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CuCl2 and CuBr2−mediated intramolecular oxidative C-H/N-
H cross-coupling/halogenation of β-thioalkyl-substituted α-
alkenoyl ketene N,S-acetals occured efficiently, affording 4-
halo-5-thioalkyl-3-pyrrolones. Tunable C-S and C-halo bond 
transformations of the resultant pyrrolone derivatives led to 
highly functionalized N-heterocyclic compounds. 

Synthesis of N-heterocycles via C-N bond formation has been 
among one of the most important tasks for organic chemists.1 
Constructing a C-N bond usually requires coupling partners such 
as organic halides, tosylates, triflates and organoboron reagents, 
etc. react with an NH-bearing compound, producing the target 
products as well as undesired wastes and by-products.2 
Transition-metal-catalyzed cross-coupling reactions have recently 
been made great progress in C-N bond formation.3,4 An 
intramolecular oxidative C-H/N-H cross-coupling reaction seems 
to be a straightforward route to access N-heterocycles although 
intermolecular multi-component reactions can also be employed 
to establish a N-heterocyclic core.5 Pyrrolone derivatives are 
potentially useful in the development of drugs for treating many 
infectious diseases.6 For example, pyrrolone antimalarials have 
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been investigated as a new class of antimalarial leads, among 
which TDR32750 has been shown promising potent activity 
against plasmodium falciparum K1.6a,6b Pyrrolone-based HIV-1 
protease inhibitors have also been pursued to form peptide-
pyrrolone hybrid complex molecules.
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So far, only a limited number of methods have been known for 
the preparation of pyrrolone derivatives although various 
processes were documented to synthesize pyrroles.7 In general, 
time-consuming multi-step procedures,6a multi-component 
reactions,8a,8b self-condensation of enaminones,8c copper-
catalyzed cyclization of enamino amides,8d Pt8e and Au8f-
mediated intramolecular amination of amino ynones, and NIS-
promoted cyclization of diynones,9 can be employed for this 
purpose. However, transition-metal-mediated intramolecular 
oxidative C-H/N-H cross-coupling has seldom been paid atten-
tion for the synthesis of pyrrolones. Electron-withdrawing group-
substituted ketene S,S-acetals10 and N,O-acetals11 can be used as 
versatile building blocks in organic synthesis, while their 
analogues, that is, ketene N,S-acetals, which can be readily 
prepared, have not attracted considerable attention.12 Intrigued by 
the structural feature of α-alkenoyl ketene N,S-acetals, we 
reasonably envisioned that they might be utilized to construct a 
pyrrolone backbone. Herein, we report a CuCl2 or CuBr2-
mediated intramolecular oxidative C-H/N-H cross-coupling 
/halogenation process of such N,S-acetals for the synthesis of 
pyrrolone derivatives as well as their further functionalization 
through catalytic C-Cl and C-S bond cleavage (Scheme 1). 
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Scheme 1 Synthesis of pyrrolones from α-alkenoyl ketene N,S-
acetals. 

Initially, the reaction of α-alkenoyl ketene N,S-acetals 1a was 
performed to screen the reaction conditions (Table 1). Treatment 
of 1a in DMF at 120 °C in the presence of CuCl2 (3 equiv) and 
K3PO4 (3 equiv) under an argon atmosphere afforded the intra-
molecular oxidative C-H/N-H cross-coupling/chlorination pro-
duct, pyrrolone 2a, in 77% yield (Table 1, entry 1). Testing the 
reaction within 60-120 °C reveals that 80 °C is the suitable 
reaction temperature (Table 1, entries 1-4). DMSO also acted as 
the effective reaction solvent, but a mixture of DMF/DMSO (7:1, 
v/v) led to a lower product yield (Table 1, entries 3, 5 and 6). 
Among the screened bases, both K3PO4 and Cs2CO3 efficiently 
promoted the reaction (Table 1, entries 3, 7 and 8). An additive 
effect was observed,4a and LiCl (3 equiv) improved the reaction 
to produce 2a in 85% yield. Increasing the CuCl2 loading  to 4 
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Table 1 Screening of reaction conditions 
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Entry Base Solvent Temp. 
(oC) Additive Yielda (%)

