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Dynamic structural transformations of coordination 
supramolecular systems upon exogenous stimuli 
Cheng-Peng Li, Jing Chen, Chun-Sen Liu and Miao Du* 

Reaction in the solid state, especially single-crystal-to-single-crystal (SC-SC) transformation, 
provides an appealing routeway to obtain the target crystalline materials with modified proper-
ties via a non-solvent green chemistry approach. This feature article focuses on the up-to-date 
progress in the context of coordination supramolecular systems (CSSs), especially coordination 
polymers (CPs) or metal-organic frameworks (MOFs), which show interesting dynamic nature 
upon various exogenous stimuli, including concentration, temperature, light, mechanical force, 
as well as their synergic effect. In essence, dynamic CSSs normally possess crucial crystalline-
reactive characteristics: i) metal ions or clusters with unstable or metastable electronic configu-
rations and coordination geometries; ii) organic ligands bearing physicochemically active func-
tional groups for post-reactions; iii) polymeric networks of high flexibility for structural bend-
ing, rotation, swelling, or shrinking; iv) guest moieties to be freely exchanged or eliminated by 
varying the environmental conditions. The significant changes in catalytic, sorption, magnetic, 
or luminescent properties accompanied by the structural transformations will also be discussed, 
which reveal the proof-of-concept thereof in designing new functional crystalline materials. 
 

Introduction 

Reaction, in three states of matter, is the fundamental theme to 
chemistry and life course.1 These dynamic processes generally 
involve the formation and breakage of covalent or noncovalent 
interactions, by regulating the local binding features of individ-
ual ingredients and the overall structural extension/stacking in 
crystalline state.2 In the state of solution or gas, molecules are 
endowed with large freedom to disperse and move, which facil-
itates the homogenous reactions between the functional groups 
of reactants. However, reactants in solid phase have more con-
finement of arrangement and less freedom of movement, owing 
to the frustrating effect of molecular closing packing. It is felic-
itously and vividly remarked by Leopold Ruzicka ― a crystal is 
a chemical cemetery. That is, in contrast to liquid and gas states, 
molecules in the solid state, especially crystalline state, are rig-
idly and steadily fixed within the lattices to show a nearly life-
less nature.3 Thus, the reacting functional groups in solid phase 
generally behave the inert features due to their restricted migra-
tion and non-aligning orientation. Nevertheless, chemical reac-
tions in the solid state are not unachievable and a large number 
of inorganic and organic compounds can feature regioselective-
ly and stereospecifically structural transformations upon exoge-
nous stimuli in the solid state.4 Early in the 1960s, Schmidt has 
presented the concept of crystal engineering in domain of solid-
state organic photochemistry, in order to erect a bridge between 
the structure and reactivity of molecules.5 Since then, chemists 

have extensively taken advantage of the solid phase reactions to 
produce the targeted compounds, and obtained a deeper under-
standing on the nature of such reactions. These excellent break-
throughs have not only made a promise to get the materials that 
may be impossible to obtain via the reactions in solvent media, 
but also provided an opportunity to modify their bulk physico-
chemical properties through the solid-state reactions. 
 Of significant necessity, it should make no confusion on the 
definition of the topotactic reaction and single-crystal-to-single-
crystal (SC-SC) transformation here. The term of topochemical 
principle was firstly proposed by Kohlschüetter to describe the 
inorganic crystal transformation,6 that is, a reaction in inorganic 
crystal can occur wherein the crystal lattice of starting reactant 
(mother crystal) determines the orientation of at least one crys-
tallographic axis of the product crystal (daughter crystal). This 
phenomenon in inorganic system is described by topotaxy, and 
such a reaction is a topotactic reaction. With regard to an SC-SC 
reaction, it is unnecessary to require a perfect lattice consisten-
cy on at least one crystallographic axis between the mother and 
daughter crystals, which however will make an emphasis on the 
unanimous single-crystallinity with no disintegration.7 In prac-
tice, this term is preferred to be applied in organic or inorganic-
organic hybrid systems. 
 At this stage, coordination supramolecular systems (CSSs), 
especially coordination polymers (CPs) or metal-organic frame- 
works (MOFs),8 are quite appealing, because of their structural 
aesthetics9 and remarkable properties for potential applications  
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 Benefiting from the advantages of single-crystal X-ray dif-
fraction and other analysis techniques, there is an obscure bor-
derline between single-crystallinity and poly-crystallinity. Thus, 
a solid-state reaction may be remarkably monitored as a whole 
story from alpha to omega. More fascinatingly, some coordina-
tion supramolecular systems, which may only be obtained from 
dynamic structural transformations, will have peculiar physico-
chemical properties in adsorption, magnetism, luminescent, and 
catalysis, revealing proof-of-concept for applications in the ra-
tional design of new functional crystalline materials. 
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