James et al. reported similar selectivity of saccharides using diboronic acid fluorescent photo-induced electron transfer sensors \(^3\), implying that the SAM layer formed from PBAs on the extended-gate might bind glucose with bis(boronate complex). \(^2\) The response pattern of glucose is different among saccharides, which could suggest different binding modes. \(^2\) To promote a greater understanding of the detection mechanism of glucose, we attempted to detect glucose using the fabricated OFET device with an extended Au electrode functionalised by a SAM of a benzenethiol/4-mercaptophenylboronic acid mixture (1:1 molar ratio). Mixing with benzenethiol results in reducing the density of PBAs on the Au electrode. As a result, we observed no sigmoidal response pattern to those to other saccharides (see the SI). This supports that the main binding mode between glucose and PBABSAM. The OFET device can read out electrically the saccharide-B binding mode. To achieve multianalyte sensing using sensor arrays, \(^2\) OTF devices can readily be integrated into an array, hence the OFET sensor device fabricated here would be suitable for simultaneous sensing of saccharides.

In summary, we have successfully demonstrated a reliable supramolecular sensor device utilising an OFET to detect saccharides in water. The titration results showed that the OFET device can detect glucose concentrations higher than 5 mM, a sensitivity which covers the threshold for the diabetes diagnosis (a fasting plasma glucose level is 7 mM), a nominal plasma glucose level is 11 mM). \(^2\) To the best of our knowledge, this is the first report of a saccharide sensor employing an extended-gate type OFET with an artificial receptor. We believe that these results widen the avenues for the potential development for future OFET-based supramolecular sensors used for saccharide detection in healthcare applications.

We gratefully acknowledge the financial support from JST and JSPS (Grant-in-Aid for Research Activity Start-up, No.26888002). We also thank Dr. M. Mamada of Yamagata University for his helpful discussions.

References

46 Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Toneruwa, Yamagata 992-8510, Japan. E-mail: tminami@yz.yamagata-u.ac.jp; Fax: +81-238-26-3788; Tel: +81-238-26-3594
† Electronic Supplementary Information (ESI) available: General information of experiments, water contact angle measurements, XPS and transfer characteristics of the OFET. See DOI: 10.1039/b000000x/