ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

COMMUNICATION

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Evidence for an H₂ promoting effect in the selective catalytic reduction of NO_x by propene on Au/Al₂O₃

Tesnim Chaieb,^{*a,b*} Laurent Delannoy,^{*a,b*} Sandra Casale,^{*a,b*} Catherine Louis,^{*a,b*} and Cyril Thomas^{*a,b*}*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

This work provides the first experimental evidence of an H₂ effect in C₃H₆-SCR over an Au/Al₂O₃ catalyst. This effect could only be observed when the number of Au catalytic sites was decreased. The N₂ turnover rate estimated for the first ¹⁰ time for the Au catalytic sites for H₂-C₃H₆-SCR was found to

be similar to that estimated for Ag ones supported on Al₂O₃.

Environmental standards on vehicle harmful emissions, such as nitrogen oxides (NO_x = NO + NO₂) and carbon monoxide (CO), have led to the development and the implementation of catalytic ¹⁵ converters in the early 1970s.¹ The increased severity of the

- emission standards requires the development of ever more efficient catalyst formulations and/or improved aftertreatment technologies. In particular, the removal of NO_x from lean exhausts (excess of oxygen), which made the Three-Way
- ²⁰ Catalysts useless, has become extremely challenging at low temperature and has been the subject of intensive investigations in the last couple of decades.^{1,2} Even though aftertreament strategies such as the Selective Catalytic Reduction of NO_x by ammonia (NH₃-SCR) and Lean-NO_x Traps (LNT) made it
- ²⁵ possible to meet the current NO_x emission standards, these technologies suffer from significant shortcomings.^{1,2} As suggested by Burch,¹ the reduction of NO_x by hydrocarbons (Hydrocarbon Selective Catalytic reduction: HC-SCR) could be an elegant alternative to these technologies.
- ³⁰ HC-SCR has been intensively studied since it was discovered that NO_x could be selectively reduced to N_2 by hydrocarbons.³ Later, Miyadera firstly reported on the promising performance of Ag/Al₂O₃ in HC-SCR with various light hydrocarbons.⁴ Since this pioneering work, the Ag/Al₂O₃ system has been investigated
- ³⁵ thoroughly until recently.^{5,6} Yet the performance of Ag/Al₂O₃ is still well below that required to meet the NO_x emission standards, in particular at temperatures below 300 °C. A breakthrough in this field was provided by Satokawa and co-workers who discovered that the addition of minute amounts of H₂ in the HC-
- ⁴⁰ SCR feed had a dramatic promoting impact on the low temperature performance of Ag/Al₂O₃ with light hydrocarbons.⁷ This so-called "hydrogen effect" was then reported in many studies in which various types of hydrocarbons were used.⁸

Although Au belongs to the same column of the periodic table of ⁴⁵ the elements as Ag, and Au has been the subject of a great number of studies in many catalytic reactions, such as CO and alcohol oxidation⁹ and selective hydrogenation¹⁰, supported Au catalysts have been studied in a surprisingly limited number of C₃H₆-SCR investigations.¹¹⁻¹⁵ In these studies it was shown that

⁵⁰ Au supported on Al₂O₃ provided the best catalytic performance but at higher temperatures compared to the other supporting oxides investigated.

Fig. 1 Au particle-size distribution of the Au(1.6 wt%)/Al₂O₃ sample calcined for 2 h at 550 °C.

It was also shown that the catalytic performance of the Au/Al₂O₃ samples could be promoted to a significant extent with the addition of Mn₂O₃,¹²⁻¹⁴ Co₃O₄¹⁴ and CeO₂.^{14,15} To our knowledge, ⁶⁰ the influence of H₂ in the HC-SCR reactions using C₃H₆ and/or *n*-decane (*n*-C₁₀) as reductants was reported only once by Miquel et al. on a Au(1wt%)/Al₂O₃ catalyst.¹⁶ In this study, the H₂ promoting effect was shown for H₂-*n*-C₁₀-SCR but not for H₂-C₃H₆-SCR. This is particularly intriguing as an "H₂ effect" has ⁶⁵ been reported for both C₃H₆⁸ and *n*-C₁₀¹⁷ on Ag/Al₂O₃ samples.