1 K3PO4 DMF 120  77 
2 K3PO4 DMF 100  79 
3 K3PO4 DMF 80  81 
4 K3PO4 DMF 60  58 
5 K3PO4 DMSO 80  71 
6 K3PO4 DMF/DMSO (7:1) 80  70 
7 Li2CO3 DMF 80  50 
8 Cs2CO3 DMF 80  80 
9 K3PO4 DMF 80 LiCl  85 

10c K3PO4 DMF 80 LiCl 96 (86)b

11c K3PO4 DMF 80 LiCld 92 
12c,e K3PO4 DMF 80 LiCl n.r. 
13c  DMF 80 LiCl n.r. 
14c,f K3PO4 DMF 80 LiCl 85 
15c,g K3PO4 DMF 80 LiCl 43 

Conditions: 1a (0.3 mmol), CuCl2 (0.9 mmol), base (0.9 mmol), LiCl 
(0.9 mmol), solvent (3 mL), 0.1 MPa Ar, 2 h. a Determined by GC 
analysis with mesitylene as the internal standard. b Isolated yield given 
in parentheses. c CuCl2 (1.2 mmol). d 0.6 mmol.e Without CuCl2. f In air. 
g In 0.1 MPa O2.  

 
equiv further enhanced the formation of 2a in 96% GC yield 
(86% isolated yield), whereas lowering the LiCl loading to 2 
equiv reduced the yield to 92% (Table 1, entries 9-11). The 
reaction did not occur without a base or CuCl
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2 (Table 1, entries 
12 and 13), and an air or oxygen atmosphere deteriorated the 
reaction efficiency (Table 1, entries 12-15). It is noteworthy that 
CuCl2⋅2H2O could also be applied as the mediator to give 2a in 
65% yield.  
   Under the optimized reaction conditions, the protocol generality 
was explored (Table 2). 4-Chloro-5-thiomethyl-3-pyrrolones 2b 
(92%) and 2c (87%) were obtained from the reactions of the co-
rresponding N,S-acetals of type 1, while the N-benzyl substrate 
reacted less efficiently to afford 2d (59%) and the N-allyl 
analogue did not react. The thioethyl substrate underwent the 
same type of reaction to form 2e (88%). Increasing the steric 
hindrance of the N-aryl moiety reduced the product yield of 2f  

Table 2 Copper-mediated C-H/N-H cross-coupling/chlorination 
of α-alkenoyl ketene N,S-acetals (1) a,b
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2u, 78%                                     2v, 65%                                  2w, 57% 
a Conditions: 1 (0.5 mmol), CuCl2 (2.0 mmol), K3PO4 (1.5 mmol), LiCl 
(1.5 mmol), DMF (5 mL), 80 

35 
oC, 0.1 MPa Ar, 2 h. Yields refer to the 

isolated products. b Using 1.5 mmol CuCl2.  

(79%). The furyl-alkenoyl substrates also reacted to produce 2g-
2i (76-80%). Treatment of α-cinnamoyl ketene N,S-acetals in a 
similar fashion gave pyrrolones 2j-2w in 57-94% yields. The 
substituent on the NAr moiety of 1 such as p-Me, p-OMe, m-F, 
and p-Cl groups did not obviously affect formation of the desired 
products 2k-2n (83-93%). However, 2-Cl and 4-Br on the NAr 
moiety inhibited the reaction by exhibiting a steric or electronic 
effect on the formation of 2o (67%) and 2p (63%), respectively. 
4-OMe and 4-Cl on the aryl group of a cinnamoyl moiety showed 
a negative electronic effect on the yield of 2v (65%) and 2w (57% 
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Scheme 2 Copper-mediated oxidation C-H/N-H cross-
coupling/bromination of α-alkenoyl ketene N,S-acetals (1). 
Conditions: 1 (0.5 mmol), CuBr
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2 (1.5 mmol), K3PO4 (1.5 mmol), LiBr 
(1.5 mmol), DMF (5 mL), 80 oC, 0.1 MPa Ar, 2 h. Yields refer to the 
isolated products. a Using CuBr2 (2.0 mmol). 

