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We demonstrate a novel method that enables the core-
confined bottlebrush copolymers (CCBCs) as catalysts 
support. Significantly, owing to the site-isolated effect, these 
CCBCs catalysts with the incompatible acidic para-
toluenesulfonic acid (PTSA) and basic 4-10 

(dialkylamino)pyridine (DMAP) groups can conduct a simple 
two-step sequential reaction in one vessel. 

In the past decade, many investigations have been focused on the 
development of green chemical processes and synthetic methods 
due to environment considerations.1, 2 The capability to carry out 15 

multiple reactions in one flask plays an important role in the field 
of green chemistry because it decreases the number of work-ups 
and purifications, as well as the volume of solvent used. These 
reactions are often called cascade or domino reactions, which 
represents the development trend of modern organic synthesis 20 

due to the simplified process with low cost, less waste and 
product purification steps. A key problem for the cascade 
reactions is how to site-isolate catalysts or reagents from each 
other such that they do not come into contact and poison one 
another to avoid undesired interactions. Up to now, several 25 

catalyst site-isolation techniques have been developed by using 
solid supports or sol-gels to encapsulate opposite catalysts.3-13 
More recently, soluble polymers with branched architectures, 
such as dendritic and hyperbranched polymers, have emerged as 
attractive nanoscale reactors for the encapsulation and isolation of 30 

various catalytic groups within the interior of the polymers.14-16 In 
particular, Frechet et al.17reported the use of star polymers to 
combine the normally incompatible acid and base catalysts for 
one-pot cascade reactions. Although recent advancements in 
supramolecular chemistry, nanomaterial synthesis, and catalyst 35 

design have significantly improved our ability to construct 
incompatible multifunctional catalytic system, developing new 
and easy methods for site-isolating catalyst that can operate one-
pot sequential reactions still retains a significant challenge. 
Molecular bottlebrushes are single graft copolymer molecules 40 

with a well-defined cylindrical shape which is a result of the 
steric hindrance between the polymeric side chains forcing the 
backbone to adopt a nearly extended conformation.18-24 Recently, 
considerable attention has been drawn to these macromolecules 
due to their potential for intramolecular nanoengineering, such as 45 

templates for inorganic nanoparticles or nanowires,25-31 and for 
development of novel material properties, such as supersoft 
elastomers,32, 33 photonic crystals,34-38 molecular tensile 

machines,39 drug-loading vehicles,40, 41organic nanotubes,42-

44other carbon nanostructures45 and water-soluble organo-silica 50 

hybrid nanotubes.46 Resembling dendritic, hyperbranched and 
star polymers, which contains multiple arms joined at a central 
core. Core-shell bottlebrush copolymers are composed of highly 
branched polymeric side chains emanating from a central 
backbone. Especially, the unique shape, easily controlled 55 

dimensions and versatile synthesis routes of molecular 
bottlebrushes render them useful as single-molecule manipulation 
to create site-isolated nano-objects. To date, there have been no 
reports for the precise introduction of catalytic functional groups 
into bottlebrush copolymers.  60 

In this paper, we described a novel method that enables the 
CCBCs as catalysts support for one-pot cascade reactions. Owing 
to the site-isolated effect, these CCBCs catalysts with the 
incompatible acid and base groups can conduct a simple two-step 
sequential reaction in one vessel.  65 

 
Scheme 1. Fabrication of core-confined bottlebrush copolymers 
supported catalysts 
 
CCBCs containing acidic PTSA or basic DMAP catalysts 70 

confined in their core were successfully synthesized by a “graft-
from” approach with the help of the reversible addition-
fragmentation chain transfer polymerization (RAFT) and 
metathesis cross-linking reaction. The structure of the target 
bottlebrush copolymer precursor is shown in Scheme 1. First, 75 

poly(glycidyl methacrylate) (PGM) backbones with an average of 
140 units were prepared by RAFT polymerization mediated by 2-
cyanoprop-2-yl 4-cyanodithiobenzoate(CPD). The polymer had 
an extremely narrow molecular weight distributions 
(Mw/Mn<1.1). Pendant epoxide groups of PGM were then 80 

hydrolyzed to provide diols, which served as initiators for S-1-
Dodecyl-S’-(α,α’-dimethyl-α”acetic acid)trithiocarbonate (TC) 
RAFT modification. The successful outcome of the esterification 
was evident by the appearance of a new signal at 3.28 ppm 
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of phenylsulfonate esters deprotection. Therefore, an alternative 
procedure was offered to prepare the acid-containing uncross-
linked bottlebrush copolymers with similar composition and 
architecture as shown in the Scheme 3. When the reaction 
cascade was carried out by using uncross-linked catalysts M3 and 5 

M4, only 5% yield of target product C was observed. Again, only 
8% or 9% yield of target product C was observed when either of 
these uncross-linked catalysts M3 or M4 was used along with the 
complementary CCBCs M1 or M2 respectively. We reasoned that 
the uncross-linked bottlebrush copolymer can also penetrate the 10 

corona of the CCBCs with the same deactivation effects as either 
small-molecular PTSA or DMAP. Thus, the presence of cross-
linking in the core layer of bottlebrush copolymers appears to be 
essential for producing site isolation effect for one-pot cascade 
reactions. 15 

 
Table 1.Catalytic results for a one-pot reaction cascade using 
CCBCs acid and base catalysts. 
 

Entry 
Base 
catalyst[a] 

Acid 
catalyst[a] 

Conversion 
of A[%][b] 

Yield of
C[%][b] 

1 M2 M1 100% 87% 

2 DMAP M1 5% 4% 

3 M2 PTSA 7% 5% 

4 DMAP PTSA 0 0 

5 M3 M1 9% 8% 

6 M2 M4 10% 9% 

7 M3 M4 6% 5% 

 20 

[a] Reaction conditions: 10 mol% acid and base catalysts were 
used. The reaction mixtures were run for 48 h at 70oC in 
DMSO/H2O (40:1), [D]=300mM, n(A):n(D) = 1:4. [b] Yields are 
based on GC-MS measurements. 

Conclusions 25 

In summary, we have developed a new system for preparing site-
isolated catalysts based on the core-confined bottlebrush 
copolymers as support structure. By bound incompatible organic 
acid and base into the core-confined section of CCBCs, these 
acidic or basic groups can be effectively isolated and served as 30 

catalysts fora one-pot cascade reaction. We believe that this 
strategy can be further developed into a general pathway for other 
incompatible catalyst system, in which the efficiency of organic 
synthesis will improve significantly.  
 35 
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