The aim of the present study is to provide further insights into the H₂-assisted HC-SCR reaction on Au/Al₂O₃ and in particular into the reason why the "H₂ effect" has not been observed in C₃H₆-SCR on Au supported on Al₂O₃.¹⁶ The conclusions drawn 70 from the present work may also be impactful for other catalytic reactions involving Au and H₂ in the presence of O₂.

For this purpose, a Au/Al₂O₃ sample with 1.6 wt% Au was prepared by deposition-precipitation with urea of HAuCl₄ on a γ -Al₂O₃ support (Procatalyse, 180 m²/g) according to the 75 experimental procedure described earlier.¹⁸ After calcination under O₂(20 %)/He (100 mL_{NTP}/min) at 550 °C for 2 h, the sample was characterized by TEM on a JEOL 2010 microscope operating at 200 kV equipped with an Orius CCD camera (Gatan). The Au particle-size distribution determined by TEM by 80 measuring ca. 300 particles was found to be rather narrow with a maximum around 2.5 nm (Fig. 1). The mean Au particle size calculated as $\Sigma n_i d_i^3 / \Sigma n_i d_i^2$ where n_i and d_i represent the number of Au particles and their corresponding diameter (nm),¹⁹ respectively, was found to be 3.3 nm. Such a particle-size st distribution is in good agreement with values reported earlier using the same preparation method.²⁰

This journal is © The Royal Society of Chemistry [year]

Fig. 2 Conversions of (a) NO_x to N₂ in the C_3H_6 -SCR (---) and H_2 - C_3H_6 -SCR (—) reactions, and (b) C_3H_6 to CO_x in the C_3H_6 -SCR (---) and H_2 -5 C_3H_6 -SCR (—) reactions and H_2 to H_2O (--O--) in the H_2 - C_3H_6 -SCR reaction in the 150-550 °C range of temperatures for 0.33 g of Au(1.6 wt%)/Al₂O₃. Feed compositions: 0 or 0.21 % H₂, 385 ppm NO_x, 400 ppm C_3H_6 , 8 % O₂ and He balance with a 230 mL_{NTP}/min flow rate.

The catalytic C₃H₆-SCR and H₂-C₃H₆-SCR performances of ¹⁰ the Au/Al₂O₃ sample were evaluated consecutively in a dynamic fixed-bed micro reactor by stepwise increase of the reaction temperature from 150 to 550 °C, as described in details in our previous studies.^{5,8} On 0.33 g of Au/Al₂O₃ under the experimental conditions described in the caption of Fig. 2, the

- ¹⁵ reduction of NO_x to N₂ occurred from 200 to 550 °C with a maximum in conversion of about 40 % at 350 °C in C₃H₆-SCR (Fig. 2a, dotted line). The addition of 0.21 % of H₂ into the reacting feed did not affect the conversion of NO_x to N₂ to a significant extent, suggesting the absence of hydrogen effect for
- ²⁰ the Al₂O₃-supported Au catalyst, in agreement with the earlier work of Miquel et al.¹⁶ The conversion of C₃H₆ to carbon oxides (CO_x = CO + CO₂) was found to be slightly promoted to lower temperatures with the addition of H₂ (Fig. 2b). This shift to lower temperature was much less pronounced than that found on
- $_{25}$ Ag/Al₂O₃ catalysts under similar experimental conditions.⁸ The conversion of H₂ is also shown in Fig. 2b. It can be observed that H₂ was fully oxidized at 225 °C, thus at temperatures well below those for which significant C₃H₆ oxidation occurred. This differs substantially from what was reported recently on Ag/Al₂O₃
- ³⁰ catalysts for which H₂ and C₃H₆ oxidations were found to occur concomitantly.⁸

In order to help the conversions of H_2 and C_3H_6 better coincide, the catalytic H_2 - C_3H_6 -SCR performance was evaluated on a much smaller amount of Au/Al₂O₃ (0.07 g diluted in 0.30 g

³⁵ of Al₂O₃). In such a case, the size Au particles does not change and thus only the number of Au active sites is decreased. As illustrated in Fig. 3b, the oxidation of H₂ and C₃H₆ were shifted to higher temperatures by 93 and 55 °C, respectively, on the diluted Au/Al₂O₃ sample compared to the experiment carried out on