). Due to the high tolerance of substituents such as methyl, 
methoxy, chloro, bromo, and fluoro in the desired products, the 
present method provides a general and concise protocol to access 
substituted 4-chloro-3-pyrrolones. Using the same strategy, 4-
bromo-5-thioalkyl-3-pyrrolones (3a-3d) were also obtained in 63-
80% isolated yields in the presence of CuBr2/LiBr (Scheme 2). It 
is noted that the molecular structure of 2a was confirmed by the 
X-ray crystallographic analysis (see the Supporting Information).  

Transition-metal-catalyzed transformations of 2 were conduc-
ted through Catalytic C-S and C-Cl activation. Under Liebeskind- 
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Scheme 3 Functionalization of 4-chloro-5-thioalkyl-3-pyrrolones. 

Srogl cross-coupling conditions for α-oxo ketene S,S-acetals,13 5-
thioalkyl-4-chloro-3-pyrrolones 2a and 2l were reacted with an 
arylboronic acid to form 5-aryl-4-chloro-3-pyrrolones 4a (86%) 
and 4b (81%) by palladium-catalyzed C-S bond cleavage, and 
subsequent Suzuki-Miyaura cross-coupling reactions

5 

10 

14 of the C-
Cl bond in 4 gave 4,5-diaryl-3-pyrrolones 5a (92%) and 5b 
(89%), respectively (Scheme 3). Interestingly, switching the 
cross-coupling conditions also switched the cleavage order of the  

R1

O

SR2

NHR3

R1

O

SR2

NHR3

CuCl

CuCl2
-CuCl
(SET)

R1

O

SR2

NHR3

CuCl2

-CuCl

R1

O

SR2

NHR3

Cl

O
Cl

SR2
R3HN
CuCl

R1

N

O Cl

SR2

R3

A B

C D

R1

O

SR2
R3HN
CuCl

R1

R1

N

O

SR2

R3

CuCl

R1

N

O

SR2

R3

CuCl2

A'

D' E'

1

-HCl

.+

base
-HCl

O
Cl

SR2Cu

E

R1

NR3

CuCl2
base

-HCl

CuCl2
base

-CuCl

CuCl2

2

path a

R1

O

SR2

NHR3

1

-HCl

CuCl2
base base

-HCl

O

SR2Cu

B'

R1

NR3

R1

N

O

SR2

R3

C'

-HCl

CuCl2
base CuCl2

-CuCl
(SET)

.+

-CuCl

CuCl2

R1

N

O Cl

SR2

R3

2

path b

SET

-CuCl

SET

 
Scheme 4 Proposed mechanism. 

C-S and C-Cl bonds in 2a. Thus, the Suzuki-Miyaura cross-
coupling products 6a (90%) and 6b (87%) were efficiently 
produced (Scheme 3). However, only the reductive desulfative 
product, that is, 4-phenyl-5H-3-pyrrolone (7), was formed in 74% 
yield from the reaction of 6a under the C-S cross-coupling 
conditions. In this way, highly functionalized pyrrolone 
derivatives were prepared. 
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85 Addition of 3 equiv of the well-known radical scavenger 
TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or BHT (2,6-di-
tert-butyl-4-methyl phenol) to the reaction mixture completely 
inhibited the reaction of 1a, suggesting a radical reaction pathway 
(see the Supporting Information). A plausible single-electron-
transfer (SET) mechanism involving halogenation/cyclization 
and/or cyclization/halogenation is proposed (Scheme 4). The 
copper(II) salt acts as the catalyst to activate the C-H bond, 
halogenating agent, and oxidant in the overall catalytic cycle.  

In summary, a combination of CuX2/LiX (X = Cl or Br) 
mediated the intramolecular oxidative C-H/N-H cross-coupling/ 
halogenation of α-alkenoyl ketene N,S-acetals, efficiently affor-
ding 4-halo-5-thioalkyl-3-pyrrolones. Highly functionalized 
pyrrolone derivatives were obtained via the catalytic C-S and C-
Cl bond cleavage in the resultant pyrrolones. This method 
provides a new concise route to diverse pyrrolone derivatives 
under mild conditions. 

This work was financially supported by the National Natural 
Science Foundation of China (21472185) and the National Basic 
Research Program of China.  
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