 $\begin{array}{l} \textbf{Fig. 3 Conversions of (a) NO_x to N_2 in the C_3H_6\text{-SCR (---) and }H_2\text{-}C_3H_6\text{-}\\ SCR (--) reactions, and (b) C_3H_6 to CO_x in the C_3H_6\text{-SCR (---) and }H_2\text{-}\\ C_3H_6\text{-}SCR (--) reactions and H_2 to H_2O (-O--) in the H_2\text{-}C_3H_6\text{-}SCR\\ \hline reaction in the 150\text{-}550 \ ^\circ\text{C} range of temperatures for 0.07 g of Au(1.6 wt%)/Al_2O_3 diluted in 0.30 g of Al_2O_3. Feed compositions: 0 or 0.21 \%\\ H_2, 370 ppm NO_x, 400 ppm C_3H_6, 8 \% O_2 and He balance with a 230 mL_{NTP}/min flow rate. \end{array}$

- the non-diluted Au/Al₂O₃ sample (Fig. 2b). The narrowing of the 50 temperature domain within which both H2 and C3H6 are oxidized for the diluted sample ($\Delta T_2 = 95$ °C, Fig. 3b) compared to the non-diluted catalyst ($\Delta T_1 = 133$ °C, Fig. 2b) remarkably influences the conversion of NO_x to N_2 (Fig. 3a), and an hydrogen effect can be observed for the first time in C₃H₆-SCR 55 on Au/Al₂O₃. In the presence of H₂ in the C₃H₆-SCR feed indeed, the diluted sample exhibited higher performances and at remarkably lower temperatures (Fig. 3a, solid line) than in the absence of H₂ (Fig. 3a, dotted line). In addition, the overall NO_x conversion to N2 in the 150-550 °C temperature range for the 60 Au/Al₂O₃ diluted sample (Fig. 3a, solid line) was found to be higher than that measured on the non-diluted sample (Fig. 2a) in H2-C3H6-SCR although the amount of Au/Al2O3 in the diluted sample was about five times lower. It was verified that the diluted Au/Al₂O₃ sample did not exhibit any NO_x reduction activity in 65 the absence of C₃H₆ in the reacting feed (H₂-SCR), as also reported earlier on Ag/Al₂O₃.⁷ Contrary to Ag/Al₂O₃,^{5,8} the
- reported earlier on Ag/Al₂O₃.⁷ Contrary to Ag/Al₂O₃,^{3,6} the addition of H₂ to the C₃H₆-SCR feed led to a decrease in the production of N₂O on the Au/Al₂O₃ diluted sample. The selectivity in N₂O (defined as N₂O/(N₂+N₂O) x 100) increased up 70 to 21 % at 550 °C in C₃H₆-SCR, whereas it remained below 7 %
- in H₂-C₃H₆-SCR (not shown). Finally, one can note the fact that a much lower number of catalytic sites could positively influence the catalytic performance is rather counter-intuitive in the field of catalysis.
- ³⁵ Most important, this work thus sheds light on the origin of the absence of "H₂ effect" reported to date in C₃H₆-SCR on Au/Al₂O₃,¹⁶ which we attribute to the too high number of Au

2 | Journal Name, [year], [vol], oo-oo

catalytic sites in the aliquot of sample tested by Miquel et al.¹⁶ This resulted in the over-oxidation of H_2 by O_2 at temperatures at which C_3H_6 was not yet activated, as clearly illustrated in Fig. 2b. The observation of an "H₂ effect" on a Au/Al₂O₃ sample with

- 5 *n*-C₁₀ as a reductant¹⁶ is thus attributable to the lower activation temperatures of such a higher hydrocarbon¹⁷ compared to C₃H₆,¹⁶ which therefore better coincides with the temperatures of H₂ activation.
- As this work provides the first experimental evidence of an ¹⁰ "H₂ effect" in C₃H₆-SCR on Au/Al₂O₃, it appeared relevant to compare the production of N₂ on Au sites to that found on Ag sites under similar experimental conditions⁸ on a turnover rate (TOR) basis. N₂ TOR represents the rate of N₂ formation per metal (M: Au or Ag) surface atom. In the case of Au/Al₂O₃, the
- ¹⁵ number of Au surface atoms was estimated from the mean Au particle size determined by TEM (Fig. 1) and the associated dispersion.¹⁹ Regarding the Ag(0.88 wt%)/Al₂O₃ catalyst, it was assumed that the Ag atoms were all accessible (Ag dispersion of 100 %) as earlier characterization of Ag/Al₂O₃ samples with Ag
- $_{20}$ loadings as high as 2 wt% by EXAFS concluded to the presence of Ag as clusters of 3-8 Ag atoms. 21 The N₂ turnover rates were estimated at 250 °C, as we reported previously that the contribution of the bare Al₂O₃ support was negligible for temperatures lower than or equal to 250 °C. 8 Table 1 lists the
- ²⁵ conversions of NO_x, C₃H₆ and H₂ together with the corresponding data required for the estimation of the N₂ turnover rates for the Au/Al₂O₃ sample investigated in the present work and for a Ag/Al₂O₃ sample studied previously.⁸ It can be seen that the N₂ turnover rates are close to each other, differing by less than one
- ³⁰ order of magnitude, on Au and Ag sites supported on Al₂O₃. Note that the higher dispersion and the lower H₂ oxidation capacity of Ag compared to those of Au on Al₂O₃ allow for a better coincidence of the C₃H₆ and H₂ oxidation reactions in the H₂assisted C₃H₆-SCR reaction and for the introduction of a much are bigher number of Ag cites then Au sites into the catalytic hed
- ³⁵ higher number of Ag sites than Au sites into the catalytic bed.

 $\begin{array}{l} \textbf{Table 1} Comparison of the N_2 turnover rates (N_2 TOR) at 250 \ ^{\circ}C in H_2-C_3H_6-SCR on Au(1.6 \ wt\%)/Al_2O_3 and Ag(0.9 \ wt\%)/Al_2O_3. Feed composition: 0.21 \ ^{\circ}M_2, 378\pm 8 \ ppm \ NO_x, 400 \ ppm \ C_3H_6, 8 \ ^{\circ}O_2 \ and \ He balance with a 230 \ mL_{NTP}/min \ flow \ rate. \end{array}$

		Au/Al ₂ O ₃	Ag/Al ₂ O ₃
Conversions (%)	Metal loading (M, wt%)	1.59	0.88
	M/Al ₂ O ₃ sample weight (g)	0.07	0.38
	Al_2O_3 sample weight (g)	0.30	0.00
	NO_x to N_2	8.8	30.5
	C_3H_6 to CO_x	3.9	22.3
	H_2 to H_2O	32.8	17.4
	N_2 rate (µmol/s g _{cat.})	381	258
	M dispersion (%)	35.2 ^(a)	100.0 ^(b)
	Number of surface M atoms	35.7	81.6
	(µmol/gcat.)		
	$N_2 TOR (s^{-1})$	13.4	3.2

 $_{40}$ $^{(a)}$ estimated from the mean particle diameter of 3.3 nm determined by TEM, (b) deduced from earlier EXAFS characterization of Ag/Al₂O₃ samples which showed that Ag was present as clusters of 3-8 Ag atoms.^{21}

Conclusions

- This work provides the first experimental evidence of an "H₂ 45 effect" in H₂-C₃H₆-SCR over a Au/Al₂O₃ catalyst. This effect could only be observed when the number of Au catalytic sites was decreased. In that case, C₃H₆ and H₂ oxidations occurred in a closer range of temperatures, which resulted in an improved conversion of NO_x to N₂. The N₂ turnover rate estimated for the
- ⁵⁰ first time for the Au catalytic sites for H₂-C₃H₆-SCR was found to be of the same order of magnitude as that estimated for Ag

supported on Al₂O₃. Yet the higher metal dispersion and the better temperature coincidence between the C₃H₆ and H₂ oxidation reactions in H₂-C₃H₆-SCR on Ag compared to that on ⁵⁵ Au on Al₂O₃ allow for the introduction of a much higher number

of Ag sites into the catalytic bed and therefore for better catalytic H₂-C₃H₆-SCR performance for Ag/Al₂O₃ compared to Au/Al₂O₃.

Acknowledgements

TC gratefully acknowledges UPMC for financial support (PhD Grant 60 322/2012).

Notes and references

2

^a Sorbonne Universités, UPMC Univ Paris 06, UMR 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, Case 178, F-75252, Paris, France, E-mail: cyril.thomas@upmc.fr

- 65 ^b CNRS, UMR 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, Case 178, F-75252, Paris, France
 - 1 R. Burch, Catal. Rev. Sci. Eng., 2004, 46, 271.
 - B. Epling, C. Peden, I. Nova, *Catal. Today*, 2014, **231**, 1.
 - 3 W. Held, T. Konig, T. Richter, L. Puppe, SAE Tech. Paper Ser., 1990, 900496, 13; M. Iwamoto, H. Hamada, Held, Catal. Today, 1991, 10, 57.
 - 4 T. Miyadera, Appl. Catal. B: Environ., 1993, 2, 199.
 - 5 T. Chaieb, L. Delannoy, C. Louis, C. Thomas, *Appl. Catal. B: Environ.*, 2013, **142-143**, 780.
 - 6 F. Liu, Y. Yu, H. He, Chem. Commun., 2014, 50, 8445.
 - 7 S. Satokawa, *Chem. Lett.*, 2000, **29**, 294; S. Satokawa, J. Shibata, K-I. Shimizu, A. Satsuma, T. Hattori, *Appl. Catal. B: Environ.*, 2003, **42**, 179.
 - 8 T. Chaieb, L. Delannoy, G. Costentin, C. Louis, S. Casale, R.L. Chantry, Z.Y. Li, C. Thomas, *Appl. Catal. B: Environ.*, 2014, 156-157, 192.
 - 9 T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. H. Huang, T. Ishida, M. Haruta, *Adv. Catal.*, 2012, 55, 1.
 - L. McEwan, M. Julius, S. Roberts, J.C.Q. Fletcher, *Gold Bull.*, 2010, 43, 298; F. Cardenas-Lizana, M.A. Keane, *J. Mater. Sci.*, 2013, 48, 543.
 - A. Ueda, T. Oshima, M. Haruta, *Appl. Catal. B: Environ.*, 1997, 12, 81, M.C. Kung, K.A. Bethke, J. Yan, J.-H. Lee, H.H. Kung, 1997, 121/122, 261, E. Seker, E. Gulari, *Appl. Catal. A: Gen.*, 2002, 232, 203, L.Q. Nguyen, C. Salim, H. Hinode, *Appl. Catal. A: Gen.*, 2008, 94, 203.
 - 12 A. Ueda, M. Haruta, Appl. Catal. B: Environ., 1998, 18, 115.
 - 13 A. Ueda, M. Haruta, Gold Bull., 1999, 32, 3.
 - 14 D. Niakolas, Ch. Andronikou, Ch. Papadopoulou, H. Matralis, *Catal. Today*, 2006, **112**, 184.
 - 15 X. Wang, A. Wang, X. Wang, X. Yang, T. Zhang, *Gold Bull.*, 2006, 40, 52.
 - 16 P. Miquel, P. Granger, N. Jagtap, M. Dongare, C. Dujardin, J. Mol. Catal. A: Chem., 2010, 322, 90.
 - 17 P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve, B. Wichterlová, J. Catal., 2005, 232, 302.
 - 18 R. Zanella, L. Delannoy, C. Louis, Appl. Catal. A: Gen., 2005, 291, 62.
 - 19 G. Bergeret, P. Gallezot, in *Handbook of Heterogeneous Catalysis*, ed. G. Ertl, H. Knözinger and J. Weitkamp, Wiley-VCH, Weinheim, 1st edn., 1997, vol. 2, ch. 3, pp. 439-464.
 - 20 L. Delannoy, R. L. Chantry, S. Casale, Z. Y. Li, Y. Borensztein, C. Louis, *Phys. Chem. Chem. Phys.*, 2013, 15, 3473.
 - 21 J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, J. Phys. Chem. B, 2005, 109, 4805; K-I. Shimizu, M. Tsuzuki, K. Kato, S. Yokota, K. Okumara, A. Satsuma, J. Phys. Chem. C, 2007, 111, 950.